ALTERA Cyclone V E FPGA Development Board
Product Information
Specifications
- FPGA Model: Cyclone V E FPGA (5CEFA7F31I7N)
- FPGA Package: 896-pin FineLine BGA (FBGA)
- Controller: Flash fast passive parallel (FPP) configuration
- CPLD Model: MAX II CPLD (EPM240M100I5N)
- CPLD Package: 100-pin FBGA
- Programmable clock generator for the FPGA reference clock input
- 50-MHz single-ended oscillator for the FPGA and MAX V CPLD clock input
- 100-MHz single-ended oscillator for the MAX V CPLD configuration clock input
- SMA input (LVDS)
- Memory:
- Two 256-Mbyte (MB) DDR3 SDRAM devices with a 16-bit data bus
- One 18-Mbit (Mb) SSRAM
- One 512-Mb synchronous flash
- One 512-MB LPDDR2 SDRAM with a 32-bit data bus (only 16-bit data bus is used on this board)
- One 64-Kb I2C serial electrically erasable PROM (EEPROM)
- Mechanical: 6.5 x 4.5 size board
Product Usage Instructions
Chapter 1: Overview
General Description
The Cyclone V E FPGA Development Board is designed to provide advanced design capabilities with features such as partial reconfiguration. It offers faster operation, lower power consumption, and faster time to market compared to previous FPGA families.
Useful Links
For more information on the following topics, refer to the respective documents:
- Cyclone V device family: Cyclone V Device Handbook
- HSMC Specification: High Speed Mezzanine Card (HSMC) Specification
Chapter 2: Board Components
Board Component Blocks
The development board features the following major component blocks:
- One Cyclone V E FPGA (5CEFA7F31I7N) in a 896-pin FineLine BGA (FBGA)
- Controller: Flash fast passive parallel (FPP) configuration
- MAX II CPLD (EPM240M100I5N) in a 100-pin FBGA package
- Programmable clock generator for the FPGA reference clock input
- 50-MHz single-ended oscillator for the FPGA and MAX V CPLD clock input
- 100-MHz single-ended oscillator for the MAX V CPLD configuration clock input
- SMA input (LVDS)
- Memory:
- Two 256-Mbyte (MB) DDR3 SDRAM devices with a 16-bit data bus
- One 18-Mbit (Mb) SSRAM
- One 512-Mb synchronous flash
- One 512-MB LPDDR2 SDRAM with a 32-bit data bus (only 16-bit data bus is used on this board)
- One 64-Kb I2C serial electrically erasable PROM (EEPROM)
Mechanical
The development board has a size of 6.5 x 4.5 inches.
Chapter 3: Board Components Reference
This section provides detailed information about each board component and its functionality. Please refer to the Cyclone V E FPGA Development Board Reference Manual for more information.
FAQs
Q: Where can I find the latest HSMCs available?
A: To see a list of the latest HSMCs available or to download a copy of the HSMC specification, refer to the Development Board Daughtercards page of the Altera website.
Q: What are the advantages of the Cyclone V E FPGA Development Board?
A: The Cyclone V E FPGA Development Board offers design advancements and innovations, such as partial reconfiguration, which ensure faster operation, lower power consumption, and faster time to market compared to previous FPGA families.
Q: Where can I find more information about the Cyclone V device family?
A: For more information about the Cyclone V device family, refer to the Cyclone V Device Handbook.
Q: What is the size of the development board?
A: The development board has a size of 6.5 x 4.5 inches.
101 Innovation Drive
San Jose, CA 95134
www.altera.com
MNL-01075-1.4
© 2017 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.
August 2017 Altera Corporation Cyclone V E FPGA Development Board
Reference Manual
This document describes the hardware features of the Cyclone® V E FPGA development board, including the detailed pin-out and component reference information required to create custom FPGA designs that interface with all components of the board.
Overview
General Description
The Cyclone V E FPGA development board provides a hardware platform for developing and prototyping low-power, high-performance, and logic-intensive designs using Altera’s Cyclone V E FPGA. The board provides a wide range of peripherals and memory interfaces to facilitate the development of Cyclone V E FPGA designs. One high-speed mezzanine card (HSMC) connector is available to add additional functionality via a variety of HSMCs available from Altera® and various partners.
- To see a list of the latest HSMCs available or to download a copy of the HSMC specification, refer to the Development Board Daughtercards page of the Altera website.
Design advancements and innovations, such as partial reconfiguration, ensure that designs implemented in the Cyclone V E FPGAs operate faster, with lower power, and have a faster time to market than previous FPGA families. - For more information on the following topics, refer to the respective documents:
- Cyclone V device family, refer to the Cyclone V Device Handbook.
- HSMC Specification, refer to the High Speed Mezzanine Card (HSMC) Specification.
Board Component Blocks
The development board features the following major component blocks:
- One Cyclone V E FPGA (5CEFA7F31I7N) in a 896-pin FineLine BGA (FBGA) package
- 149,500 LEs
- 56,480 adaptive logic modules (ALMs)
- 6,860 Kbit (Kb) M10K and 836 Kb MLAB memory
- Seven fractional phase locked loops (PLLs)
- 312 18×18-bit multipliers
- 480 general purpose input/output (GPIO)
- 1.1-V core voltage
- FPGA configuration circuitry
- Active Serial (AS) x1 or AS x4 configuration (EPCQ256SI16N)
- MAX® V CPLD (5M2210ZF256I5N) in a 256-pin FBGA package as the System Controller
- Flash fast passive parallel (FPP) configuration
- MAX II CPLD (EPM240M100I5N) in a 100-pin FBGA package as part of the embedded USB-BlasterTM II for use with the Quartus® II Programmer
- Clocking circuitry
- Programmable clock generator for the FPGA reference clock input
- 50-MHz single-ended oscillator for the FPGA and MAX V CPLD clock input
- 100-MHz single-ended oscillator for the MAX V CPLD configuration clock input
- SMA input (LVDS)
- Memory
- Two 256-Mbyte (MB) DDR3 SDRAM devices with a 16-bit data bus
- One 18-Mbit (Mb) SSRAM
- One 512-Mb synchronous flash
- One 512-MB LPDDR2 SDRAM with a 32-bit data bus (only 16-bit data bus is used on this board)
- One 64-Kb I2C serial electrically erasable PROM (EEPROM)
- General user input/output
- LEDs and displays
- Four user LEDs
- One configuration load LED
- One configuration done LED
- One error LED
- Three configuration select LEDs
- Four embedded USB-Blaster II status LEDs
- Three HSMC interface LEDs
- Ten Ethernet LEDs
- Two UART data transmit and receive LEDs
- Two USB-UART interface TX / RX LEDs
- One power on LED
- One two-line character LCD display
- Push buttons
- One CPU reset push button
- One MAX V reset push button
- One program select push button
- One program configuration push button
- Four general user push buttons
- DIP switches
- Four MAX V CPLD System Controller control switches
- Two JTAG chain control DIP switches
- One fan control DIP switch
- Four general user DIP switches
- Power supply
14–20-V (laptop) DC input - Mechanical
6.5″ x 4.5″ size board
Development Board Block Diagram
Figure 1–1 shows a block diagram of the Cyclone V E FPGA development board.
Handling the Board
When handling the board, it is important to observe the following static discharge precaution:
caution
Without proper anti-static handling, the board can be damaged. Therefore, use anti-static handling precautions when touching the board.
Board Components
This chapter introduces the major components on the Cyclone V E FPGA development board. Figure 2–1 illustrates the component locations and Table 2–1 provides a brief description of all component features of the board.
A complete set of schematics, a physical layout database, and GERBER files for the development board reside in the Cyclone V E FPGA development kit documents directory.
For information about powering up the board and installing the demonstration software, refer to the Cyclone V E FPGA Development Kit User Guide.
This chapter consists of the following sections:
- “Board Overview”
- “Featured Device: Cyclone V E FPGA” on page 2–4
- “MAX V CPLD 5M2210 System Controller” on page 2–5
- “FPGA Configuration” on page 2–10
- “Clock Circuitry” on page 2–18
- “General User Input/Output” on page 2–20
- “Components and Interfaces” on page 2–24
- “Memory” on page 2–32
- “Power Supply” on page 2–41
Board Overview
This section provides an overview of the Cyclone V E FPGA development board, including an annotated board image and component descriptions. Figure 2–1 shows an overview of the board features.
Table 2–1 describes the components and lists their corresponding board references.
Table 2–1. Board Components (Part 1 of 3)
Board Reference | Type | Description |
Featured Devices | ||
U1 | FPGA | Cyclone V E FPGA, 5CEFA7F31I7N, 896-pin FBGA. |
U13 | CPLD | MAX V CPLD, 5M2210ZF256I5N, 256-pin FBGA. |
Configuration, Status, and Setup Elements | ||
J4 | JTAG chain header | Provides access to the JTAG chain and disables the embedded USB-Blaster II when using an external USB-Blaster cable. |
SW2 | JTAG chain control DIP switch | Remove or include devices in the active JTAG chain. |
J10 | USB type-B connector | USB interface for FPGA programming and debugging through the embedded USB-Blaster II JTAG via a type-B USB cable. |
Table 2–1. Board Components (Part 2 of 3)
Board Reference | Type | Description |
SW3 |
Board settings DIP switch |
Controls the MAX V CPLD 5M2210 System Controller functions such as clock enable, SMA clock input control, and which image to load from flash memory at power-up. |
SW1 | MSEL DIP switch | Controls the configuration scheme on the board. MSEL pins 0, 1, 2 and 4 connects to the DIP switch while MSEL pin 3 connects to ground. |
S2 | Program select push button | Toggles the program select LEDs, which selects the program image that loads from flash memory to the FPGA. |
S1 | Program configuration push button | Load image from flash memory to the FGPA based on the settings of the program select LEDs. |
D19 | Configuration done LED | Illuminates when the FPGA is configured. |
D18 | Load LED | Illuminates when the MAX V CPLD 5M2210 System Controller is actively configuring the FPGA. |
D17 | Error LED | Illuminates when the FPGA configuration from flash memory fails. |
D35 | Power LED | Illuminates when 5.0-V power is present. |
D25~D27 |
Program select LEDs |
Illuminates to show the LED sequence that determines which flash memory image loads to the FPGA when you press the program select push button. Refer to Table 2–6 for the LED settings. |
D1~D10 | Ethernet LEDs | Illuminates to show the connection speed as well as transmit or receive activity. |
D20, D21 | HSMC port LEDs | You can configure these LEDs to indicate transmit or receive activity. |
D22 | HSMC port present LED | Illuminates when a daughter card is plugged into the HSMC port. |
D15, D16 | USB-UART LEDs | Illuminates when the USB-UART transmitter and receiver are in use. |
D23, D24 | Serial UART LEDs | Illuminates when UART transmitter and receiver are in use. |
Clock Circuitry | ||
X1 |
Programmable oscillator |
Programmable oscillator with default frequencies of 125 MHz. The frequency is programmable using the clock control GUI running on the MAX V CPLD 5M2210 System Controller. |
U4 | 50-MHz oscillator | 50.000-MHz crystal oscillator for general purpose logic. |
X3 | 100-MHz oscillator | 100.000-MHz crystal oscillator for the MAX V CPLD 5M2210 System Controller. |
J2, J3 | Clock input SMA connectors | Drive LVDS-compatible clock inputs into the clock multiplexer buffer. |
J4 | Clock output SMA connector | Drive out 2.5-V CMOS clock output from the FPGA. |
General User Input/Output | ||
D28~D31 | User LEDs | Four user LEDs. Illuminates when driven low. |
SW3 | User DIP switch | Quad user DIP switches. When the switch is ON, a logic 0 is selected. |
S4 | CPU reset push button | Reset the FPGA logic. |
S3 | MAX V reset push button | Reset the MAX V CPLD 5M2210 System Controller. |
S5~S8 | General user push buttons | Four user push buttons. Driven low when pressed. |
Memory Devices | ||
U7, U8 | DDR3 x32 memory | Two 256-MB DDR3 SDRAM with a 16-bit data bus. |
U9 | LPDDR2 x 16 memory | 512-MB LPDDR 2 SDRAM with 32-bit bus, only 16-bit bus is used on this board. |
Table 2–1. Board Components (Part 3 of 3)
Board Reference | Type | Description |
U10 | Flash x16 memory | 512-Mb synchronous flash devices with a 16-bit data bus for non-volatile memory. |
U11 | SSRAM x16 memory | 18-Mb standard synchronous RAM with a 12-bit data bus and 4-bit parity. |
U12 | EEPROM | 64-Mb I2C serial EEPROM. |
Communication Ports | ||
J1 | HSMC port | Provides 84 CMOS or 17 LVDS channels per HSMC specification. |
J11 |
Gigabit Ethernet port |
RJ-45 connector which provides a 10/100/1000 Ethernet connection via a Marvell 88E1111 PHY and the FPGA-based Altera Triple Speed Ethernet MegaCore function in RGMII mode. |
J12 | Serial UART port | DSUB 9-pin connector with RS-232 transceiver to implement RS-232 serial UART channel. |
J13 | USB-UART port | USB connector with USB-to-UART bridge for serial UART interface. |
J15, J16 | Debug headers | Two 2×8 headers for debug purposes. |
Video and Display Ports | ||
J14 | Character LCD | Connector that interfaces to a provided 16 character × 2 line LCD module along with two standoffs. |
Power Supply | ||
J17 | DC input jack | Accepts a 14–20-V DC power supply. |
SW5 | Power switch | Switch to power on or off the board when power is supplied from the DC input jack. |
Featured Device: Cyclone V E FPGA
The Cyclone V E FPGA development board features a Cyclone V E FPGA 5CEFA7F31I7N device (U1) in a 896-pin FBGA package.
For more information about Cyclone V device family, refer to the Cyclone V Device Handbook.
Table 2–2 describes the features of the Cyclone V E FPGA 5CEFA7F31I7N device.
Table 2–2. Cyclone V E FPGA Features
ALMs | Equivalent LEs | M10K RAM Blocks | Total RAM (Kbits) | 18-bit × 18-bit Multipliers | PLLs | Package Type |
56,480 | 149,500 | 6,860 | 836 | 312 | 7 | 896-pin FBGA |
I/O Resources
The Cyclone V E FPGA 5CEFA7F31I7N device has total of 480 user I/Os. Table 2–3 lists the Cyclone V E FPGA I/O pin count and usage by function on the board.
