Abubuwan da ke ciki
boye
SensiML Ƙara Hasashen Kulawa a cikin Na'urorin Ginin Waya
Ajanda
Pre-aiki: Masu amfani sun shigar da Sauƙi Studio da Kayan Aikin Binciken SensiML a gaba
- Gabatarwar Mai watsa shiri - 5 minutes
- Gabatar da ra'ayoyi da burin lab - 10 minutes
- "Real-time" aiwatar da mataki-mataki hanya don ƙirƙirar samfurin - 60 minutes
- Flash SensiML mai jituwa firmware tattara bayanai zuwa Thunderboard Sense 2 (TBS2)
- Saita kuma haɗa TBS2 zuwa SensiML Data Capture Lab
- Ɗauki bayanan 'slide demo' tare da allo (masu amfani ba za su sami kayan aikin Fan ba)
- Lakabi bayanai da adanawa da sample project (ba za mu yi amfani da ragowar karatun ba ko da yake)
- Kira Studio Studio (a wannan lokacin, masu amfani za su yi aiki daga bayanan demo na TBS2 da aka riga aka tattara)
- Yi aiki ta hanyar matakan ƙirar ƙirar gina ƙirar gano jihar fan
- Ƙirƙiri Kunshin Ilimi
- Na zaɓi: Samfurin Flash zuwa TBS2
- Smart Building Applications demo bidiyo - 5 minutes
- Q&A – 10 minutes
Gabatarwa SensiML
- SensiML kamfani ne na kayan aikin software na B2B don AI a gefen IoT
- Yana ba masu haɓaka damar ƙirƙira ƙirar firikwensin ML mai ƙarfi ba tare da ƙwarewar kimiyyar bayanai ba
- Samfura masu ƙanƙanta kamar 10KB!
- Tsohuwar ƙungiyar kayan aikin software na Intel Curie/Quark MCU AI, an bar su don ƙirƙirar SensiML a cikin 2017
- Silicon Labs da SensiML Magani
- Kawo ingantaccen ML mai ƙarfi ga dangin EFR32/EFM32 MCU
- Samfurin aikace-aikacen IoT mai sauri tare da Thunderboard Sense 2
- SensiML yana da kwanciyar hankali da tallafi na duniya
- An samu a cikin 2019 ta QuickLogic Corp; saitin kuma gudanar da shi azaman na gabaɗaya na software mai zaman kansa (wanda yake a Portland, OR)
- Kafa abokan haɗin gwiwa (Avnet, Future Electronics, Mouser, Shinko Shoji)
- Ofisoshin tallace-tallace / Tallafawa a Burtaniya, Amurka, Japan, Taiwan, China
Dama don TinyML a cikin Gine-ginen Waya
Kalubale tare da Haɓaka Aikace-aikacen Sensor Smart IoT
Cloud-Centric AI
- High Network Traffic Load
- Babban Latitude
- Kadan Mai Haƙuri Laifi
- Haɗarin Tsaron Bayanai wanda ba a sani ba
- Damuwa na Keɓantawa
Zurfin Ilmantarwa
- Babban buƙatun bayanan horo
- Large memory footprint
- Babban aikin sarrafawa
- Babban amfani da wutar lantarki
- Rayuwar baturi mara kyau
Wuraren Ƙarshen Ƙarshen Hannu
- Sannu a hankali kuma mai tsananin aiki
- Girman lambar da ba a sani ba a gaba
- Ƙwarewar kimiyyar bayanai kaɗan
- Complex AI/ML code dakunan karatu
- Ba mai daidaitawa / gasa ba
TinyML = IoT Edge ML + AutoML
- IoT Edge ML: Madaidaitan wuraren ƙarewa
- Fitar hanyar sadarwa maras muhimmanci da tsawon rayuwar batir mara waya
- Babu sarrafa girgije ko dogaro da hanyar sadarwa
- Mai da martani na ainihi
- AutoML: Inganta Ba tare da Kwarewar AI ba
- Auto-optimizer yana zaɓar mafi kyawun samfuri don bayanan da aka bayar
- Classic inji koyo (ML) ta hanyar zurfin koyo
- SensiML TinyML yana samar da ƙira waɗanda ƙanana kamar 10KB!
