Raspberry Pi Compute Module 4 Tataiso ea mosebelisi
Colophon
© 2022-2025 Raspberry Pi Ltd
This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND)
Lokolla | 1 |
Haha letsatsi | 22/07/2025 |
Haha phetolelo | 0afd6ea17b8b |
Tsebiso ea molao ea boikhutso
TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF USE, DATA, OR PROFITS, OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSI BILITY OF SUCH DAMAGE.
RPL reserves the right to make any enhancements, improvements, corections or any other modifications to the RESOURCES or any products described in them at any time and without further notice
The MOSEBETSI are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for their selection and use of the RESOURCES and any application of the products described in them. User agrees to indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the RESOURCES
RPL e fa basebelisi tumello ea ho sebelisa RESOURCES ka kopanelo le lihlahisoa tsa Raspberry Pi. Tšebeliso eohle e meng ea RESOURCES e thibetsoe. Ha ho laesense e fuoang RPL efe kapa efe kapa tokelo e 'ngoe ea thepa ea bohlale ea motho e mong.
LIEKETSENG TSE PHAHAMENG. Raspberry Pi products are not designed, manufactured or intended for use in hazardous environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, weapons systems or safety-critical applications (including life support systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or severe physical or environmental damage (“High Risk Activities). RPL specifically disclaims any express or implied warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High Risk Activities
Raspberry Pi products are provided subject to RPLs Standard Terms. RPLs provision of the RESOURCES does not expand or otherwise modify RPL’s Melao e Tloaelehileng ho kenyelletsa empa ho sa felle feela ho boitlamo le litiisetso tse hlahisitsoeng ho tsona.
Nalane ea mofuta oa tokomane
Lokolla | Letsatsi | Tlhaloso |
1 | Mar 2025 | Initial release. This document is heavily based on the ‘Raspberry Pi Compute Module 5 forward guidance’ whitepaper. |
Sebaka sa tokomane
Tokomane ena e sebetsa ho lihlahisoa tse latelang tsa Raspberry Pi:
Pi 0 | Pi 1 | Pi 2 | Pi 3 | Pi 4 | Pi 400 | Pi 5 | Pi 500 | CM1 | CM3 | CM4 | CM5 | Pico | Pico2 | ||||
0 | W | H | A | B | A | B | B | Tsohle | Tsohle | Tsohle | Tsohle | Tsohle | Tsohle | Tsohle | Tsohle | Tsohle | Tsohle |
Selelekela
Raspberry Pi Compute Module 5 e ntšetsa pele moetlo oa Raspberry Pi oa ho nka komporo ea morao-rao ea Raspberry Pi le ho hlahisa sehlahisoa se senyenyane, se lekanang le hardware se loketseng lits'ebetso tse kentsoeng. Raspberry Pi Compute Module 5 e na le compact form factor e tšoanang le Raspberry Pi Compute Module 4 empa e fana ka ts'ebetso e phahameng le sete e ntlafalitsoeng ea likarolo. Ehlile, ho na le liphapang lipakeng tsa Raspberry Pi Compute Module 4 le Raspberry Pi Compute Module 5, 'me tsena li hlalositsoe tokomaneng ena.
HLOKOMELA
For the few customers who are unable to use Raspberry Pi Compute Module 5, Raspberry Pi Compute Module 4 will stay in production until at least 2034.
The Raspberry Pi Compute Module 5 datasheet should be read in conjunction with this whitepaper.
https://datasheets.raspberrypi.com/cm5/cm5-datasheet.pdf
Lintlha tse ka sehloohong
Raspberry Pi Compute Module 5 has the following features:
- Quad-core 64-bit Arm Cortex-A76 (Armv8) SoC clocked @ 2.4GHz
- 2GB, 4GB, 8GB, or 16GB LPDDR4 SDRAM
- On-board eMMC flash memory, OGB (Lite model), 16GB, 32GB, or 64GB options
- 2x USB 3.0 likou
- 1 Gb Ethernet interface
- 2x 4-lane MIPI ports supporting both DSI and CSI-2
- 2x HDMI ports able to support 4Kp60 simultaneously
- 28x GPIO pins
- On-board test points to simplify production programming
- Internal EEPROM on the bottom to improve security
- On-board RTC (external battery via 100-pin connectors)
- On-board fan controller
- On-board Wi-Fi®/Bluetooth (depending on SKU)
- 1-lane PCIe 2.0′
- Type-C PD PSU support
HLOKOMELA
Not all SDRAM/eMMC configurations are available. Please check with our sales team.