Table 2–3. Cyclone V E FPGA I/O Pin Count
Function | I/O Standard | I/O Count | Special Pins |
DDR3 | 1.5-V SSTL | 71 | One differential x4 DQS pin |
LPDDR2 | 1.2-V HSUL | 37 | One differential x2 DQS pin |
Flash, SSRAM, EEPROM, and MAX V
FSM bus |
2.5-V CMOS, 3.3-V LVCMOS | 69 | — |
HSMC port | 2.5-V CMOS + LVDS | 79 | 17 LVDS, I2C |
Gigabit Ethernet port | 2.5-V CMOS | 42 | — |
Embedded USB-Blaster II | 2.5-V CMOS | 20 | — |
Debug Header | 1.5-V, 2.5-V | 20 | — |
UART | 3.3-V LVTTL | 4 | — |
USB-UART | 2.5-V CMOS | 12 | — |
Push buttons | 2.5-V CMOS | 5 | One DEV_CLRn pin |
DIP switches | 2.5-V CMOS | 4 | — |
Character LCD | 2.5-V CMOS | 11 | — |
LEDs | 2.5-V CMOS | 9 | — |
Clock or Oscillators | 2.5-V CMOS + LVDS | 12 | One clock out pin |
Total I/O Used: | 395 |
MAX V CPLD 5M2210 System Controller
The board utilizes the 5M2210 System Controller, an Altera MAX V CPLD, for the following purposes:
- FPGA configuration from flash
- Power measurement
- Control and status registers for remote system update
Figure 2–2 illustrates the MAX V CPLD 5M2210 System Controller’s functionality and external circuit connections as a block diagram.\
Figure 2–2. MAX V CPLD 5M2210 System Controller Block Diagram
Table 2–4 lists the I/O signals present on the MAX V CPLD 5M2210 System Controller. The signal names and functions are relative to the MAX V device.
You can download an example design with pin locations and assignments completed according to the following table from the Altera Design Store. In the Cyclone V E FPGA Development Kit, under Design Examples, click Cyclone V E FPGA Development Kit Baseline Pinout.
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 1 of 5)
Board Reference (U13) | Schematic Signal Name | I/O Standard | Description |
N4 | 5M2210_JTAG_TMS | 3.3-V | MAX V JTAG TMS |
E9 | CLK50_EN | 2.5-V | 50 MHz oscillator enable |
H12 | CLK_CONFIG | 2.5-V | 100 MHz configuration clock input |
A15 | CLK_ENABLE | 2.5-V | DIP switch for clock oscillator enable |
A13 | CLK_SEL | 2.5-V | DIP switch for clock select—SMA or oscillator |
J12 | CLKIN_50_MAXV | 2.5-V | 50 MHz clock input |
D9 | CLOCK_SCL | 2.5-V | Programmable oscillator I2C clock |
C9 | CLOCK_SDA | 2.5-V | Programmable oscillator I2C data |
D10 | CPU_RESETN | 2.5-V | FPGA reset push button |
P12 | EXTRA_SIG0 | 2.5-V | Embedded USB-Blaster II interface. Reserved for future use |
T13 | EXTRA_SIG1 | 2.5-V | Embedded USB-Blaster II interface. Reserved for future use |
T15 | EXTRA_SIG2 | 2.5-V | Embedded USB-Blaster II interface. Reserved for future use |
A2 | FACTORY_LOAD | 2.5-V | DIP switch to load factory or user design at power-up |
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 2 of 5)
Board Reference (U13) | Schematic Signal Name | I/O Standard | Description |
R14 | FACTORY_REQUEST | 2.5-V | Embedded USB-Blaster II request to send FACTORY command |
N12 | FACTORY_STATUS | 2.5-V | Embedded USB-Blaster II FACTORY command status |
C8 | FAN_FORCE_ON | 2.5-V | DIP switch to on or off the fan |
N7 | FLASH_ADVN | 2.5-V | FSM bus flash memory address valid |
R5 | FLASH_CEN | 2.5-V | FSM bus flash memory chip enable |
R6 | FLASH_CLK | 2.5-V | FSM bus flash memory clock |
M6 | FLASH_OEN | 2.5-V | FSM bus flash memory output enable |
T5 | FLASH_RDYBSYN | 2.5-V | FSM bus flash memory ready |
P7 | FLASH_RESETN | 2.5-V | FSM bus flash memory reset |
N6 | FLASH_WEN | 2.5-V | FSM bus flash memory write enable |
K1 | FPGA_CONF_DONE | 3.3-V | FPGA configuration done LED |
D3 | FPGA_CONFIG_D0 | 3.3-V | FPGA configuration data |
C2 | FPGA_CONFIG_D1 | 3.3-V | FPGA configuration data |
C3 | FPGA_CONFIG_D2 | 3.3-V | FPGA configuration data |
E3 | FPGA_CONFIG_D3 | 3.3-V | FPGA configuration data |
D2 | FPGA_CONFIG_D4 | 3.3-V | FPGA configuration data |
E4 | FPGA_CONFIG_D5 | 3.3-V | FPGA configuration data |
D1 | FPGA_CONFIG_D6 | 3.3-V | FPGA configuration data |
E5 | FPGA_CONFIG_D7 | 3.3-V | FPGA configuration data |
F3 | FPGA_CONFIG_D8 | 3.3-V | FPGA configuration data |
E1 | FPGA_CONFIG_D9 | 3.3-V | FPGA configuration data |
F4 | FPGA_CONFIG_D10 | 3.3-V | FPGA configuration data |
F2 | FPGA_CONFIG_D11 | 3.3-V | FPGA configuration data |
F1 | FPGA_CONFIG_D12 | 3.3-V | FPGA configuration data |
F6 | FPGA_CONFIG_D13 | 3.3-V | FPGA configuration data |
G2 | FPGA_CONFIG_D14 | 3.3-V | FPGA configuration data |
G3 | FPGA_CONFIG_D15 | 3.3-V | FPGA configuration data |
K4 | FPGA_MAX_DCLK | 3.3-V | FPGA configuration clock |
J3 | FPGA_DCLK | 3.3-V | FPGA configuration clock |
N1 | FPGA_NCONFIG | 3.3-V | FPGA configuration active |
J4 | FPGA_NSTATUS | 3.3-V | FPGA configuration ready |
H1 | FPGA_PR_DONE | 3.3-V | FPGA partial reconfiguration done |
P2 | FPGA_PR_ERROR | 3.3-V | FPGA partial reconfiguration error |
E2 | FPGA_PR_READY | 3.3-V | FPGA partial reconfiguration ready |
F5 | FPGA_PR_REQUEST | 3.3-V | FPGA partial reconfiguration request |
L5 | FPGA_MAX_NCS | 3.3-V | FPGA configuration chip select |
E14 | FSM_A1 | 2.5-V | FSM address bus |
C14 | FSM_A2 | 2.5-V | FSM address bus |
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 3 of 5)
Board Reference (U13) | Schematic Signal Name | I/O Standard | Description |
C15 | FSM_A3 | 2.5-V | FSM address bus |
E13 | FSM_A4 | 2.5-V | FSM address bus |
E12 | FSM_A5 | 2.5-V | FSM address bus |
D15 | FSM_A6 | 2.5-V | FSM address bus |
F14 | FSM_A7 | 2.5-V | FSM address bus |
D16 | FSM_A8 | 2.5-V | FSM address bus |
F13 | FSM_A9 | 2.5-V | FSM address bus |
E15 | FSM_A10 | 2.5-V | FSM address bus |
E16 | FSM_A11 | 2.5-V | FSM address bus |
F15 | FSM_A12 | 2.5-V | FSM address bus |
G14 | FSM_A13 | 2.5-V | FSM address bus |
F16 | FSM_A14 | 2.5-V | FSM address bus |
G13 | FSM_A15 | 2.5-V | FSM address bus |
G15 | FSM_A16 | 2.5-V | FSM address bus |
G12 | FSM_A17 | 2.5-V | FSM address bus |
G16 | FSM_A18 | 2.5-V | FSM address bus |
H14 | FSM_A19 | 2.5-V | FSM address bus |
H20 | FSM_A20 | 2.5-V | FSM address bus |
H13 | FSM_A21 | 2.5-V | FSM address bus |
H16 | FSM_A22 | 2.5-V | FSM address bus |
J13 | FSM_A23 | 2.5-V | FSM address bus |
J16 | FSM_A24 | 2.5-V | FSM address bus |
T2 | FSM_A25 | 2.5-V | FSM address bus |
P5 | FSM_A26 | 2.5-V | FSM address bus |
J14 | FSM_D0 | 2.5-V | FSM data bus |
J15 | FSM_D1 | 2.5-V | FSM data bus |
K16 | FSM_D2 | 2.5-V | FSM data bus |
K13 | FSM_D3 | 2.5-V | FSM data bus |
K15 | FSM_D4 | 2.5-V | FSM data bus |
K14 | FSM_D5 | 2.5-V | FSM data bus |
L16 | FSM_D6 | 2.5-V | FSM data bus |
L11 | FSM_D7 | 2.5-V | FSM data bus |
L15 | FSM_D8 | 2.5-V | FSM data bus |
L12 | FSM_D9 | 2.5-V | FSM data bus |
M16 | FSM_D10 | 2.5-V | FSM data bus |
L13 | FSM_D11 | 2.5-V | FSM data bus |
M15 | FSM_D12 | 2.5-V | FSM data bus |
L14 | FSM_D13 | 2.5-V | FSM data bus |
N16 | FSM_D14 | 2.5-V | FSM data bus |
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 4 of 5)
Board Reference (U13) | Schematic Signal Name | I/O Standard | Description |
M13 | FSM_D15 | 2.5-V | FSM data bus |
B8 | HSMA_PRSNTN | 2.5-V | HSMC port present |
L6 | JTAG_5M2210_TDI | 3.3-V | MAX V CPLD JTAG chain data in |
M5 | JTAG_5M2210_TDO | 3.3-V | MAX V CPLD JTAG chain data out |
P3 | JTAG_TCK | 3.3-V | JTAG chain clock |
P11 | M570_CLOCK | 2.5-V | 25-MHz clock to embedded USB-Blaster II for sending FACTORY command |
M1 | M570_JTAG_EN | 3.3-V | Low signal to disable the embedded USB-Blaster II |
P10 | MAX5_BEN0 | 2.5-V | FSM bus MAX V byte enable 0 |
R11 | MAX5_BEN1 | 2.5-V | FSM bus MAX V byte enable 1 |
T12 | MAX5_BEN2 | 2.5-V | FSM bus MAX V byte enable 2 |
N11 | MAX5_BEN3 | 2.5-V | FSM bus MAX V byte enable 3 |
T11 | MAX5_CLK | 2.5-V | FSM bus MAX V clock |
R10 | MAX5_CSN | 2.5-V | FSM bus MAX V chip select |
M10 | MAX5_OEN | 2.5-V | FSM bus MAX V output enable |
N10 | MAX5_WEN | 2.5-V | FSM bus MAX V write enable |
E11 | MAX_CONF_DONEN | 2.5-V | Embedded USB-Blaster II configuration done LED |
A4 | MAX_ERROR | 2.5-V | FPGA configuration error LED |
A6 | MAX_LOAD | 2.5-V | FPGA configuration active LED |
M9 | MAX_RESETN | 2.5-V | MAX V reset push button |
B7 | OVERTEMP | 2.5-V | Temperature monitor fan enable |
D12 | PGM_CONFIG | 2.5-V | Load the flash memory image identified by the PGM LEDs |
B14 | PGM_LED0 | 2.5-V | Flash memory PGM select indicator 0 |
C13 | PGM_LED1 | 2.5-V | Flash memory PGM select indicator 1 |
B16 | PGM_LED2 | 2.5-V | Flash memory PGM select indicator 2 |
B13 | PGM_SEL | 2.5-V | Toggles the PGM_LED[2:0] LED sequence |
H4 | PSAS_CSn | 3.3-V | AS configuration chip select |
G1 | PSAS_DCLK | 3.3-V | AS configuration clock |
G4 | PSAS_CONF_DONE | 3.3-V | AS configuration done |
H2 | PSAS_CONFIGn | 3.3-V | AS configuration active |
G5 | PSAS_DATA1 | 3.3-V | AS configuration data |
H3 | PSAS_DATA0_ASD0 | 3.3-V | AS configuration data |
J1 | PSAS_CEn | 3.3-V | AS configuration chip enable |
R12 | SECURITY_MODE | 2.5-V | DIP switch for the embedded USB-Blaster II to send FACTORY command at power up |
E7 | SENSE_CS0N | 2.5-V | Power monitor chip select |
A5 | SENSE_SCK | 2.5-V | Power monitor SPI clock |
D7 | SENSE_SDI | 2.5-V | Power monitor SPI data in |
B6 | SENSE_SDO | 2.5-V | Power monitor SPI data out |
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 5 of 5)
Board Reference (U13) | Schematic Signal Name | I/O Standard | Description |
M13 | FSM_D15 | 2.5-V | FSM data bus |
B8 | HSMA_PRSNTN | 2.5-V | HSMC port present |
L6 | JTAG_5M2210_TDI | 3.3-V | MAX V CPLD JTAG chain data in |
M5 | JTAG_5M2210_TDO | 3.3-V | MAX V CPLD JTAG chain data out |
P3 | JTAG_TCK | 3.3-V | JTAG chain clock |
P11 | M570_CLOCK | 2.5-V | 25-MHz clock to embedded USB-Blaster II for sending FACTORY command |
M1 | M570_JTAG_EN | 3.3-V | Low signal to disable the embedded USB-Blaster II |
P10 | MAX5_BEN0 | 2.5-V | FSM bus MAX V byte enable 0 |
R11 | MAX5_BEN1 | 2.5-V | FSM bus MAX V byte enable 1 |
T12 | MAX5_BEN2 | 2.5-V | FSM bus MAX V byte enable 2 |
N11 | MAX5_BEN3 | 2.5-V | FSM bus MAX V byte enable 3 |
T11 | MAX5_CLK | 2.5-V | FSM bus MAX V clock |
R10 | MAX5_CSN | 2.5-V | FSM bus MAX V chip select |
M10 | MAX5_OEN | 2.5-V | FSM bus MAX V output enable |
N10 | MAX5_WEN | 2.5-V | FSM bus MAX V write enable |
E11 | MAX_CONF_DONEN | 2.5-V | Embedded USB-Blaster II configuration done LED |
A4 | MAX_ERROR | 2.5-V | FPGA configuration error LED |
A6 | MAX_LOAD | 2.5-V | FPGA configuration active LED |
M9 | MAX_RESETN | 2.5-V | MAX V reset push button |
B7 | OVERTEMP | 2.5-V | Temperature monitor fan enable |
D12 | PGM_CONFIG | 2.5-V | Load the flash memory image identified by the PGM LEDs |
B14 | PGM_LED0 | 2.5-V | Flash memory PGM select indicator 0 |
C13 | PGM_LED1 | 2.5-V | Flash memory PGM select indicator 1 |
B16 | PGM_LED2 | 2.5-V | Flash memory PGM select indicator 2 |
B13 | PGM_SEL | 2.5-V | Toggles the PGM_LED[2:0] LED sequence |
H4 | PSAS_CSn | 3.3-V | AS configuration chip select |
G1 | PSAS_DCLK | 3.3-V | AS configuration clock |
G4 | PSAS_CONF_DONE | 3.3-V | AS configuration done |
H2 | PSAS_CONFIGn | 3.3-V | AS configuration active |
G5 | PSAS_DATA1 | 3.3-V | AS configuration data |
H3 | PSAS_DATA0_ASD0 | 3.3-V | AS configuration data |
J1 | PSAS_CEn | 3.3-V | AS configuration chip enable |
R12 | SECURITY_MODE | 2.5-V | DIP switch for the embedded USB-Blaster II to send FACTORY command at power up |
E7 | SENSE_CS0N | 2.5-V | Power monitor chip select |
A5 | SENSE_SCK | 2.5-V | Power monitor SPI clock |
D7 | SENSE_SDI | 2.5-V | Power monitor SPI data in |
B6 | SENSE_SDO | 2.5-V | Power monitor SPI data out |
FPGA Configuration
This section describes the FPGA, flash memory, and MAX V CPLD 5M2210 System Controller device programming methods supported by the Cyclone V E FPGA development board.