- Ba a buƙatar yin coding da hannu
- Lambar ƙirar ƙira ta atomatik daga bayanan horo na ML
- Yana adana watanni na ƙoƙarin haɓakawa, da ƙwarewar kimiyyar bayanai
- Mai haɓakawa na iya canza kowane bangare na lambar AutoML kamar yadda ake so
Samfurin Gina Aikin Gina
Ɗaukar Bayanai
- Lokaci: Sa'o'i zuwa Makonni* (Ya danganta da wahalar tattara bayanan aikace-aikacen)
- Ƙwarewa: Ƙwararrun Ƙwararru (Kamar yadda ake buƙata don tattarawa da lakabi abubuwan sha'awa)
Lura: Za mu yi amfani da wasu bayanan da aka tattara a baya don haɓaka wannan matakin don taron bitar
Gina Misali
- Lokaci: Minti zuwa Sa'o'i (Ya danganta da matakin sarrafa samfurin)
- Ƙwarewa: Babu (Cikakken AutoML)
- Mahimman Ka'idodin ML (Babban kunna UI)
- Python Programming (Cikakken sarrafa bututun mai)
Na'urar Gwaji
- Lokaci: Mintuna zuwa Makonni (Ya danganta da buƙatun haɗa lambar app)
- Ƙwarewa: Babu (firmware na binary tare da lambar rufe I/O ta atomatik)
Haɗin Shirye-shiryen (Haɗin ɗakin ɗakin karatu na SensiML ko tushen C tare da lambar mai amfani)
Burin Bita
- Gabatar da kayan aikin SensiML na TinyML da tsarin ginin ƙirar akan Silicon Labs Thunderboard Sense 2
- Ƙwarewa tare da ci gaban algorithm na firikwensin ML mai kulawa da bayanai
- Koyi tsarin aiki daga tarin bayanai ta hanyar inganci da gwajin kan na'ura don gina ƙirar IoT
- Gina samfurin tsinkayar HVAC mai aiki fara-zuwa-ƙarewa
- Amsar tambayoyin da za ku iya yi game da tsarin ƙirƙirar TinyML
Aikace-aikacen Kula da Hasashen HVAC Aiki
- Don dalilai na hannun-kan mu, za mu gina na'urar kula da fan
- Magoya bayan sun yi amfani da ko'ina wajen gina tsarin HVAC: Blowers, sanyaya kayan aiki, masu sarrafa iska, iskar iska.
- Rashin gazawa ko lalacewa na iya haifar da asarar inganci, ƙara yawan kuzari, gazawar HVAC
- Za mu gina na'urar sa ido mai sauƙi wacce za ta iya gano jihohi na al'ada da mara kyau:
- Kashe / kunna fan
- Matsakaicin sako-sako
- Magoya bayan gadi
- Sashi ko cikakken katange kwararar iska
- Tsagewar ruwa
- Yawan girgiza
Mu Fara Tsarin
Tsarin bita na "Real-time" mataki-mataki don ƙirƙirar samfurin - minti 60
- Flash SensiML mai jituwa firmware tattara bayanai zuwa Thunderboard Sense 2 (TBS2)
- Saita kuma haɗa TBS2 zuwa SensiML Data Capture Lab
- Ɗauki bayanan 'slide demo' tare da allo (masu amfani ba za su sami kayan aikin Fan ba)
- Lakabi bayanai da adanawa da sample project (ba za mu yi amfani da ragowar karatun ba ko da yake)
- Kira Studio Studio (a wannan lokacin, masu amfani za su yi aiki daga bayanan demo na TBS2 da aka riga aka tattara)
- Yi aiki ta hanyar matakan ƙirar ƙirar gina ƙirar gano jihar fan
- Ƙirƙiri Kunshin Ilimi
- Samfuran Flash zuwa TBS2
Demo Bidiyo
Haƙƙin mallaka © 2021 SensiML Corporation. An kiyaye duk haƙƙoƙi.
Takardu / Albarkatu
![]() |
SensiML Ƙara Hasashen Kulawa a cikin Na'urorin Ginin Waya [pdf] Umarni Ƙara Hasashen Kulawa a cikin Na'urorin Ginin Waya, Kulawa a cikin Na'urorin Gina Mai Waya, Na'urar Gina Mai Wayo, Na'urorin Gina |