In some applications PCIe Gen 3.0 is possible, but this is not officially supported.
Raspberry Pi Compute Module 4 e tsamaellana
For most customers, Raspberry Pi Compute Module 5 will be pin-compatible with Raspberry Pi Compute Module 4.
The following features have been removed/altered between the Raspberry Pi Compute Module 5 and Raspberry Pi Compute Module 4 models:
- Video e kopaneng
- The composite output available on Raspberry Pi 5 is NOT routed out on Raspberry Pi Compute Module 5
- 2-lane DSI port
- There are two 4-lane DSI ports available on Raspberry Pi Compute Module 5, muxed with the CSI ports for a total of two
- 2-lane CSI port
- There are two 4-lane CSI ports available on Raspberry Pi Compute Module 5, muxed with the DSI ports for a total of two
- 2x ADC inputs
Mohopolo
Raspberry Pi Compute Module 4’s maximum memory capacity is 8GB, whereas Raspberry Pi Compute Module 5 is available in a 16GB RAM variant.
Unlike Raspberry Pi Compute Module 4, Raspberry Pi Compute Module 5 is NOT available in a 1GB RAM variant.
Mantsoe a analogue
Analogue audio can be muxed onto GPIO pins 12 and 13 on Raspberry Pi Compute Module 5, in the same way as on Raspberry Pi Compute Module 4.
Use the following device tree overlay to assign analogue audio to these pins:
Due to an errata on the RP1 chip, GPIO pins 18 and 19, which could be used for analogue audio on Raspberry Pi Compute Module
4, are not connected to the analogue audio hardware on Raspberry Pi Compute Module 5 and cannot be used.
HLOKOMELA
The output is a bitstream rather than a genuine analogue signal. Smoothing capacitors and an ampLifier e tla hlokahala botong ea IO ho khanna tlhahiso ea boemo ba mola.
Liphetoho ho boot boot ba USB
USB booting from a flash drive is only supported via the USB 3.0 ports on pins 134/136 and 163/165
Raspberry Pi Compute Module 5 does NOT support USB host boot on the USB-C port
Unlike the BCM2711 processor, the BCM2712 does not have an XHCI controller on the USB-C interface, just a DWC2 controller on pins 103/105. Booting using 1800t is done via these pins.
Fetolela ho reset ea module le mokhoa oa ho theola matla
1/0 pin 92 is now set to w Button rather than sus PG this means you need to use a PMIC EN to reset the module.
The PRIC ENABLE Signal resets the PMIC, and therefore the SoC. You can view PRIC EN when it’s driven low and released, which is functionally similar to driving tus Po low on Raspberry Pi Compute Module 4 and releasing it.
Raspberry Pi Compute Module 4 has the added benefit of being able to reset peripherals via the nEXTRST signal. Raspberry Pi Compute Module 5 will emulate this functionality on CAM GPIOT.
GLOBAL EN/PHIC EN are wired directly to the PMIC and bypass the OS completely. On Raspberry Pi Compute Module 5, use
GLOBAL EN/PHIC Es to execute a hard (but unsafe) shutdown
If there is a need, when using an existing 10 board, to retain the functionality of toggling I/O pin 92 to start a hard reset, you should intercept the Button at the software level; rather than having it invoke a system shutdown, it can be used to generate a software interrupt and, from there, to trigger a system reset directly (eg. write to S)
Device tree entry handling a power button (arch/arm64/boot/dts/broadcom/bcm2712-rpi-cm5.dtsi).