The Cyclone V E FPGA development board supports the following configuration methods:
- Embedded USB-Blaster II is the default method for configuring the FPGA using the Quartus II Programmer in JTAG mode with the supplied USB cable.
- Flash memory download for configuring the FPGA using stored images from the flash memory on either power-up or pressing the program configuration push button (S1).
- External USB-Blaster for configuring the FPGA using an external USB-Blaster that connects to the JTAG chain header (J4).
- EPCQ device for serial or quad-serial FPGA configuration that supports AS x1 or AS x4 configuration schemes.
FPGA Programming over Embedded USB-Blaster II
This configuration method implements a USB type-B connector (J10), a USB 2.0 PHY device (U18), and an Altera MAX II CPLD EPM570GF100I5N (U16) to allow FPGA configuration using a USB cable. This USB cable connects directly between the USB type-B connector on the board and a USB port of a PC running the Quartus II software.
The embedded USB-Blaster II in the MAX II CPLD EPM570GF100I5N normally masters the JTAG chain.
Figure 2–3 illustrates the JTAG chain.
The JTAG chain control DIP switch (SW2) controls the jumpers shown in Figure 2–3.
To connect a device or interface in the chain, their corresponding switch must be in the OFF position. Slide all the switches to the ON position to only have the FPGA in the chain.
The MAX V CPLD 5M2210 System Controller must be in the JTAG chain to use some of the GUI interfaces.
Table 2–5 lists the USB 2.0 PHY schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–5. USB 2.0 PHY Schematic Signal Names and Functions (Part 1 of 2)
Board Reference (U18) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
C1 | 24M_XTALIN | — | 3.3-V | Crystal oscillator input |
C2 | 24M_XTALOUT | — | 3.3-V | Crystal oscillator output |
E1 | FX2_D_N | — | 3.3-V | USB 2.0 PHY data |
E2 | FX2_D_P | — | 3.3-V | USB 2.0 PHY data |
H7 | FX2_FLAGA | — | 3.3-V | Slave FIFO output status |
Table 2–5. USB 2.0 PHY Schematic Signal Names and Functions (Part 2 of 2)
Board Reference (U18) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
G7 | FX2_FLAGB | — | 3.3-V | Slave FIFO output status |
H8 | FX2_FLAGC | — | 3.3-V | Slave FIFO output status |
G6 | FX2_PA1 | — | 3.3-V | USB 2.0 PHY port A interface |
F8 | FX2_PA2 | — | 3.3-V | USB 2.0 PHY port A interface |
F7 | FX2_PA3 | — | 3.3-V | USB 2.0 PHY port A interface |
F6 | FX2_PA4 | — | 3.3-V | USB 2.0 PHY port A interface |
C8 | FX2_PA5 | — | 3.3-V | USB 2.0 PHY port A interface |
C7 | FX2_PA6 | — | 3.3-V | USB 2.0 PHY port A interface |
C6 | FX2_PA7 | — | 3.3-V | USB 2.0 PHY port A interface |
H3 | FX2_PB0 | — | 3.3-V | USB 2.0 PHY port B interface |
F4 | FX2_PB1 | — | 3.3-V | USB 2.0 PHY port B interface |
H4 | FX2_PB2 | — | 3.3-V | USB 2.0 PHY port B interface |
G4 | FX2_PB3 | — | 3.3-V | USB 2.0 PHY port B interface |
H5 | FX2_PB4 | — | 3.3-V | USB 2.0 PHY port B interface |
G5 | FX2_PB5 | — | 3.3-V | USB 2.0 PHY port B interface |
F5 | FX2_PB6 | — | 3.3-V | USB 2.0 PHY port B interface |
H6 | FX2_PB7 | — | 3.3-V | USB 2.0 PHY port B interface |
A8 | FX2_PD0 | — | 3.3-V | USB 2.0 PHY port D interface |
A7 | FX2_PD1 | — | 3.3-V | USB 2.0 PHY port D interface |
B6 | FX2_PD2 | — | 3.3-V | USB 2.0 PHY port D interface |
A6 | FX2_PD3 | — | 3.3-V | USB 2.0 PHY port D interface |
B3 | FX2_PD4 | — | 3.3-V | USB 2.0 PHY port D interface |
A3 | FX2_PD5 | — | 3.3-V | USB 2.0 PHY port D interface |
C3 | FX2_PD6 | — | 3.3-V | USB 2.0 PHY port D interface |
A2 | FX2_PD7 | — | 3.3-V | USB 2.0 PHY port D interface |
B8 | FX2_RESETN | V21 | 3.3-V | Embedded USB-Blaster hard reset |
F3 | FX2_SCL | — | 3.3-V | USB 2.0 PHY serial clock |
G3 | FX2_SDA | — | 3.3-V | USB 2.0 PHY serial data |
A1 | FX2_SLRDN | — | 3.3-V | Read strobe for slave FIFO |
B1 | FX2_SLWRN | — | 3.3-V | Write strobe for slave FIFO |
B7 | FX2_WAKEUP | — | 3.3-V | USB 2.0 PHY wake signal |
G2 | USB_CLK | AA23 | 3.3-V | USB 2.0 PHY 48-MHz interface clock |
FPGA Programming from Flash Memory
Flash memory programming is possible through a variety of methods. The default method is to use the factory design—Board Update Portal. This design is an embedded webserver, which serves the Board Update Portal web page. The web page allows you to select new FPGA designs including hardware, software, or both in an industry-standard S-Record File (.flash) and write the design to the user hardware page (page 1) of the flash memory over the network.
The secondary method is to use the pre-built parallel flash loader (PFL) design included in the development kit. The development board implements the Altera PFL megafunction for flash memory programming. The PFL megafunction is a block of logic that is programmed into an Altera programmable logic device (FPGA or CPLD). The PFL functions as a utility for writing to a compatible flash memory device. This pre-built design contains the PFL megafunction that allows you to write either page 0, page 1, or other areas of flash memory over the USB interface using the Quartus II software. This method is used to restore the development board to its factory default settings.
Other methods to program the flash memory can be used as well, including the Nios® II processor.
For more information on the Nios II processor, refer to the Nios II Processor page of the Altera website.
On either power-up or by pressing the program configuration push button, PGM_CONFIG (S1), the MAX V CPLD 5M2210 System Controller’s PFL configures the FPGA from the flash memory. The PFL megafunction reads 16-bit data from the flash memory and converts it to fast passive parallel (FPP) format. This 16-bit data is then written to the dedicated configuration pins in the FPGA during configuration.
Pressing the PGM_CONFIG push button (S1) loads the FPGA with a hardware page based on which PGM_LED[2:0] (D25, D26, D27) illuminates. Table 2–6 lists the design that loads when you press the PGM_CONFIG push button.
Table 2–6. PGM_LED Settings (1)
PGM_LED0 (D25) | PGM_LED1 (D26) | PGM_LED2 (D27) | Design |
ON | OFF | OFF | Factory hardware |
OFF | ON | OFF | User hardware 1 |
OFF | OFF | ON | User hardware 2 |
Figure 2–4 shows the PFL configuration.
For more information on the following topics, refer to the respective documents:
- Board Update Portal, PFL design, and flash memory map storage, refer to the Cyclone V E FPGA Development Kit User Guide.
- PFL megafunction, refer to Parallel Flash Loader Megafunction User Guide.
FPGA Programming over External USB-Blaster
The JTAG chain header provides another method for configuring the FPGA using an external USB-Blaster device with the Quartus II Programmer running on a PC. To prevent contention between the JTAG masters, the embedded USB-Blaster is automatically disabled when you connect an external USB-Blaster to the JTAG chain through the JTAG chain header.
FPGA Programming using EPCQ
The low-cost ECPQ device with non-volatile memory features a simple six-pin interface and a small form factor. The ECPQ supports AS x1 and x4 modes. By default, this board has a FPP configuration scheme setting. In order to set the configuration scheme to AS mode, resistor rework needs to be done. Configure the MSEL setting using the MSEL DIP switch (SW1) to change the configuration scheme.
Figure 2–5 shows the connection between the EPCQ and the Cyclone V E FPGA.
Figure 2–5. EPCQ Configuration
Status Elements
The development board includes status LEDs. This section describes the status elements.
Table 2–7 lists the LED board references, names, and functional descriptions.
Table 2–7. Board-Specific LEDs (Part 1 of 2)
Board Reference | Schematic Signal Name | I/O Standard | Description |
D35 | Power | 5.0-V | Blue LED. Illuminates when 5.0 V power is active. |
D19 | MAX_CONF_DONEn | 2.5-V | Green LED. Illuminates when the FPGA is successfully configured. Driven by the MAX V CPLD 5M2210 System Controller. |
D17 |
MAX_ERROR |
2.5-V |
Red LED. Illuminates when the MAX V CPLD 5M2210 System Controller fails to configure the FPGA. Driven by the MAX V CPLD 5M2210 System Controller. |
D18 |
MAX_LOAD |
2.5-V |
Green LED. Illuminates when the MAX V CPLD 5M2210 System Controller is actively configuring the FPGA. Driven by the MAX V CPLD 5M2210 System Controller. |
D25
D26 D27 |
PGM_LED[0]
PGM_LED[1] PGM_LED[2] |
2.5-V |
Green LEDs. Illuminates to indicate which hardware page loads from flash memory when you press the PGM_SEL push button. |
Table 2–7. Board-Specific LEDs (Part 2 of 2)
Board Reference | Schematic Signal Name | I/O Standard | Description |
D11, D12
D13, D14 |
JTAG_RX, JTAG_TX
SC_RX, SC_TX |
2.5-V | Green LEDs. Illuminates to indicate USB-Blaster II receive and transmit activities. |
D1 | ENETA_LED_TX | 2.5-V | Green LED. Illuminates to indicate Ethernet PHY transmit activity. Driven by the Marvell 88E1111 PHY. |
D2 | ENETA_LED_RX | 2.5-V | Green LED. Illuminates to indicate Ethernet PHY receive activity. Driven by the Marvell 88E1111 PHY. |
D5 | ENETA_LED_LINK10 | 2.5-V | Green LED. Illuminates to indicate Ethernet linked at 10 Mbps connection speed. Driven by the Marvell 88E1111 PHY. |
D4 | ENETA_LED_LINK100 | 2.5-V | Green LED. Illuminates to indicate Ethernet linked at 100 Mbps connection speed. Driven by the Marvell 88E1111 PHY. |
D3 | ENETA_LED_LINK1000 | 2.5-V | Green LED. Illuminates to indicate Ethernet linked at 1000 Mbps connection speed. Driven by the Marvell 88E1111 PHY. |
D19 | ENETB_LED_TX | 2.5-V | Green LED. Illuminates to indicate Ethernet PHY B transmit activity. Driven by the Marvell 88E1111 PHY. |
D22 | ENETB_LED_RX | 2.5-V | Green LED. Illuminates to indicate Ethernet PHY B receive activity. Driven by the Marvell 88E1111 PHY. |
D24 | ENETB_LED_LINK10 | 2.5-V | Green LED. Illuminates to indicate Ethernet B linked at 10 Mbps connection speed. Driven by the Marvell 88E1111 PHY. |
D20 | ENETB_LED_LINK100 | 2.5-V | Green LED. Illuminates to indicate Ethernet B linked at 100 Mbps connection speed. Driven by the Marvell 88E1111 PHY. |
D21 | ENETB_LED_LINK1000 | 2.5-V | Green LED. Illuminates to indicate Ethernet B linked at 1000 Mbps connection speed. Driven by the Marvell 88E1111 PHY. |
D15, D16 | USB_UART_TX_TOGGLE, USB_UART_RX_TOGGLE | 2.5-V | Green LED. Illuminates to indicate USB_UART receive and transmit activities. |
D23, D24 | UART_RXD_LED, UART_TXD_LED | 2.5-V | Green LED. Illuminates to indicate UART receive and transmit activities. |
D3 |
HSMA_PRSNTn |
3.3-V |
Green LED. Illuminates when HSMC port has a board or cable plugged-in such that pin 160 becomes grounded. Driven by the add-in card. |
Setup Elements
The development board includes several different kinds of setup elements. This section describes the following setup elements:
- Board settings DIP switch
- JTAG settings DIP switch
- CPU reset push button
- MAX V reset push button
- Program configuration push button
- Program select push button
For more information about the default settings of the DIP switches, refer to the Cyclone V E FPGA Development Kit User Guide.
Board Settings DIP Switch
The board settings DIP switch (SW4) controls various features specific to the board and the MAX V CPLD 5M2210 System Controller logic design. Table 2–8 lists the switch controls and descriptions.
Table 2–8. Board Settings DIP Switch Controls
Switch | Schematic Signal Name | Description |
1 |
CLK_SEL |
ON : Select programmable oscillator clock
OFF : Select SMA input clock |
2 |
CLK_ENABLE |
ON : Disable on-board oscillator
OFF : Enable on-board oscillator |
3 |
FACTORY_LOAD |
ON : Load the user design from flash at power up
OFF : Load the factory design from flash at power up |
4 |
SECURITY_MODE |
ON : Embedded USB-Blaster II sends FACTORY command at power up.
