ZTE-LOGO

ZTE Guided Algorithm ສໍາລັບ Lossless Point Cloud Geometry Compression

ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression-PRO

ຂໍ້ມູນຈໍາເພາະ:

  • ຊື່ຜະລິດຕະພັນ: Spatio-Temporal Context-guided Algorithm ສຳລັບການບີບອັດ Geometry Cloud Point Lossless
  • ຜູ້ຂຽນ: ZHANG Huiran​, DONG Zhen​, WANG Mingsheng​
  • ຈັດພີມມາ: ເດືອນທັນວາ 2023
  • DOI: 10.12142/ZTECOM.202304003

ຄໍາແນະນໍາການນໍາໃຊ້ຜະລິດຕະພັນ

ແນະນຳ:
ຜະລິດຕະພັນໄດ້ຖືກອອກແບບເພື່ອປະສິດທິພາບການບີບອັດຂໍ້ມູນຄລາວຈຸດ, ແກ້ໄຂສິ່ງທ້າທາຍທີ່ກ່ຽວຂ້ອງກັບຄວາມອາດສາມາດຂອງພື້ນທີ່ເກັບຮັກສາແລະແບນວິດການສົ່ງເຄືອຂ່າຍ.

ຄຸນ​ນະ​ສົມ​ບັດ​ຕົ້ນ​ຕໍ​:

  1. ຮູບແບບການຄາດເດົາໃຊ້ໄດ້ກັບ intraframe ແລະ inter-frame cloud clouds ໂດຍໃຊ້ບັນຫາພະນັກງານຂາຍການເດີນທາງທີ່ຂະຫຍາຍອອກໄປ.
  2. ຕົວເຂົ້າລະຫັດເລກເລກທີ່ປັບຕົວໄດ້ດ້ວຍການອັບເດດບໍລິບົດໄວສຳລັບການຄຳນວນຄວາມເປັນໄປໄດ້ ແລະຜົນການບີບອັດທີ່ມີປະສິດທິພາບ.

ຂັ້ນ​ຕອນ​ການ​ນໍາ​ໃຊ້​:

ຂັ້ນຕອນທີ 1: Divide Point Clouds
ແບ່ງຈຸດເມກອອກເປັນຊັ້ນໜ່ວຍຕາມແກນຫຼັກ.

ຂັ້ນຕອນທີ 2: ອອກແບບຮູບແບບການຄາດເດົາ
ອອກແບບຮູບແບບການຄາດເດົາໂດຍໃຊ້ວິທີການເດີນທາງຂອງພະນັກງານຂາຍເພື່ອນຳໄປສູ່ຄວາມຊ້ຳຊ້ອນໃນພື້ນທີ່ ແລະຊົ່ວຄາວ.

ຂັ້ນຕອນທີ 3: ເຂົ້າລະຫັດທີ່ເຫຼືອ
ຂຽນສິ່ງທີ່ເຫຼືອຢູ່ໃນບິດສະຕຣີມໂດຍໃຊ້ຕົວເຂົ້າລະຫັດເລກຄະນິດແບບ context-adaptive ສໍາລັບການບີບອັດ.

FAQ:

  • ຖາມ: ຜົນປະໂຫຍດທີ່ສໍາຄັນຂອງການນໍາໃຊ້ຜະລິດຕະພັນນີ້ແມ່ນຫຍັງ?
    A: ຜະລິດຕະພັນດັ່ງກ່າວເຮັດໃຫ້ການບີບອັດຂໍ້ມູນຈຸດເມຄຢ່າງມີປະສິດທິພາບ, ນຳໃຊ້ຄວາມສຳພັນທາງກວ້າງຂອງພື້ນທີ່ ແລະທາງໂລກເພື່ອໃຫ້ໄດ້ຜົນການບີບອັດທີ່ດີຂຶ້ນ.
  • Q: ຜະລິດຕະພັນນີ້ສາມາດຈັດການກັບຟັງໄດ້ທັງສອງເຟຣມດຽວແລະຫຼາຍເຟຣມເມຄ?
    A: ແມ່ນແລ້ວ, ຮູບແບບການຄາດເດົາແມ່ນໃຊ້ໄດ້ກັບທັງ intraframe ແລະ inter-frame cloud clouds, ອະນຸຍາດໃຫ້ມີສະຖານະການການໃຊ້ງານທີ່ຫຼາກຫຼາຍ.