Code 116 is the standard event code for the kernel’s KEY POWER event, and there is a handler for this in the OS.
Raspberry Pi recommends using kernel watchdogs if you are concerned about the firmware or the OS crashing and leaving the power key unresponsive. ARM watchdog support is already present in Raspberry Pi OS via the device tree, and this can be customised to individual use cases. In addition, a long press/pull on the PIR Button (7 seconds) will cause the PMIC’s built-in handler to shut down the device.
Liphetoho tse felletseng tsa pinout
CAM1 and DSI1 signals have become dual-purpose and can be used for either a CSI camera or a DSI display.
The pins previously used for CAMO and DSIO on Raspberry Pi Compute Module 4 now support a USB 3.0 port on Raspberry Pi Compute Module 5.
The original Raspberry Pi Compute Module 4 VBAC COMP pin is now a VBUS-enabled pin for the two USB 3.0 ports, and is active high. Raspberry Pi Compute Module 4 has extra ESD protection on the HDMI, SDA, SCL, HPD, and CEC signals. This is removed from Raspberry Pi Compute Module 5 due to space limitations. If required, ESD protection can be applied to the baseboard, although Raspberry Pi Ltd does not regard it as essential.
Pin |
CM4 | CM5 | Tlhaloso |
16 | SYNC_IN | Fan_tacho | Fan tacho input |
19 | Ethernet nLED1 | Fan_pwn | Fan PWM output |
76 | Reserved | VBAT | RTC battery. Note: There will be a constant load of a few uA, even if CM5 is powered. |
92 | RUN_PG | PWR_Konopo | Replicates the power button on Raspberry Pi 5. A short press signals that the device should wake up or shut down. A long press forces shutdown. |
93 | nRPIBOOT | nRPIBOOT | If the PWR_Button is low, this pin will also be set low for a short time after power-up. |
94 | AnalogIP1 | CC1 | This pin can connect to the CC1 line of a Type-C USB connector to enable the PMIC to negotiate 5A. |
96 | AnalogIP0 | CC2 | This pin can connect to the CC2 line of a Type-C USB connector to enable the PMIC to negotiate 5A. |
99 | Global_EN | PMIC_ENABLE | No external change. |
100 | nEXTRST | CAM_GPIO1 | Pulled up on Raspberry Pi Compute Module 5, but can be forced low to emulate a reset signal. |
104 | Reserved | PCIE_DET_nWAKE | PCIE nWAKE. Pull up to CM5_3v3 with an 8.2K resistor. |
106 | Reserved | PCIE_PWR_EN | Signals whether the PCIe device can be powered up or down. Active high. |
111 | VDAC_COMP | VBUS_EN | Output to signal that USB VBUS should be enabled. |
128 | CAM0_D0_N | USB3-0-RX_N | May be P/N swapped. |
130 | CAM0_D0_P | USB3-0-RX_P | May be P/N swapped. |
134 | CAM0_D1_N | USB3-0-DP | USB 2.0 signal. |
136 | CAM0_D1_P | USB3-0-DM | USB 2.0 signal. |
140 | CAM0_C_N | USB3-0-TX_N | May be P/N swapped. |
142 | CAM0_C_P | USB3-0-TX_P | May be P/N swapped. |
157 | DSI0_D0_N | USB3-1-RX_N | May be P/N swapped. |
159 | DSI0_D0_P | USB3-1-RX_P | May be P/N swapped. |
163 | DSI0_D1_N | USB3-1-DP | USB 2.0 signal. |
165 | DSI0_D1_P | USB3-1-DM | USB 2.0 signal. |
169 | DSI0_C_N | USB3-1-TX_N | May be P/N swapped. |
171 | DSI0_C_P | USB3-1-TX_P | May be P/N swapped. |
Ho phaella ho tse ka holimo, matšoao a PCIe CLK ha a sa kopane ka matla.