OFF : Embedded USB-Blaster II does not send FACTORY command at power up. |
JTAG Chain Control DIP Switch
The JTAG chain control DIP switch (SW2) either removes or includes devices in the active JTAG chain. The Cyclone V E FPGA is always in the JTAG chain. Table 2–9 lists the switch controls and its descriptions.
Table 2–9. JTAG Chain Control DIP Switch
Switch | Schematic Signal Name | Description |
1 |
5M2210_JTAG_EN |
ON : Bypass MAX V CPLD 5M2210 System Controller
OFF : MAX V CPLD 5M2210 System Controller in-chain |
2 |
HSMC_JTAG_EN |
ON : Bypass HSMC port
OFF : HSMC port in-chain |
3 |
FAN_FORCE_ON |
ON : Enable fan
OFF : Disable fan |
4 | RESERVED | Reserved |
CPU Reset Push Button
The CPU reset push button, CPU_RESETn (S4), is an input to the Cyclone V E FPGA DEV_CLRn pin and is an open-drain I/O from the MAX V CPLD System Controller. This push button is the default reset for both the FPGA and CPLD logic. The MAX V CPLD 5M2210 System Controller also drives this push button during power-on-reset (POR).
MAX V Reset Push Button
The MAX V reset push button, MAX_RESETn (S3), is an input to the MAX V CPLD 5M2210 System Controller. This push button is the default reset for the CPLD logic.
Program Configuration Push Button
The program configuration push button, PGM_CONFIG (S1), is an input to the MAX V CPLD 5M2210 System Controller. This input forces a FPGA reconfiguration from the flash memory. The location in the flash memory is based on the settings ofPGM_LED[2:0], which is controlled by the program select push button, PGM_SEL. Valid settings include PGM_LED0, PGM_LED1, or PGM_LED2 on the three pages in flash memory reserved for FPGA designs.
Program Select Push Button
The program select push button, PGM_SEL (S2), is an input to the MAX V CPLD 5M2210 System Controller. This push button toggles the PGM_LED[2:0]sequence that selects which location in the flash memory is used to configure the FPGA. Refer to Table 2–6 for the PGM_LED[2:0] sequence definitions.
Clock Circuitry
This section describes the board’s clock inputs and outputs.
On-Board Oscillators
The development board include oscillators with a frequency of 50-MHz, 100-MHz, and a programmable oscillator.
Figure 2–6 shows the default frequencies of all external clocks going to the Cyclone V E FPGA development board.
Figure 2–6. Cyclone V E FPGA Development Board Clocks
Table 2–10 lists the oscillators, its I/O standard, and voltages required for the development board.
Table 2–10. On-Board Oscillators
Source | Schematic Signal Name | Frequency | I/O Standard | Cyclone V E FPGA Pin Number | Application |
U4 | CLKIN_50_FPGA_TOP | 50.000 MHz | Single-Ended | L14 | Top and right edge |
CLKIN_50_FPGA_RIGHT | P22 | ||||
X3 | CLK_CONFIG | 100.000 MHz | 2.5V CMOS | — | Fast FPGA configuration |
X1 and U3 (buffer) |
DIFF_CLKIN_TOP_125_P |
125.000 MHz |
LVDS |
L15 |
Top and bottom edge |
DIFF_CLKIN_TOP_125_N | K15 | ||||
DIFF_CLKIN_BOT_125_P | AB17 | ||||
DIFF_CLKIN_BOT_125_N | AB18 |
Off-Board Clock Input/Output
The development board has input and output clocks which can be driven onto the board. The output clocks can be programmed to different levels and I/O standards according to the FPGA device’s specification.
Table 2–11 lists the clock inputs for the development board.
Table 2–11. Off-Board Clock Inputs
Source |
Schematic Signal Name |
I/O Standard |
Cyclone V E FPGA Pin
Number |
Description |
SMA | CLKIN_SMA_P | LVDS | — | Input to LVDS fan-out buffer. |
CLKIN_SMA_N | LVDS | — | ||
Samtec HSMC | HSMA_CLK_IN0 | 2.5-V | AB16 | Single-ended input from the installed HSMC cable or board. |
Samtec HSMC | HSMA_CLK_IN_P1 | LVDS/2.5-V | AB14 | LVDS input from the installed HSMC cable or board. Can also support 2x LVTTL inputs. |
HSMA_CLK_IN_N1 | LVDS/LVTTL | AC14 | ||
Samtec HSMC | HSMA_CLK_IN_P2 | LVDS/LVTTL | Y15 | LVDS input from the installed HSMC cable or board. Can also support 2x LVTTL inputs. |
HSMA_CLK_IN_N2 | LVDS/LVTTL | AA15 |
Table 2–12 lists the clock outputs for the development board.
Table 2–12. Off-Board Clock Outputs
Source |
Schematic Signal Name |
I/O Standard |
Cyclone V E FPGA Pin
Number |
Description |
Samtec HSMC | HSMA_CLK_OUT0 | 2.5V CMOS | AJ14 | FPGA CMOS output (or GPIO) |
Samtec HSMC | HSMA_CLK_OUT_P1 | LVDS/2.5V CMOS | AE22 | LVDS output. Can also support 2x CMOS outputs. |
HSMA_CLK_OUT_N1 | LVDS/2.5V CMOS | AF23 | ||
Samtec HSMC | HSMA_CLK_OUT_P2 | LVDS/2.5V CMOS | AG23 | LVDS output. Can also support 2x CMOS outputs. |
HSMA_CLK_OUT_N2 | LVDS/2.5V CMOS | AH22 | ||
SMA | CLKOUT_SMA | 2.5V CMOS | F9 | FPGA CMOS output (or GPIO) |
General User Input/Output
This section describes the user I/O interface to the FPGA, including the push buttons, DIP switches, LEDs, and character LCD.
User-Defined Push Buttons
The development board includes three user-defined push buttons. For information on the system and safe reset push buttons, refer to “Setup Elements” on page 2–16. Board references S5, S6, S7, and S8 are push buttons for controlling the FPGA designs that loads into the Cyclone V E FPGA device. When you press and hold down the switch, the device pin is set to logic 0; when you release the switch, the device pin is set to logic 1. There are no board-specific functions for these general user push buttons.
Table 2–13 lists the user-defined push button schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–13. User-Defined Push Button Schematic Signal Names and Functions
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard |
S5 | USER_PB0 | AB12 | 2.5-V |
S6 | USER_PB1 | AB13 | 2.5-V |
S7 | USER_PB2 | AF13 | 2.5-V |
S8 | USER_PB3 | AG12 | 2.5-V |
User-Defined DIP Switch
Board reference SW3 is a four-pin DIP switch. This switch is user-defined and provides additional FPGA input control. When the switch is in the OFF position, a logic 1 is selected. When the switch is in the ON position, a logic 0 is selected. There are no board-specific functions for this switch.
Table 2–14 lists the user-defined DIP switch schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–14. User-Defined DIP Switch Schematic Signal Names and Functions
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard |
S5 | USER_PB0 | AB12 | 2.5-V |
S6 | USER_PB1 | AB13 | 2.5-V |
S7 | USER_PB2 | AF13 | 2.5-V |
S8 | USER_PB3 | AG12 | 2.5-V |
User-Defined LEDs
The development board includes general and HSMC user-defined LEDs. This section describes all user-defined LEDs. For information on board specific or status LEDs, refer to “Status Elements” on page 2–15.
General LEDs
Board references D28 through D31 are four user-defined LEDs. The status and debugging signals are driven to the LEDs from the designs loaded into the Cyclone V E FPGA. Driving a logic 0 on the I/O port turns the LED on while driving a logic 1 turns the LED off. There are no board-specific functions for these LEDs.
Table 2–15 lists the general LED schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–15. General LED Schematic Signal Names and Functions
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard |
D28 | USER_LED0 | AK3 | 2.5-V |
D29 | USER_LED1 | AJ4 | 2.5-V |
D30 | USER_LED2 | AJ5 | 2.5-V |
D31 | USER_LED3 | AK6 | 2.5-V |
HSMC LEDs
Board references D20 and D21 are LEDs for the HSMC port. There are no boardspecific functions for the HSMC LEDs. The LEDs are labeled TX and RX, and are intended to display data flow to and from the connected daughtercards. The LEDs are driven by the Cyclone V E FPGA device.
Table 2–16 lists the HSMC LED schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–16. HSMC LED Schematic Signal Names and Functions
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard |
D1 | HSMC_RX_LED | AH12 | 2.5-V |
D2 | HSMC_TX_LED | AH11 | 2.5-V |
Character LCD
The development board includes a single 14-pin 0.1″ pitch dual-row header that interfaces to a 2 line × 16 character Lumex character LCD. The character LCD has a 14-pin receptacle that mounts directly to the board’s 14-pin header, so it can be easilyremoved for access to components under the display. You can also use the header for debugging or other purposes.
Table 2–17 summarizes the character LCD pin assignments. The signal names and directions are relative to the Cyclone V E FPGA device.
Table 2–17. Character LCD Pin Assignments, Schematic Signal Names, and Functions
Board Reference (J14) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
7 | LCD_DATA0 | AJ7 | 2.5-V | LCD data bus |
8 | LCD_DATA1 | AK7 | 2.5-V | LCD data bus |
9 | LCD_DATA2 | AJ8 | 2.5-V | LCD data bus |
10 | LCD_DATA3 | AK8 | 2.5-V | LCD data bus |
11 | LCD_DATA4 | AF9 | 2.5-V | LCD data bus |
12 | LCD_DATA5 | AG9 | 2.5-V | LCD data bus |
13 | LCD_DATA6 | AH9 | 2.5-V | LCD data bus |
14 | LCD_DATA7 | AJ9 | 2.5-V | LCD data bus |
Table 2–17. Character LCD Pin Assignments, Schematic Signal Names, and Functions
Board Reference (J14) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
4 | LCD_D_Cn | AK11 | 2.5-V | LCD data or command select |
5 | LCD_WEn | AK10 | 2.5-V | LCD write enable |
6 | LCD_CSn | AJ12 | 2.5-V | LCD chip select |
Table 2–18 lists the LCD pin definitions, and is an excerpt from Lumex data sheet.
Table 2–18. LCD Pin Definitions and Functions
Pin Number | Symbol | Level | Function | |
1 | VDD | — |
Power supply |
5 V |
2 | VSS | — | GND (0 V) | |
3 | V0 | — | For LCD drive | |
4 |
RS |
H/L |
Register select signal H: Data input
L: Instruction input |
|
5 | R/W | H/L | H: Data read (module to MPU)
L: Data write (MPU to module) |
|
6 | E | H, H to L | Enable | |
7–14 | DB0–DB7 | H/L | Data bus—software selectable 4-bit or 8-bit mode |
For more information such as timing, character maps, interface guidelines, and other related documentation, visit www.lumex.com.
Debug Header
This development board includes two 2×8 debug headers for debug purposes. The FPGA I/Os route directly to the header for design testing, debugging, or quick verification.
Table 2–19 summarizes the debug header pin assignments, signal names, and functions.
Table 2–19. Debug Header Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 2)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
Debug Header (J15) | ||||
1 | HEADER_D0 | H21 | 1.5-V | Single-ended signal for debug purposes only |
5 | HEADER_D1 | G21 | 1.5-V | Single-ended signal for debug purposes only |
9 | HEADER_D2 | G22 | 1.5-V | Single-ended signal for debug purposes only |
13 | HEADER_D3 | E26 | 1.5-V | Single-ended signal for debug purposes only |
4 | HEADER_D4 | E25 | 1.5-V | Single-ended signal for debug purposes only |
8 | HEADER_D5 | C27 | 1.5-V | Single-ended signal for debug purposes only |
12 | HEADER_D6 | C26 | 1.5-V | Single-ended signal for debug purposes only |
Table 2–19. Debug Header Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 2)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
16 | HEADER_D7 | B27 | 1.5-V | Single-ended signal for debug purposes only |
Debug Header (J16) | ||||
1 and 2 | HEADER_P0 and HEADER_N0 | H25 and H26 | 2.5-V | Pseudo-differential signals for debug purposes only |
3 and 4 | HEADER_P1 and
HEADER_N1 |
P20 and N20 | 2.5-V | Pseudo-differential signals for debug purposes only |
7 and 8 | HEADER_P2 and HEADER_N2 | J22 and J23 | 2.5-V | Pseudo-differential signals for debug purposes only |
9 and 10 | HEADER_P3 and HEADER_N3 | D28 and D29 | 2.5-V | Pseudo-differential signals for debug purposes only |
13 and 14 | HEADER_P4 and HEADER_N4 | E27 and D27 | 2.5-V | Pseudo-differential signals for debug purposes only |
15 and 16 | HEADER_P5 and HEADER_N5 | H24 and J25 | 2.5-V | Pseudo-differential signals for debug purposes only |
Components and Interfaces
This section describes the development board’s communication ports and interface cards relative to the Cyclone V E FPGA device. The development board supports the following communication ports:
- RS-232 Serial UART
- 10/100/1000 Ethernet
- HSMC
- USB UART
10/100/1000 Ethernet
The development board supports two 10/100/1000 base-T Ethernet using two external Marvell 88E1111 PHY and Altera Triple-Speed Ethernet MegaCore MAC function. The PHY-to-MAC interfaces employ RGMII interface. The MAC function must be provided in the FPGA for typical networking applications. The Marvell 88E1111 PHY uses 2.5-V and 1.0-V power rails and requires a 25-MHz reference clock driven from a dedicated oscillator. The PHY interfaces to a RJ45 model with internal magnetics that can be used for driving copper lines with Ethernet traffic.
Figure 2–7 shows the RGMII interface between the FPGA (MAC) and Marvell 88E1111 PHY.
Figure 2–7. RGMII Interface between FPGA (MAC) and Marvell 88E1111 PHY
Table 2–20 lists the Ethernet PHY interface pin assignments
Table 2–20. Ethernet PHY Pin Assignments, Signal Names and Functions (Part 1 of 3)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
16 | HEADER_D7 | B27 | 1.5-V | Single-ended signal for debug purposes only |
Debug Header (J16) | ||||
1 and 2 | HEADER_P0 and HEADER_N0 | H25 and H26 | 2.5-V | Pseudo-differential signals for debug purposes only |
3 and 4 | HEADER_P1 and
HEADER_N1 |
P20 and N20 | 2.5-V | Pseudo-differential signals for debug purposes only |
7 and 8 | HEADER_P2 and HEADER_N2 | J22 and J23 | 2.5-V | Pseudo-differential signals for debug purposes only |
9 and 10 | HEADER_P3 and HEADER_N3 | D28 and D29 | 2.5-V | Pseudo-differential signals for debug purposes only |
13 and 14 | HEADER_P4 and HEADER_N4 | E27 and D27 | 2.5-V | Pseudo-differential signals for debug purposes only |
15 and 16 | HEADER_P5 and HEADER_N5 | H24 and J25 | 2.5-V | Pseudo-differential signals for debug purposes only |
Table 2–20. Ethernet PHY Pin Assignments, Signal Names and Functions (Part 2 of 3)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
33 | ENETA_MDI_P1 | — | 2.5-V CMOS | Media dependent interface |
34 | ENETA_MDI_N1 | — | 2.5-V CMOS | Media dependent interface |
39 | ENETA_MDI_P2 | — | 2.5-V CMOS | Media dependent interface |
41 | ENETA_MDI_N2 | — | 2.5-V CMOS | Media dependent interface |
42 | ENETA_MDI_P3 | — | 2.5-V CMOS | Media dependent interface |
43 | ENETA_MDI_N3 | — | 2.5-V CMOS | Media dependent interface |
Ethernet PHY B (U11) | ||||
8 | ENETB_GTX_CLK | E28 | 2.5-V CMOS | 125-MHz RGMII transmit clock |
23 | ENETB_INTN | K22 | 2.5-V CMOS | Management bus interrupt |
60 | ENETB_LED_DUPLEX | — | 2.5-V CMOS | Duplex or collision LED. Not used |
70 | ENETB_LED_DUPLEX | — | 2.5-V CMOS | Duplex or collision LED. Not used |
76 | ENETB_LED_LINK10 | — | 2.5-V CMOS | 10-Mb link LED |
74 | ENETB_LED_LINK100 | — | 2.5-V CMOS | 100-Mb link LED |
73 | ENETB_LED_LINK1000 | — | 2.5-V CMOS | 1000-Mb link LED |
58 | ENETB_LED_RX | — | 2.5-V CMOS | RX data active LED |
69 | ENETB_LED_RX | — | 2.5-V CMOS | RX data active LED |
68 | ENETB_LED_TX | — | 2.5-V CMOS | TX data active LED |
25 | ENETB_MDC | A29 | 2.5-V CMOS | Management bus data clock |
24 | ENETB_MDIO | L23 | 2.5-V CMOS | Management bus data |
28 | ENETB_RESETN | M21 | 2.5-V CMOS | Device reset |
2 | ENETB_RX_CLK | R23 | 2.5-V CMOS | RGMII receive clock |
95 | ENETB_RX_D0 | F25 | 2.5-V CMOS | RGMII receive data bus |
92 | ENETB_RX_D1 | F26 | 2.5-V CMOS | RGMII receive data bus |
93 | ENETB_RX_D2 | R20 | 2.5-V CMOS | RGMII receive data bus |
91 | ENETB_RX_D3 | T21 | 2.5-V CMOS | RGMII receive data bus |
94 | ENETB_RX_DV | L24 | 2.5-V CMOS | RGMII receive data valid |
11 | ENETB_TX_D0 | F29 | 2.5-V CMOS | RGMII transmit data bus |
12 | ENETB_TX_D1 | D30 | 2.5-V CMOS | RGMII transmit data bus |
14 | ENETB_TX_D2 | C30 | 2.5-V CMOS | RGMII transmit data bus |
16 | ENETB_TX_D3 | F28 | 2.5-V CMOS | RGMII transmit data bus |
9 | ENETB_TX_EN | B29 | 2.5-V CMOS | RGMII transmit enable |
55 | ENETB_XTAL_25MHZ | — | 2.5-V CMOS | 25-MHz RGMII transmit clock |
29 | ENETB_MDI_P0 | — | 2.5-V CMOS | Media dependent interface |
31 | ENETB_MDI_N0 | — | 2.5-V CMOS | Media dependent interface |
33 | ENETB_MDI_P1 | — | 2.5-V CMOS | Media dependent interface |
34 | ENETB_MDI_N1 | — | 2.5-V CMOS | Media dependent interface |
39 | ENETB_MDI_P2 | — | 2.5-V CMOS | Media dependent interface |
41 | ENETB_MDI_N2 | — | 2.5-V CMOS | Media dependent interface |
Table 2–20. Ethernet PHY Pin Assignments, Signal Names and Functions (Part 3 of 3)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
42 | ENETB_MDI_P3 | — | 2.5-V CMOS | Media dependent interface |
43 | ENETB_MDI_N3 | — | 2.5-V CMOS | Media dependent interface |
HSMC
- The development board supports a HSMC interface. The HSMC interface supports a full SPI4.2 interface (17 LVDS channels), three input and output clocks, as well as JTAG and SMB signals. The LVDS channels can be used for CMOS signaling or LVDS.
- The HSMC is an Altera-developed open specification, which allows you to expand the functionality of the development board through the addition of daughtercards (HSMCs).
- For more information about the HSMC specification such as signaling standards, signal integrity, compatible connectors, and mechanical information, refer to the High Speed Mezzanine Card (HSMC) Specification manual.
- The HSMC connector has a total of 172 pins, including 120 signal pins, 39 power pins, and 13 ground pins. The ground pins are located between the two rows of signal and power pins, acting both as a shield and a reference. The HSMC host connector is based on the 0.5 mm-pitch QSH/QTH family of high-speed, board-to-board connectors from Samtec. There are three banks in this connector. Bank 1 has every third pin removed as done in the QSH-DP/QTH-DP series. Bank 2 and bank 3 have all the pins populated as done in the QSH/QTH series. Since the Cyclone V E FPGA development board is not a transceiver board, the transceiver pins of the HSMC is not connected to the Cyclone V E FPGA device.
Figure 2–8 shows the bank arrangement of signals with respect to the Samtec connector’s three banks.
Figure 2–8. HSMC Signal and Bank Diagram
The HSMC interface has programmable bi-directional I/O pins that can be used as 2.5-V LVCMOS, which is 3.3-V LVTTL-compatible. These pins can also be used as various differential I/O standards including, but not limited to, LVDS, mini-LVDS, and RSDS with up to 17 full-duplex channels.
As noted in the High Speed Mezzanine Card (HSMC) Specification manual, LVDS and single-ended I/O standards are only guaranteed to function when mixed according toeither the generic single-ended pin-out or generic differential pin-out.
Table 2–21 lists the HSMC interface pin assignments, signal names, and functions.
Table 2–21. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 3)
Board Reference (J7) |
Schematic Signal Name |
Cyclone V E FPGA Pin
Number |
I/O Standard |
Description |
33 | HSMC_SDA | AB22 | 2.5-V CMOS | Management serial data |
34 | HSMC_SCL | AC22 | 2.5-V CMOS | Management serial clock |
35 | JTAG_TCK | AC7 | 2.5-V CMOS | JTAG clock signal |
36 | HSMC_JTAG_TMS | — | 2.5-V CMOS | JTAG mode select signal |
37 | HSMC_JTAG_TDO | — | 2.5-V CMOS | JTAG data output |
38 | JTAC_FPGA_TDO_RETIMER | — | 2.5-V CMOS | JTAG data input |
39 | HSMC_CLK_OUT0 | AJ14 | 2.5-V CMOS | Dedicated CMOS clock out |
40 | HSMC_CLK_IN0 | AB16 | 2.5-V CMOS | Dedicated CMOS clock in |
41 | HSMC_D0 | AH10 | 2.5-V CMOS | Dedicated CMOS I/O bit 0 |
42 | HSMC_D1 | AJ10 | 2.5-V CMOS | Dedicated CMOS I/O bit 1 |
43 | HSMC_D2 | Y13 | 2.5-V CMOS | Dedicated CMOS I/O bit 2 |
44 | HSMC_D3 | AA14 | 2.5-V CMOS | Dedicated CMOS I/O bit 3 |
47 | HSMC_TX_D_P0 | AK27 | LVDS or 2.5-V | LVDS TX bit 0 or CMOS bit 4 |
48 | HSMC_RX_D_P0 | Y16 | LVDS or 2.5-V | LVDS RX bit 0 or CMOS bit 5 |
49 | HSMC_TX_D_N0 | AK28 | LVDS or 2.5-V | LVDS TX bit 0n or CMOS bit 6 |
50 | HSMC_RX_D_N0 | AA26 | LVDS or 2.5-V | LVDS RX bit 0n or CMOS bit 7 |
53 | HSMC_TX_D_P1 | AJ27 | LVDS or 2.5-V | LVDS TX bit 1 or CMOS bit 8 |
54 | HSMC_RX_D_P1 | Y17 | LVDS or 2.5-V | LVDS RX bit 1 or CMOS bit 9 |
55 | HSMC_TX_D_N1 | AK26 | LVDS or 2.5-V | LVDS TX bit 1n or CMOS bit 10 |
56 | HSMC_RX_D_N1 | Y18 | LVDS or 2.5-V | LVDS RX bit 1n or CMOS bit 11 |
59 | HSMC_TX_D_P2 | AG26 | LVDS or 2.5-V | LVDS TX bit 2 or CMOS bit 12 |
60 | HSMC_RX_D_P2 | AA18 | LVDS or 2.5-V | LVDS RX bit 2 or CMOS bit 13 |
61 | HSMC_TX_D_N2 | AH26 | LVDS or 2.5-V | LVDS TX bit 2n or CMOS bit 14 |
62 | HSMC_RX_D_N2 | AA19 | LVDS or 2.5-V | LVDS RX bit 2n or CMOS bit 15 |
65 | HSMC_TX_D_P3 | AJ25 | LVDS or 2.5-V | LVDS TX bit 3 or CMOS bit 16 |
66 | HSMC_RX_D_P3 | Y20 | LVDS or 2.5-V | LVDS RX bit 3 or CMOS bit 17 |
67 | HSMC_TX_D_N3 | AK25 | LVDS or 2.5-V | LVDS TX bit 3n or CMOS bit 18 |
68 | HSMC_RX_D_N3 | AA20 | LVDS or 2.5-V | LVDS RX bit 3n or CMOS bit 19 |
71 | HSMC_TX_D_P4 | AH24 | LVDS or 2.5-V | LVDS TX bit 4 or CMOS bit 20 |
Table 2–21. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 3)
Board Reference (J7) |
Schematic Signal Name |
Cyclone V E FPGA Pin
Number |
I/O Standard |
Description |
72 | HSMC_RX_D_P4 | AA21 | LVDS or 2.5-V | LVDS RX bit 4 or CMOS bit 21 |
73 | HSMC_TX_D_N4 | AJ24 | LVDS or 2.5-V | LVDS TX bit 4n or CMOS bit 22 |
74 | HSMC_RX_D_N4 | AB21 | LVDS or 2.5-V | LVDS RX bit 4n or CMOS bit 23 |
77 | HSMC_TX_D_P5 | AH21 | LVDS or 2.5-V | LVDS TX bit 5 or CMOS bit 24 |
78 | HSMC_RX_D_P5 | AB19 | LVDS or 2.5-V | LVDS RX bit 5 or CMOS bit 25 |
79 | HSMC_TX_D_N5 | AJ22 | LVDS or 2.5-V | LVDS TX bit 5n or CMOS bit 26 |
80 | HSMC_RX_D_N5 | AC19 | LVDS or 2.5-V | LVDS RX bit 5n or CMOS bit 27 |
83 | HSMC_TX_D_P6 | AJ23 | LVDS or 2.5-V | LVDS TX bit 6 or CMOS bit 28 |
84 | HSMC_RX_D_P6 | AC21 | LVDS or 2.5-V | LVDS RX bit 6 or CMOS bit 29 |
85 | HSMC_TX_D_N6 | AK23 | LVDS or 2.5-V | LVDS TX bit 6n or CMOS bit 30 |
86 | HSMC_RX_D_N6 | AD20 | LVDS or 2.5-V | LVDS RX bit 6n or CMOS bit 31 |
89 | HSMC_TX_D_P7 | AK21 | LVDS or 2.5-V | LVDS TX bit 7 or CMOS bit 32 |
90 | HSMC_RX_D_P7 | AD19 | LVDS or 2.5-V | LVDS RX bit 7 or CMOS bit 33 |
91 | HSMC_TX_D_N7 | AK22 | LVDS or 2.5-V | LVDS TX bit 7n or CMOS bit 34 |
92 | HSMC_RX_D_N7 | AE20 | LVDS or 2.5-V | LVDS RX bit 7n or CMOS bit 35 |
95 | HSMC_CLK_OUT_P1 | AE22 | LVDS or 2.5-V | LVDS or CMOS clock out 1 or CMOS bit 36 |
96 | HSMC_CLK_IN_P1 | AB14 | LVDS or 2.5-V | LVDS or CMOS clock in 1 or CMOS bit 37 |
97 | HSMC_CLK_OUT_N1 | AF23 | LVDS or 2.5-V | LVDS or CMOS clock out 1 or CMOS bit 38 |
98 | HSMC_CLK_IN_N1 | AC14 | LVDS or 2.5-V | LVDS or CMOS clock in 1 or CMOS bit 39 |
101 | HSMC_TX_D_P8 | AJ20 | LVDS or 2.5-V | LVDS TX bit 8 or CMOS bit 40 |
102 | HSMC_RX_D_P8 | AF21 | LVDS or 2.5-V | LVDS RX bit 8 or CMOS bit 41 |
103 | HSMC_TX_D_N8 | AK20 | LVDS or 2.5-V | LVDS TX bit 8n or CMOS bit 42 |
104 | HSMC_RX_D_N8 | AG22 | LVDS or 2.5-V | LVDS RX bit 8n or CMOS bit 43 |
107 | HSMC_TX_D_P9 | AJ19 | LVDS or 2.5-V | LVDS TX bit 9 or CMOS bit 44 |
108 | HSMC_RX_D_P9 | AF20 | LVDS or 2.5-V | LVDS RX bit 9 or CMOS bit 45 |
109 | HSMC_TX_D_N9 | AK18 | LVDS or 2.5-V | LVDS TX bit 9n or CMOS bit 46 |
110 | HSMC_RX_D_N9 | AG21 | LVDS or 2.5-V | LVDS RX bit 9n or CMOS bit 47 |
113 | HSMC_TX_D_P10 | AJ17 | LVDS or 2.5-V | LVDS TX bit 10 or CMOS bit 48 |
114 | HSMC_RX_D_P10 | AF18 | LVDS or 2.5-V | LVDS RX bit 10 or CMOS bit 49 |
115 | HSMC_TX_D_N10 | AJ18 | LVDS or 2.5-V | LVDS TX bit 10n or CMOS bit 50 |
116 | HSMC_RX_D_N10 | AF19 | LVDS or 2.5-V | LVDS RX bit 10n or CMOS bit 51 |
119 | HSMC_TX_D_P11 | AK25 | LVDS or 2.5-V | LVDS TX bit 11 or CMOS bit 52 |
120 | HSMC_RX_D_P11 | AG18 | LVDS or 2.5-V | LVDS RX bit 11 or CMOS bit 53 |
121 | HSMC_TX_D_N11 | AG24 | LVDS or 2.5-V | LVDS TX bit 11n or CMOS bit 54 |
122 | HSMC_RX_D_N11 | AG19 | LVDS or 2.5-V | LVDS RX bit 11n or CMOS bit 55 |
125 | HSMC_TX_D_P12 | AH19 | LVDS or 2.5-V | LVDS TX bit 12 or CMOS bit 56 |
126 | HSMC_RX_D_P12 | AK16 | LVDS or 2.5-V | LVDS RX bit 12 or CMOS bit 57 |
127 | HSMC_TX_D_N12 | AH20 | LVDS or 2.5-V | LVDS TX bit 12n or CMOS bit 58 |
Table 2–21. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 3)
Board Reference (J7) |
Schematic Signal Name |
Cyclone V E FPGA Pin
Number |
I/O Standard |
Description |
128 | HSMC_RX_D_N12 | AK17 | LVDS or 2.5-V | LVDS RX bit 12n or CMOS bit 59 |
131 | HSMC_TX_D_P13 | AG17 | LVDS or 2.5-V | LVDS TX bit 13 or CMOS bit 60 |
132 | HSMC_RX_D_P13 | AF16 | LVDS or 2.5-V | LVDS RX bit 13 or CMOS bit 61 |
133 | HSMC_TX_D_N13 | AH17 | LVDS or 2.5-V | LVDS TX bit 13n or CMOS bit 62 |
134 | HSMC_RX_D_N13 | AG16 | LVDS or 2.5-V | LVDS RX bit 13n or CMOS bit 63 |
137 | HSMC_TX_D_P14 | AJ15 | LVDS or 2.5-V | LVDS TX bit 14 or CMOS bit 64 |
138 | HSMC_RX_D_P14 | AE16 | LVDS or 2.5-V | LVDS RX bit 14 or CMOS bit 65 |
139 | HSMC_TX_D_N14 | AK15 | LVDS or 2.5-V | LVDS TX bit 14n or CMOS bit 66 |