PCB
Raspberry Pi Compute Module 5′s PCB is thicker than Raspberry Pi Compute Module 4′s, measuring at 1.24mm+/-10%.
Track bolelele
HDMI0 track lengths have changed. Each P/N pair remains matched, but the skew between pairs is now <1mm for existing motherboards. This is unlikely to make a difference, as the skew between pairs can be in the order of 25 mm.
HDMI1 track lengths have also changed. Each P/N pair remains matched, but the skew between pairs is now <5mm for existing motherboards. This is unlikely to make a difference, as the skew between pairs can be in the order of 25 mm.
Bolelele ba pina ea Ethernet bo fetohile. Para e 'ngoe le e' ngoe ea P/N e lula e tšoana, empa skew lipakeng tsa lipara joale ke <4mm bakeng sa liboto tsa bo-mme tse seng li ntse li le teng. Sena ha se khonehe ho etsa phapang, kaha skew pakeng tsa lipara e ka ba ka tatellano ea 12 mm.
Lihokelo
Lihokelo tse peli tsa 100-pin li fetotsoe ho mofuta o fapaneng. Tsena li lumellana le likhokahano tse teng empa li lekoa ka maqhubu a phahameng. Karolo ea ho nyalana e eang holim'a motherboard ke Amphenol P/N 10164227-1001A1RLF
Tekanyetso ea matla
As Raspberry Pi Compute Module 5 is significantly more powerful than Raspberry Pi Compute Module 4, it will consume more electrical power. Power supply designs should budget for SV up to 2.5A. If this creates an issue with an existing motherboard design, it is possible to reduce the CPU clock rate to lower the peak power consumption.
The firmware monitors the current limit for USB, which effectively means that usb mas surrant, enable is always 1 on CM5, the 10 board design should take the total USB current required into consideration.
The firmware will report the detected power supply capabilities (if possible) via device-tree. On a running system, see /proc/device tree/chosen/poser/Tsena files li bolokoa e le data ea binary ea 32-bit e kholo.
Liphetoho/litlhoko tsa software
Ho tloha sebakeng sa software sa view, liphetoho tsa hardware pakeng tsa Raspberry Pi Compute Module 4 le Raspberry Pi Compute Module 5 li patiloe ho mosebedisi ka sefate se secha sa lisebelisoa. files, ho bolelang hore boholo ba software e khomarelang Linux APIs e tloaelehileng e tla sebetsa ntle le phetoho. Sefate sa sesebelisoa files etsa bonnete ba hore li-driver tse nepahetseng tsa hardware li kentsoe ka nako ea ho qalisa.
Sefate sa sesebelisoa files e ka fumanoa sefateng sa kernel sa Raspberry Pi Linux. Bakeng sa mohlalaampLe:
https://github.com/raspberrypi/linux/blob/rpi-612.y/arch/arm64/boot/dis/broadcom/bom2712-pi-om5.dtsi.
Basebelisi ba fallelang ho Raspberry Pi Compute Module 5 ba eletsoa ho sebelisa mefuta ea software e bontšitsoeng tafoleng e ka tlase, kapa e ncha. Leha ho se na tlhoko ea ho sebelisa Raspberry Pi OS, ke tšupiso e sebetsang, ka hona e kenyellelitsoe tafoleng.
Software | Phetolelo | Letsatsi | Lintlha |
Raspberry Pi OS | Bookworm (12) | ||
Firmware | From 10 Mar 2025 | Bona https://pip.raspberrypi.com/categories/685-app-notes-guides- whitepapers/documents/RP-003476-WP/Updating-Pi-firmware.pdf for details on upgrading firmware on an existing image. Note that Raspberry Pi Compute Module 5 devices come pre-programmed with appropriate firmware | |
Kernel | 6.12.x | Ho tloha ho 2025 | This is the kernel used in Raspberry Pi OS |
Moving to standard Linux APIs/libraries from proprietary drivers/
firmware
Liphetoho tsohle tse thathamisitsoeng ka tlase e ne e le karolo ea phetoho ho tloha ho Raspberry Pi OS Bullseye ho ea ho Raspberry Pi OS Bookworm ka October 2023. Le hoja Raspberry Pi Compute Module 4 e ne e khona ho sebelisa li-API tsa khale tse fokolitsoeng (kaha firmware e hlokahalang ea lefa e ne e ntse e le teng), sena ha se joalo ho Raspberry Pi Compute Module 5.