140 | HSMC_RX_D_N14 | AF15 | LVDS or 2.5-V | LVDS RX bit 14n or CMOS bit 67 |
143 | HSMC_TX_D_P15 | AH14 | LVDS or 2.5-V | LVDS TX bit 15 or CMOS bit 68 |
144 | HSMC_RX_D_P15 | AD17 | LVDS or 2.5-V | LVDS RX bit 15 or CMOS bit 69 |
145 | HSMC_TX_D_N15 | AH15 | LVDS or 2.5-V | LVDS TX bit 15n or CMOS bit 70 |
146 | HSMC_RX_D_N15 | AE17 | LVDS or 2.5-V | LVDS RX bit 15n or CMOS bit 71 |
149 | HSMC_TX_D_P16 | AE15 | LVDS or 2.5-V | LVDS TX bit 16 or CMOS bit 72 |
150 | HSMC_RX_D_P16 | AD18 | LVDS or 2.5-V | LVDS RX bit 16 or CMOS bit 73 |
151 | HSMC_TX_D_N16 | AF14 | LVDS or 2.5-V | LVDS TX bit 16n or CMOS bit 74 |
152 | HSMC_RX_D_N16 | AE18 | LVDS or 2.5-V | LVDS RX bit 16n or CMOS bit 75 |
155 | HSMC_CLK_OUT_P2 | AG23 | LVDS or 2.5-V | LVDS or CMOS clock out 2 or CMOS bit 76 |
156 | HSMC_CLK_IN_P2 | Y15 | LVDS or 2.5-V | LVDS or CMOS clock in 2 or CMOS bit 77 |
157 | HSMC_CLK_OUT_N2 | AH22 | LVDS or 2.5-V | LVDS or CMOS clock out 2 or CMOS bit 78 |
158 | HSMC_CLK_IN_N2 | AA15 | LVDS or 2.5-V | LVDS or CMOS clock in 2 or CMOS bit 79 |
160 | HSMC_PRSNTn | AK5 | 2.5-V CMOS | HSMC port presence detect |
RS-232 Serial UART
A female angled DSUB 9-pin connector along with a supporting RS-232 transceiver provides support for implementing a standard RS-232 serial UART channel on this board. The connector has the same pinouts as a data terminal device and requires only a standard cable (no null modem required for PC interface). A dedicated level-shifting buffer is used to translate between LVTTL and RS-232 levels. Board references D23 and D24 are serial UART LEDs that illuminate to indicate RX and TX activity.
Table 2–24 lists the RS-232 serial UART pin assignments, signal names, and functions.
The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction.
Table 2–22. RS-232 Serial UART Schematic Signal Names and Functions
Board Reference (U20) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
14 | UART_TXD | AB9 | 3.3-V | Transmit data |
15 | UART_RTS | AH6 | 3.3-V | Request to send |
Table 2–22. RS-232 Serial UART Schematic Signal Names and Functions
Board Reference (U20) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
16 | UART_RXD | AG6 | 3.3-V | Receive data |
13 | UART_CTS | AF8 | 3.3-V | Clear to send |
USB-UART
The development board supports UART interface through a USB connector using Silicon Labs CP2104 USB-to-UART bridge. To facilitate host communication with CP2104, you are required to use the USB-to-UART bridge Virtual COM Port (VCP) drivers.
The VCP drivers are available at: www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx
Table 2–23 lists the USB-UART pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction
Table 2–23. USB-UART Schematic Signal Names and Functions
Board Reference (U20) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
1 | USB_UART_RI | AD12 | 2.5-V | Ring indicator control input (active low) |
24 | USB_UART_DCD | AD13 | 2.5-V | Data carrier detect control input (active low) |
22 | USB_UART_DSR | V12 | 2.5-V | Data set ready control input (active low) |
21 | USB_UART_RXD | AF10 | 2.5-V | Asynchronous data input (UART receive) |
19 | USB_UART_RTS | AE12 | 2.5-V | Ready to send control output (active low) |
12 | USB_UART_GPIO2 | AE13 | 2.5-V | User-configurable input or output. |
23 | USB_UART_DTR | AE10 | 2.5-V | Data terminal ready control output (active low) |
20 | USB_UART_TXD | W12 | 2.5-V | Asynchronous data output (UART transmit) |
18 | USB_UART_CTS | AJ1 | 2.5-V | Clear to send control input (active low) |
15 | USB_UART_SUSPENDn | — | 2.5-V | Pin is logic low when the CP2104 is in the USB suspend state. |
17 | USB_UART_SUSPEND | — | 2.5-V | Pin is logic high when the CP2104 is in the USB suspend state. |
9 | USB_UART_RSTn | — | 2.5-V | Device reset |
Memory
This section describes the development board’s memory interface support and also their signal names, types, and connectivity relative to the Cyclone V E FPGA. The development board has the following memory interfaces:
- DDR3 SDRAM
- LPDDR2 SDRAM
- EEPROM
- Synchronous SRAM
- Synchronous flash
For more information about the memory interfaces, refer to the following documents:
- Timing Analysis section in the External Memory Interface Handbook.
- DDR, DDR2, and DDR3 SDRAM Design Tutorials section in the External Memory Interface Handbook.
DDR3 SDRAM
- The development board supports two 16Mx16x8 and two 16Mx8x8 DDR3 SDRAM interfaces for very high-speed sequential memory access.
- The 32-bit data bus comprises of two x16 devices using soft memory controller (SMC) interface. With SMC, this memory interface runs at a target frequency of 300 MHz for a maximum theoretical bandwidth of over 9.6 Gbps. The maximum frequency for this DDR3 device is 800 MHz with a CAS latency of 11.
- Table 2–24 lists the DDR3 pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction.
Table 2–24. DDR3 Device Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 4)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
DDR3 x16 (U8) | ||||
N3 | DDR3_A0 | A16 | 1.5-V SSTL Class I | Address bus |
P7 | DDR3_A1 | G23 | 1.5-V SSTL Class I | Address bus |
P3 | DDR3_A2 | E21 | 1.5-V SSTL Class I | Address bus |
N2 | DDR3_A3 | E22 | 1.5-V SSTL Class I | Address bus |
P8 | DDR3_A4 | A20 | 1.5-V SSTL Class I | Address bus |
P2 | DDR3_A5 | A26 | 1.5-V SSTL Class I | Address bus |
R8 | DDR3_A6 | A15 | 1.5-V SSTL Class I | Address bus |
R2 | DDR3_A7 | B26 | 1.5-V SSTL Class I | Address bus |
T8 | DDR3_A8 | H17 | 1.5-V SSTL Class I | Address bus |
R3 | DDR3_A9 | D14 | 1.5-V SSTL Class I | Address bus |
L7 | DDR3_A10 | E23 | 1.5-V SSTL Class I | Address bus |
Table 2–24. DDR3 Device Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 4)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
R7 | DDR3_A11 | E20 | 1.5-V SSTL Class I | Address bus |
N7 | DDR3_A12 | C25 | 1.5-V SSTL Class I | Address bus |
T3 | DDR3_A13 | B13 | 1.5-V SSTL Class I | Address bus |
M2 | DDR3_BA0 | J18 | 1.5-V SSTL Class I | Bank address bus |
N8 | DDR3_BA1 | F20 | 1.5-V SSTL Class I | Bank address bus |
M3 | DDR3_BA2 | D19 | 1.5-V SSTL Class I | Bank address bus |
K3 | DDR3_CASN | L20 | 1.5-V SSTL Class I | Row address select |
K9 | DDR3_CKE | C11 | 1.5-V SSTL Class I | Column address select |
J7 | DDR3_CLK_P | J20 | Differential 1.5-V SSTL Class I | Differential output clock |
K7 | DDR3_CLK_N | H20 | Differential 1.5-V SSTL Class I | Differential output clock |
L2 | DDR3_CSN | G17 | 1.5-V SSTL Class I | Chip select |
E7 | DDR3_DM0 | D23 | 1.5-V SSTL Class I | Write mask byte lane |
D3 | DDR3_DM1 | D18 | 1.5-V SSTL Class I | Write mask byte lane |
E3 | DDR3_DQ0 | A25 | 1.5-V SSTL Class I | Data bus byte lane 0 |
H8 | DDR3_DQ1 | D22 | 1.5-V SSTL Class I | Data bus byte lane 0 |
F7 | DDR3_DQ2 | C21 | 1.5-V SSTL Class I | Data bus byte lane 0 |
H7 | DDR3_DQ3 | C19 | 1.5-V SSTL Class I | Data bus byte lane 0 |
F2 | DDR3_DQ4 | C20 | 1.5-V SSTL Class I | Data bus byte lane 0 |
G2 | DDR3_DQ5 | C22 | 1.5-V SSTL Class I | Data bus byte lane 0 |
F8 | DDR3_DQ6 | D25 | 1.5-V SSTL Class I | Data bus byte lane 0 |
H3 | DDR3_DQ7 | D20 | 1.5-V SSTL Class I | Data bus byte lane 0 |
A7 | DDR3_DQ8 | B24 | 1.5-V SSTL Class I | Data bus byte lane 1 |
C3 | DDR3_DQ9 | A21 | 1.5-V SSTL Class I | Data bus byte lane 1 |
A3 | DDR3_DQ10 | B21 | 1.5-V SSTL Class I | Data bus byte lane 1 |
D7 | DDR3_DQ11 | F19 | 1.5-V SSTL Class I | Data bus byte lane 1 |
A2 | DDR3_DQ12 | C24 | 1.5-V SSTL Class I | Data bus byte lane 1 |
C2 | DDR3_DQ13 | B23 | 1.5-V SSTL Class I | Data bus byte lane 1 |
B8 | DDR3_DQ14 | E18 | 1.5-V SSTL Class I | Data bus byte lane 1 |
C8 | DDR3_DQ15 | A23 | 1.5-V SSTL Class I | Data bus byte lane 1 |
F3 | DDR3_DQS_P0 | K20 | Differential 1.5-V SSTL Class I | Data strobe P byte lane 0 |
G3 | DDR3_DQS_N0 | J19 | Differential 1.5-V SSTL Class I | Data strobe N byte lane 0 |
C7 | DDR3_DQS_P1 | L18 | Differential 1.5-V SSTL Class I | Data strobe P byte lane 1 |
B7 | DDR3_DQS_N1 | K18 | Differential 1.5-V SSTL Class I | Data strobe N byte lane 1 |
K1 | DDR3_ODT | H19 | 1.5-V SSTL Class I | On-die termination enable |
Table 2–24. DDR3 Device Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 4)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
J3 | DDR3_RASN | A24 | 1.5-V SSTL Class I | Row address select |
T2 | DDR3_RESETN | L19 | 1.5-V SSTL Class I | Reset |
L3 | DDR3_WEN | B22 | 1.5-V SSTL Class I | Write enable |
L8 | DDR3_ZQ01 | — | 1.5-V SSTL Class I | ZQ impedance calibration |
DDR3 x16 (U7) | ||||
N3 | DDR3_A0 | A16 | 1.5-V SSTL Class I | Address bus |
P7 | DDR3_A1 | G23 | 1.5-V SSTL Class I | Address bus |
P3 | DDR3_A2 | E21 | 1.5-V SSTL Class I | Address bus |
N2 | DDR3_A3 | E22 | 1.5-V SSTL Class I | Address bus |
P8 | DDR3_A4 | A20 | 1.5-V SSTL Class I | Address bus |
P2 | DDR3_A5 | A26 | 1.5-V SSTL Class I | Address bus |
R8 | DDR3_A6 | A15 | 1.5-V SSTL Class I | Address bus |
R2 | DDR3_A7 | B26 | 1.5-V SSTL Class I | Address bus |
T8 | DDR3_A8 | H17 | 1.5-V SSTL Class I | Address bus |
R3 | DDR3_A9 | D14 | 1.5-V SSTL Class I | Address bus |
L7 | DDR3_A10 | E23 | 1.5-V SSTL Class I | Address bus |
R7 | DDR3_A11 | E20 | 1.5-V SSTL Class I | Address bus |
N7 | DDR3_A12 | C25 | 1.5-V SSTL Class I | Address bus |
T3 | DDR3_A13 | B13 | 1.5-V SSTL Class I | Address bus |
M2 | DDR3_BA0 | J18 | 1.5-V SSTL Class I | Bank address bus |
N8 | DDR3_BA1 | F20 | 1.5-V SSTL Class I | Bank address bus |
M3 | DDR3_BA2 | D19 | 1.5-V SSTL Class I | Bank address bus |
K3 | DDR3_CASN | L20 | 1.5-V SSTL Class I | Row address select |
K9 | DDR3_CKE | AK18 | 1.5-V SSTL Class I | Column address select |
K7 | DDR3_CLK_P | J20 | 1.5-V SSTL Class I | Differential output clock |
J7 | DDR3_CLK_N | H20 | 1.5-V SSTL Class I | Differential output clock |
L2 | DDR3_CSN | G17 | 1.5-V SSTL Class I | Chip select |
E7 | DDR3_DM2 | A19 | 1.5-V SSTL Class I | Write mask byte lane |
D3 | DDR3_DM3 | B14 | 1.5-V SSTL Class I | Write mask byte lane |
F2 | DDR3_DQ16 | G18 | 1.5-V SSTL Class I | Data bus byte lane 2 |
F8 | DDR3_DQ17 | B18 | 1.5-V SSTL Class I | Data bus byte lane 2 |
E3 | DDR3_DQ18 | A18 | 1.5-V SSTL Class I | Data bus byte lane 2 |
F7 | DDR3_DQ19 | F18 | 1.5-V SSTL Class I | Data bus byte lane 2 |
H3 | DDR3_DQ20 | C14 | 1.5-V SSTL Class I | Data bus byte lane 2 |
G2 | DDR3_DQ21 | C17 | 1.5-V SSTL Class I | Data bus byte lane 2 |
H7 | DDR3_DQ22 | B17 | 1.5-V SSTL Class I | Data bus byte lane 2 |
H8 | DDR3_DQ23 | B19 | 1.5-V SSTL Class I | Data bus byte lane 2 |
A2 | DDR3_DQ24 | C15 | 1.5-V SSTL Class I | Data bus byte lane 3 |
Table 2–24. DDR3 Device Pin Assignments, Schematic Signal Names, and Functions (Part 4 of 4)
Board Reference | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
C2 | DDR3_DQ25 | D17 | 1.5-V SSTL Class I | Data bus byte lane 3 |
D7 | DDR3_DQ26 | C12 | 1.5-V SSTL Class I | Data bus byte lane 3 |
A7 | DDR3_DQ27 | E17 | 1.5-V SSTL Class I | Data bus byte lane 3 |
A3 | DDR3_DQ28 | C16 | 1.5-V SSTL Class I | Data bus byte lane 3 |
C3 | DDR3_DQ29 | A14 | 1.5-V SSTL Class I | Data bus byte lane 3 |
B8 | DDR3_DQ30 | D12 | 1.5-V SSTL Class I | Data bus byte lane 3 |
C8 | DDR3_DQ31 | A13 | 1.5-V SSTL Class I | Data bus byte lane 3 |
F3 | DDR3_DQS_P2 | K16 | Differential 1.5-V SSTL Class I | Data strobe P byte lane 2 |
G3 | DDR3_DQS_N2 | L16 | Differential 1.5-V SSTL Class I | Data strobe N byte lane 2 |
C7 | DDR3_DQS_P3 | K17 | Differential 1.5-V SSTL Class I | Data strobe P byte lane 3 |
B7 | DDR3_DQS_N3 | J17 | Differential 1.5-V SSTL Class I | Data strobe N byte lane 3 |
K1 | DDR3_ODT | H19 | 1.5-V SSTL Class I | On-die termination enable |
J3 | DDR3_RASN | A24 | 1.5-V SSTL Class I | Row address select |
T2 | DDR3_RESETN | L19 | 1.5-V SSTL Class I | Reset |
L3 | DDR3_WEN | B22 | 1.5-V SSTL Class I | Write enable |
L8 | DDR3_ZQ2 | — | 1.5-V SSTL Class I | ZQ impedance calibration |
LPDDR2 SDRAM
The LPDDR2 is a mobile low-power DDR2 SDRAM device that operates at 1.2 V. This interface connects to the horizontal I/O banks on the top edge of the FPGA device.