Raspberry Pi Compute Module 5, joalo ka Raspberry Pi 5, ha joale e tšetlehile ho DRM (Direct Rendering Manager) ho e-na le stack ea lefa eo hangata e bitsoang DispmanX. HA HO na tšehetso ea firmware ho Raspberry Pi Compute Module 5 bakeng sa DispmanX, kahoo ho fallela DRM ho bohlokoa.
A similar requirement applies to cameras, Raspberry Pi Compute Module 5 only supports the libcamera library’s API, so older applications that use the legacy firmware MMAL APIs, such as raspi-still and rasps-vid, no longer function.
Lisebelisoa tse sebelisang OpenMAX API (likhamera, li-codec) ha li sa tla hlola li sebetsa ho Raspberry Pi Compute Module 5, kahoo li tla hloka ho ngoloa bocha ho sebelisa V4L2. Examptse ling tsa sena li ka fumanoa polokelong ea libcamera-apps GitHub, moo e sebelisetsoang ho fihlella H264 encoder hardware.
OMXPlayer is no longer supported, as it also uses the MMAL API for video playback, you should use the VLC application. There is no command-line compatibility between these applications: see the VLC documentation for details on usage.
Raspberry Pi previously published a whitepaper that discusses these changes in more detail: https://pip.raspberrypi.com/categories/685-app-notes-guides-whitepapers/documents/RP-006519-WP/Transitioning-from-Buliseye-to-Bookworm.pdf.
Tlhahisoleseling e 'Ngoe
While not strictly related to the transition from Raspberry Pi Compute Module 4 to Raspberry Pi Compute Module 5, Raspberry Pi Ltd has released a new version of the Raspberry Pi Compute Module provisioning software and also has two distro generation tools that users of Raspberry Pi Compute Module 5 may find useful.
rpi-sb-provisioner is a minimal-input, automatic secure boot provisioning system for Raspberry Pi devices. It is entirely free to download and use, and can be found on our GitHub page here: https://github.com/raspberrypi/rpi-sb-provisioner.
pi-gen is the tool used to create the official Raspberry Pi OS images, but it is also available for third parties to use to create their own distributions. This is the recommended approach for Raspberry Pi Compute Module applications that require customers to build a custom Raspberry Pi OS-based operating system for their specific use case. This is also free to download and use, and can be found here: https://github.com/RPi-Distro/pi-gen. The pi-gen tool integrates well with rpi-sb-provisioner to provide an end-to-end process for generating secure boot OS images and implementing them on Raspberry Pi Compute Module 5.
rpi-image-gen is a new image creation tool (https://github.com/raspberrypi/rpi-image-gen) that may be more appropriate for more lightweight customer distributions
For bring-up and testing and where there is no requirement for the full provisioning system rpiboot is still available on Raspberry Pi Compute Module 5. Raspberry Pi Ltd recommends using a host Raspberry Pi SBC running the latest version of Raspberry Pi OS and the latest rathoot from https://github.com/raspberrypi/usbboot. You must use the ‘Mass Storage Gadget option when running rpiboot, as the previous firmware-based option is no longer supported.
Lintlha tsa Kopana bakeng sa lintlha tse ling
Ka kopo ikopanye
applications@iraspberrypi.com
if you have any queries about this whitepaper.
Web: www.raspberrypi.com
Litokomane / Lisebelisoa
![]() |
Raspberry Pi Compute Module 4 [pdf] Bukana ea Mosebelisi Kopanya Module 4, Mojule 4 |