The device speed is 300 MHz. Only x16 configuration is used although the LPDDR2 SDRAM on the board is a x32 device.
Table 2–25 lists the LPDDR2 SDRAM pin assignments, signal names, and functions.
The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction.
Table 2–25. LPDDR2 SDRAM Schematic Signal Names and Functions
Board Reference (U9) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
AC6 | LPDDR2_CA0 | Y30 | 1.2-V HSUL | Address bus |
AB6 | LPDDR2_CA1 | T30 | 1.2-V HSUL | Address bus |
AC7 | LPDDR2_CA2 | W29 | 1.2-V HSUL | Address bus |
AB8 | LPDDR2_CA3 | AB29 | 1.2-V HSUL | Address bus |
AB9 | LPDDR2_CA4 | W30 | 1.2-V HSUL | Address bus |
W1 | LPDDR2_CA5 | U29 | 1.2-V HSUL | Address bus |
V2 | LPDDR2_CA6 | AC30 | 1.2-V HSUL | Address bus |
U1 | LPDDR2_CA7 | R30 | 1.2-V HSUL | Address bus |
Table 2–25. LPDDR2 SDRAM Schematic Signal Names and Functions
Board Reference (U9) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
T2 | LPDDR2_CA8 | T28 | 1.2-V HSUL | Address bus |
T1 | LPDDR2_CA9 | T25 | 1.2-V HSUL | Address bus |
Y2 | LPDDR2_CK | V21 | Differential 1.2-V HSUL | Differential output clock P |
Y1 | LPDDR2_CKN | V22 | Differential 1.2-V HSUL | Differential output clock N |
AC3 | LPDDR2_CKE | T29 | 1.2-V HSUL | Clock enable |
AB3 | LPDDR2_CSN | R26 | 1.2-V HSUL | Chip select |
N23 | LPDDR2_DM0 | AG29 | 1.2-V HSUL | Data mask |
L23 | LPDDR2_DM1 | AB27 | 1.2-V HSUL | Data mask |
AB20 | LPDDR2_DM2 | — | 1.2-V HSUL | Data mask |
B20 | LPDDR2_DM3 | — | 1.2-V HSUL | Data mask |
AA23 | LPDDR2_DQ0 | AG28 | 1.2-V HSUL | Data bus byte lane 0 |
Y22 | LPDDR2_DQ1 | AH30 | 1.2-V HSUL | Data bus byte lane 0 |
W22 | LPDDR2_DQ2 | AA28 | 1.2-V HSUL | Data bus byte lane 0 |
W23 | LPDDR2_DQ3 | AH29 | 1.2-V HSUL | Data bus byte lane 0 |
V23 | LPDDR2_DQ4 | Y28 | 1.2-V HSUL | Data bus byte lane 0 |
U22 | LPDDR2_DQ5 | AE30 | 1.2-V HSUL | Data bus byte lane 0 |
T22 | LPDDR2_DQ6 | AJ28 | 1.2-V HSUL | Data bus byte lane 0 |
T23 | LPDDR2_DQ7 | AD30 | 1.2-V HSUL | Data bus byte lane 0 |
H22 | LPDDR2_DQ8 | AC29 | 1.2-V HSUL | Data bus byte lane 1 |
H23 | LPDDR2_DQ9 | AF30 | 1.2-V HSUL | Data bus byte lane 1 |
G23 | LPDDR2_DQ10 | AA30 | 1.2-V HSUL | Data bus byte lane 1 |
F22 | LPDDR2_DQ11 | AE28 | 1.2-V HSUL | Data bus byte lane 1 |
E22 | LPDDR2_DQ12 | AF29 | 1.2-V HSUL | Data bus byte lane 1 |
E23 | LPDDR2_DQ13 | AD28 | 1.2-V HSUL | Data bus byte lane 1 |
D23 | LPDDR2_DQ14 | V27 | 1.2-V HSUL | Data bus byte lane 1 |
C22 | LPDDR2_DQ15 | W28 | 1.2-V HSUL | Data bus byte lane 1 |
AB12 | LPDDR2_DQ16 | — | 1.2-V HSUL | Data bus byte lane 2 |
AC13 | LPDDR2_DQ17 | — | 1.2-V HSUL | Data bus byte lane 2 |
AB14 | LPDDR2_DQ18 | — | 1.2-V HSUL | Data bus byte lane 2 |
AC14 | LPDDR2_DQ19 | — | 1.2-V HSUL | Data bus byte lane 2 |
AB15 | LPDDR2_DQ20 | — | 1.2-V HSUL | Data bus byte lane 2 |
AC16 | LPDDR2_DQ21 | — | 1.2-V HSUL | Data bus byte lane 2 |
AB17 | LPDDR2_DQ22 | — | 1.2-V HSUL | Data bus byte lane 2 |
AC17 | LPDDR2_DQ23 | — | 1.2-V HSUL | Data bus byte lane 2 |
B17 | LPDDR2_DQ24 | — | 1.2-V HSUL | Data bus byte lane 3 |
A17 | LPDDR2_DQ25 | — | 1.2-V HSUL | Data bus byte lane 3 |
A16 | LPDDR2_DQ26 | — | 1.2-V HSUL | Data bus byte lane 3 |
B15 | LPDDR2_DQ27 | — | 1.2-V HSUL | Data bus byte lane 3 |
B14 | LPDDR2_DQ28 | — | 1.2-V HSUL | Data bus byte lane 3 |
Table 2–25. LPDDR2 SDRAM Schematic Signal Names and Functions
Board Reference (U9) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
A14 | LPDDR2_DQ29 | — | 1.2-V HSUL | Data bus byte lane 3 |
A13 | LPDDR2_DQ30 | — | 1.2-V HSUL | Data bus byte lane 3 |
B12 | LPDDR2_DQ31 | — | 1.2-V HSUL | Data bus byte lane 3 |
R23 | LPDDR2_DQS0 | V26 | Differential 1.2-V HSUL | Data strobe P byte lane 0 |
P22 | LPDDR2_DQSN0 | U26 | Differential 1.2-V HSUL | Data strobe N byte lane 0 |
J22 | LPDDR2_DQS1 | U27 | Differential 1.2-V HSUL | Data strobe P byte lane 1 |
K23 | LPDDR2_DQSN1 | U28 | Differential 1.2-V HSUL | Data strobe N byte lane 1 |
AB18 | LPDDR2_DQS2 | — | Differential 1.2-V HSUL | Data strobe P byte lane 2 |
AC19 | LPDDR2_DQSN2 | — | Differential 1.2-V HSUL | Data strobe N byte lane 2 |
B18 | LPDDR2_DQS3 | — | Differential 1.2-V HSUL | Data strobe P byte lane 3 |
A19 | LPDDR2_DQSN4 | — | Differential 1.2-V HSUL | Data strobe N byte lane 3 |
P1 | LPDDR2_ZQ | — | 1.2-V | ZQ impedance calibration |
EEPROM
This board includes a 64-Kb EEPROM device. This device has a 2-wire serial interface bus I2C.
Table 2–26 lists the EEPROM pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction.
Table 2–26. EEPROM Schematic Signal Names and Functions
Board Reference (U12) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
1 | EEPROM_A0 | — | 3.3-V | Chip address |
2 | EEPROM_A1 | — | 3.3-V | Chip address |
3 | EEPROM_A2 | — | 3.3-V | Chip address |
5 | EEPROM_SDA | AH7 | 3.3-V | Serial address or data |
6 | EEPROM_SCL | AG7 | 3.3-V | Serial clock |
7 | EEPROM_WP | — | 3.3-V | Write protect input |
Synchronous SRAM
The development board supports a 18-Mb standard synchronous SRAM for instruction and data storage with low-latency random access capability. The device has a 1024K x 18-bits interface. This device is part of the shared FSM bus that connects to the flash memory, SRAM, and MAX V CPLD 5M2210 System Controller. The device speed is 250 MHz single-data-rate. There is no minimum speed for this device. The theoretical bandwidth of this interface is 4 Gbps for continuous bursts. The read latency for any address is two clocks while the write latency is one clock.
Table 2–27 lists the SSRAM pin assignments, signal names, and functions.
Table 2–27. SSRAM Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 2)
Board Reference (U11) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
86 | SRAM_OEN | E7 | 2.5-V | Output enable |
87 | SRAM_WEN | D6 | 2.5-V | Write enable |
37 | FSM_A1 | B11 | 2.5-V | Address bus |
36 | FSM_A2 | A11 | 2.5-V | Address bus |
44 | FSM_A3 | D9 | 2.5-V | Address bus |
42 | FSM_A4 | C10 | 2.5-V | Address bus |
34 | FSM_A5 | A10 | 2.5-V | Address bus |
47 | FSM_A6 | A9 | 2.5-V | Address bus |
43 | FSM_A7 | C9 | 2.5-V | Address bus |
46 | FSM_A8 | B8 | 2.5-V | Address bus |
45 | FSM_A9 | B7 | 2.5-V | Address bus |
35 | FSM_A10 | A8 | 2.5-V | Address bus |
32 | FSM_A11 | B6 | 2.5-V | Address bus |
33 | FSM_A12 | A6 | 2.5-V | Address bus |
50 | FSM_A13 | C7 | 2.5-V | Address bus |
48 | FSM_A14 | C6 | 2.5-V | Address bus |
100 | FSM_A15 | F13 | 2.5-V | Address bus |
99 | FSM_A16 | E13 | 2.5-V | Address bus |
82 | FSM_A17 | A5 | 2.5-V | Address bus |
80 | FSM_A18 | A4 | 2.5-V | Address bus |
49 | FSM_A19 | J7 | 2.5-V | Address bus |
81 | FSM_A20 | H7 | 2.5-V | Address bus |
39 | FSM_A21 | J9 | 2.5-V | Address bus |
58 | FSM_D0 | F16 | 2.5-V | Data bus |
59 | FSM_D1 | E16 | 2.5-V | Data bus |
62 | FSM_D2 | M9 | 2.5-V | Data bus |
63 | FSM_D3 | M8 | 2.5-V | Data bus |
68 | FSM_D4 | F15 | 2.5-V | Data bus |
69 | FSM_D5 | E15 | 2.5-V | Data bus |
Table 2–27. SSRAM Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 2)
Board Reference (U11) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
72 | FSM_D6 | E12 | 2.5-V | Data bus |
73 | FSM_D7 | D13 | 2.5-V | Data bus |
23 | FSM_D8 | J15 | 2.5-V | Data bus |
22 | FSM_D9 | H15 | 2.5-V | Data bus |
19 | FSM_D10 | E11 | 2.5-V | Data bus |
18 | FSM_D11 | D10 | 2.5-V | Data bus |
12 | FSM_D12 | L10 | 2.5-V | Data bus |
13 | FSM_D13 | L9 | 2.5-V | Data bus |
8 | FSM_D14 | G14 | 2.5-V | Data bus |
9 | FSM_D15 | F14 | 2.5-V | Data bus |
85 | SRAM_ADSCN | E6 | 2.5-V | Address status controller |
84 | SRAM_ADSPN | J10 | 2.5-V | Address status processor |
83 | SRAM_ADVN | G6 | 2.5-V | Address valid |
93 | SRAM_BWAN | A3 | 2.5-V | Byte write select |
94 | SRAM_BWBN | A2 | 2.5-V | Byte write select |
97 | SRAM_CE2 | — | 2.5-V | Chip enable 2 |
92 | SRAM_CE3N | — | 2.5-V | Chip enable 3 |
98 | SRAM_CEN | D7 | 2.5-V | Chip enable 1 |
89 | SRAM_CLK | K10 | 2.5-V | Clock |
88 | SRAM_GWN | — | 2.5-V | Global write enable |
31 | SRAM_MODE | — | 2.5-V | Burst sequence selection |
64 | SRAM_ZZ | — | 2.5-V | Power sleep mode |
Flash
The development board supports a 512-Mb CFI-compatible synchronous flash device for non-volatile storage of FPGA configuration data, board information, test application data, and user code space. This device is part of the shared FSM bus that connects to the flash memory, SSRAM, and MAX V CPLD 5M2210 System Controller. This 16-bit data memory interface can sustain burst read operations at up to 52 MHz for a throughput of 832 Mbps per device. The write performance is 270 μs for a single word buffer while the erase time is 800 ms for a 128 K array block. Table 2–28 lists the flash pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction.
Table 2–28. Flash Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 3)
Board Reference (U10) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
F6 | FLASH_ADVN | H12 | 2.5-V | Address valid |
B4 | FLASH_CEN | H14 | 2.5-V | Chip enable |
Table 2–28. Flash Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 3)
Board Reference (U10) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
E6 | FLASH_CLK | N12 | 2.5-V | Clock |
F8 | FLASH_OEN | L11 | 2.5-V | Output enable |
F7 | FLASH_RDYBSYN | J12 | 2.5-V | Ready |
D4 | FLASH_RESETN | K11 | 2.5-V | Reset |
G8 | FLASH_WEN | P12 | 2.5-V | Write enable |
C6 | FLASH_WPN | — | 2.5-V | Write protect |
A1 | FSM_A1 | B11 | 2.5-V | Address bus |
B1 | FSM_A2 | A11 | 2.5-V | Address bus |
C1 | FSM_A3 | D9 | 2.5-V | Address bus |
D1 | FSM_A4 | C10 | 2.5-V | Address bus |
D2 | FSM_A5 | A10 | 2.5-V | Address bus |
A2 | FSM_A6 | A9 | 2.5-V | Address bus |
C2 | FSM_A7 | C9 | 2.5-V | Address bus |
A3 | FSM_A8 | B8 | 2.5-V | Address bus |
B3 | FSM_A9 | B7 | 2.5-V | Address bus |
C3 | FSM_A10 | A8 | 2.5-V | Address bus |
D3 | FSM_A11 | B6 | 2.5-V | Address bus |
C4 | FSM_A12 | A6 | 2.5-V | Address bus |
A5 | FSM_A13 | C7 | 2.5-V | Address bus |
B5 | FSM_A14 | C6 | 2.5-V | Address bus |
C5 | FSM_A15 | F13 | 2.5-V | Address bus |
D7 | FSM_A16 | E13 | 2.5-V | Address bus |
D8 | FSM_A17 | A5 | 2.5-V | Address bus |
A7 | FSM_A18 | A4 | 2.5-V | Address bus |
B7 | FSM_A19 | J7 | 2.5-V | Address bus |
C7 | FSM_A20 | H7 | 2.5-V | Address bus |
C8 | FSM_A21 | J9 | 2.5-V | Address bus |
A8 | FSM_A22 | H9 | 2.5-V | Address bus |
G1 | FSM_A23 | G9 | 2.5-V | Address bus |
H8 | FSM_A24 | F8 | 2.5-V | Address bus |
B6 | FSM_A25 | E8 | 2.5-V | Address bus |
B8 | FSM_A26 | D8 | 2.5-V | Address bus |
F2 | FSM_D0 | F16 | 2.5-V | Data bus |
E2 | FSM_D1 | E16 | 2.5-V | Data bus |
G3 | FSM_D2 | M9 | 2.5-V | Data bus |
E4 | FSM_D3 | M8 | 2.5-V | Data bus |
E5 | FSM_D4 | F15 | 2.5-V | Data bus |
G5 | FSM_D5 | E15 | 2.5-V | Data bus |
G6 | FSM_D6 | E12 | 2.5-V | Data bus |
Table 2–28. Flash Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 3)
Board Reference (U10) | Schematic Signal Name | Cyclone V E FPGA Pin Number | I/O Standard | Description |
H7 | FSM_D7 | D13 | 2.5-V | Data bus |
E1 | FSM_D8 | J15 | 2.5-V | Data bus |
E3 | FSM_D9 | H15 | 2.5-V | Data bus |
F3 | FSM_D10 | E11 | 2.5-V | Data bus |
F4 | FSM_D11 | D10 | 2.5-V | Data bus |
F5 | FSM_D12 | L10 | 2.5-V | Data bus |
H5 | FSM_D13 | L9 | 2.5-V | Data bus |
G7 | FSM_D14 | G14 | 2.5-V | Data bus |
E7 | FSM_D15 | F14 | 2.5-V | Data bus |
Power Supply
You can power up the development board from a laptop-style DC power input. The input voltage must be in the range of 14 V to 20 V, current of 4.3 A, and a maximum wattage of 65 W. The DC voltage is then stepped down to various power rails used by the board components and installed into the HSMC connectors. An on-board multi-channel analog-to-digital converter (ADC) measures the current for several specific board rails.
Power Distribution System
Figure 2–9 shows the power distribution system on the development board. Regulator inefficiencies and sharing are reflected in the currents shown, which are conservative absolute maximum levels.
Figure 2–9. Power Distribution System
Power Measurement
There are eight power supply rails that have on-board current sense capabilities using 24-bit differential ADC devices. Precision sense resistors split the ADC devices and rails from the primary supply plane for the ADC to measure current. A SPI bus connects these ADC devices to the MAX V CPLD 5M2210 System Controller.
Figure 2–10 shows the block diagram for the power measurement circuitry.
Figure 2–10. Power Measurement Circuit
Table 2–29 lists the targeted rails. The schematic signal name column specifies the name of the rail being measured while the device pin column specifies the devices attached to the rail.
Table 2–29. Power Measurement Rails
Channel | Schematic Signal Name | Voltage (V) | Device Pin | Description |
1 | VCC | 1.1 | VCC | FPGA core power |
2 | VCCAUX | 2.5 | VCC_AUX | Auxiliary |
3 | VCCA_FPLL | 2.5 | VCCA_FPLL | PLL analog power |
VCCPD3B4A, | ||||
VCCPD5A,
VCCPD5B, VCCPD6A, |
I/O pre-drivers banks 3B, 4A, 5A, 5B, 6A, 7A, and 8A | |||
5 | VCCIO_VCCPD_2.5V | 2.5 | VCCPD7A8A | |
VCCIO3B, | ||||
VCCIO6A, VCCIO7A, | VCC I/O banks 3B, 6A, 7A, and 8A | |||
VCCIO8A | ||||
7 | VCCIO_1.2V | 1.2 | VCCIO5A, VCCIO5B, | VCC I/O banks 5A and 5B (LPDDR2) |
8 | VCCIO_1.5V | 1.5 | VCCIO_4A | VCC I/O bank 4A (DDR3) |
Board Components Reference
This chapter describes the Cyclone V E FPGA development board components, the manufacturing information, and the board compliance statements.
Board Components
Table lists the component reference and manufacturing information of all the components on the development board.
Table 3–1. Component Reference and Manufacturing Information
Board Reference | Component | Manufacturer | Manufacturing Part Number | Manufacturer Website |
U1 | FPGA, Cyclone V E F896, 149,500
LEs, leadfree |
Altera Corporation | 5CEFA7F31I7N | www.altera.com |
U13 | MAX V CPLD 5M2210 System
Controller |
Altera Corporation | 5M2210ZF256I5N | www.altera.com |
U18 | High-Speed USB peripheral controller | Cypress | CY7C68013A | www.cypress.com |
D1-D16, D18-D31, | Green LEDs | Lumex Inc. | SML-LXT0805GW-TR | www.lumex.com |
D17 | Red LED | Lumex Inc. | SML-LXT0805IW-TR | www.lumex.com |
D35 | Blue LED | Lumex Inc. | SML-LX0805USBC-TR | www.lumex.com |
SW1–SW4 | Four-position DIP switches | C&K Components/ ITT Industries | TDA04H0SB1 | www.ittcannon.com |
S1-S8 | Push buttons | Panasonic | EVQPAC07K | www.panasonic.com |
S5 | Slide switch | E-switch | EG2201A | www.e-switch.com |
X1 | Programmable LVDS clock 125M defaults | Silicon Labs | 570FAB000973DG | www.silabs.com |
X3 | 100 MHz crystal oscillator, ±50 ppm,
CMOS, 2.5 V |
Silicon Labs | 510GBA100M000BAGx | www.silabs.com |
X2 | 50 MHz crystal oscillator, ±50 ppm,
CMOS, 2.5 V |
Silicon Labs | 510GBA50M0000BAGx | www.silabs.com |
J12 | Female angled PCB WR-DSUB 9-pin connector | Wurth Elektronik | 618009231121 | www.we-online.com |
U21 | USB-to-UART bridge | Silicon Labs | CP2104 | www.silabs.com |
J14 | 2×7 pin LCD socket strip | Samtec | TSM-107-07-G-D | www.samtec.com |
2×16 character LCD, 5×8 dot matrix | Lumex Inc. | LCM-S01602DSR/C | www.lumex.com | |
U14, U15 | Ethernet PHY BASE-T devices | Marvell Semiconductor | 88E1111-B2- CAA1C000 | www.marvell.com |
J8, J9 | RJ-45 connectors, 10/100/1000 Mbps | Wurth Elektronik | 7499111001A | www.we-online.com |
J7 | HSMC, custom version of QSH-DP family high-speed socket. | Samtec | ASP-122953-01 | www.samtec.com |
U20 | RS-232 dual transceiver | Linear Technology | LTC2803-1 | www.linear.com |
Table 3–1. Component Reference and Manufacturing Information
Board Reference | Component | Manufacturer | Manufacturing Part Number | Manufacturer Website |
U12 | 64-Kb EEPROM | Microchip | 24AA64 | www.microchip.com |
J15, J16 | 2 x 8 debug headers | Samtec | TSM-108-01-L-DV | www.samtec.com |
U7, U8 | 16M × 16 × 8, 256-MB DDR3 SDRAM | Micron | MT41J128M16 | www.micron.com |
U9 | 16M × 32 × 8, 512-MB LPDDR2 SDRAM | Micron | MT42L128M32 | www.micron.com |
U11 | 1024K × 18 bit 18-Mb synchronous SRAM | Integrated Silicon Solution, Inc. | IS61VPS102418A- 250TQL | www.issi.com |
U10 | 512-Mb synchronous flash | Numonyx | PC28F512P30BF | www.numonyx.com |
U35 | 16-channel differential 24-bit ADC | Linear Technology | LTC2418CGN#PBF | www.linear.com |
Statement of China-RoHS Compliance
Table 3–2 lists hazardous substances included with the kit.
Table 3–2. Table of Hazardous Substances’ Name and Concentration Notes (1), (2)
Part Name |
Lead (Pb) | Cadmium (Cd) | Hexavalent Chromium (Cr6+) | Mercury (Hg) | Polybrominated biphenyls (PBB) | Polybrominated diphenyl Ethers (PBDE) |
Cyclone V E development board | X* | 0 | 0 | 0 | 0 | 0 |
15 V power supply | 0 | 0 | 0 | 0 | 0 | 0 |
Type A-B USB cable | 0 | 0 | 0 | 0 | 0 | 0 |
User guide | 0 | 0 | 0 | 0 | 0 | 0 |
Notes to Table 3–2:
- 0 indicates that the concentration of the hazardous substance in all homogeneous materials in the parts is below the relevant threshold of the SJ/T11363-2006 standard.
- X* indicates that the concentration of the hazardous substance of at least one of all homogeneous materials in the parts is above the relevant threshold of the SJ/T11363-2006 standard, but it is exempted by EU RoHS.
CE EMI Conformity Caution
This development kit is delivered conforming to relevant standards mandated by Directive 2004/108/EC. Because of the nature of programmable logic devices, it is possible for the user to modify the kit in such a way as to generate electromagnetic interference (EMI) that exceeds the limits established for this equipment. Any EMI caused as the result of modifications to the delivered material is the responsibility of the user.
Additional Information
This chapter provides additional information about the document and Altera.
Board Revision History
The following table lists the versions of all releases of the Cyclone V E FPGA Development Board.
Release Date | Version | Description |
March 2013 | Production silicon | ■ New board revision. New device part number—5CEFA7F31I7N.
■ Board passed CE compliance testing. |
November 2012 | Engineering silicon | Initial release. |
Document Revision History
The following table lists the revision history for this document.
Date | Version | Changes |
August 2017 | 1.4 | Corrected board location for Clock Output SMA Connector in “Overview of the Cyclone V E FPGA Development Board Features” on page 2–2. |
January 2017 | 1.3 | Corrected ENETA_RX_DV pin number in Table 2–20 on page 2–25. |
September 2015 |
1.2 |
■ Added link to Altera Design Store in “MAX V CPLD 5M2210 System Controller” on page 2–5.
■ Corrected device label in Figure 2–5 on page 2–15. |
March 2013 | 1.1 | ■ Revised the FPGA device part number for production silicon release.
■ Added a section about “CE EMI Conformity Caution” on page 3–2. |
November 2012 | 1.0 | Initial release. |
Typographic Conventions
The following table shows the typographic conventions this document uses.
Visual Cue | Meaning |
Bold Type with Initial Capital Letters | Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI. |
bold type |
Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, \qdesigns directory, D: drive, and chiptrip.gdf file. |
Italic Type with Initial Capital Letters | Indicate document titles. For example, Stratix IV Design Guidelines. |
Cyclone V E FPGA Development Board
Reference Manual
August 2017 Altera Corporation
Documents / Resources
![]() |
ALTERA Cyclone V E FPGA Development Board [pdf] User Manual Cyclone V E FPGA Development Board, Cyclone, V E FPGA Development Board, FPGA Development Board, Development Board, Board |