ZHANG Huiran​, DONG Zhen​, WANG Mingsheng​

  1. ສະຖາບັນຄົ້ນຄວ້າການວາງແຜນ ແລະການອອກແບບຕົວເມືອງກວາງໂຈວ, Guangzhou 510060, ຈີນ;
  2. Guangdong Enterprise Key Laboratory ສໍາ​ລັບ​ການ​ຮັບ​ຮູ້​ຕົວ​ເມືອງ​, ຕິດ​ຕາມ​ກວດ​ກາ​ແລະ​ການ​ເຕືອນ​ໄພ​ໄວ​, Guangzhou 510060​, ຈີນ​;
  3. ຫ້ອງ​ທົດ​ລອງ​ວິ​ສະ​ວະ​ກໍາ​ຂໍ້​ມູນ​ຂ່າວ​ສານ​ທີ່​ສໍາ​ຄັນ​ຂອງ​ລັດ​ໃນ​ການ​ສໍາ​ຫຼວດ Map⁃ ping ແລະ​ການ​ຮັບ​ຮູ້​ທາງ​ໄກ​, ວິ​ທະ​ຍາ​ໄລ Wuhan​, Wuhan 430079​, ຈີນ​)

ບົດຄັດຫຍໍ້: ການບີບອັດຄລາວຈຸດແມ່ນມີຄວາມສຳຄັນໃນການນຳໃຊ້ການສະແດງ 3 ມິຕິຂອງໂລກທາງກາຍຍະພາບ ເຊັ່ນ: ການມີຕົວຕົນແບບ 3 ມິຕິ, ການຂັບຂີ່ແບບອັດຕະໂນມັດ ແລະ ລັກສະນະທາງວັດທະນະທຳ.tage ການ​ປົກ​ປັກ​ຮັກ​ສາ​. ແນວໃດກໍ່ຕາມ, ຂໍ້ມູນເມຄຈຸດຖືກແຈກຢາຍຢ່າງບໍ່ສະໝ່ຳສະເໝີ ແລະ ບໍ່ຕໍ່ເນື່ອງໃນໂດເມນທາງກວ້າງຂອງພື້ນ ແລະ ຊົ່ວຄາວ, ບ່ອນທີ່ voxels unoccupied ຊ້ຳຊ້ອນ ແລະ ຄວາມສຳພັນທີ່ອ່ອນແອໃນຊ່ອງ 3D ເຮັດໃຫ້ການບັນລຸການບີບອັດທີ່ມີປະສິດທິພາບເປັນບັນຫາທີ່ທ້າທາຍ. ໃນເອກະສານນີ້, ພວກເຮົາສະເຫນີສູດການຄິດໄລ່ spatio-temporal context-guided algorithm ສໍາລັບການ compression geometry cloud ຈຸດສູນເສຍ. ໂຄງ​ການ​ທີ່​ສະ​ເຫນີ​ແມ່ນ​ເລີ່ມ​ຕົ້ນ​ດ້ວຍ​ການ​ແບ່ງ​ປັນ​ຈຸດ​ຟັງ​ເປັນ​ຊັ້ນ​ຊອຍ​ຂອງ​ຄວາມ​ຫນາ​ຫນ່ວຍ​ບໍ​ລິ​ການ​ຕາມ​ແກນ​ຍາວ​ທີ່​ສຸດ​. ຫຼັງຈາກນັ້ນ, ມັນແນະນໍາວິທີການຄາດຄະເນບ່ອນທີ່ທັງສອງ intraframe ແລະ inter-frame clouds ມີຢູ່, ໂດຍການກໍານົດການຕິດຕໍ່ກັນລະຫວ່າງຊັ້ນທີ່ຢູ່ໃກ້ຄຽງແລະການຄາດຄະເນເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດໂດຍໃຊ້ວິທີການເດີນທາງຂອງ salesman algorithm. ສຸດທ້າຍ, ສ່ວນທີ່ເຫຼືອຂອງການຄາດຄະເນຈໍານວນຫນ້ອຍແມ່ນຖືກບີບອັດຢ່າງມີປະສິດທິພາບດ້ວຍເຕັກນິກການເຂົ້າລະຫັດເລກເລກໄວທີ່ແນະນຳ ແລະ ປັບຕົວໃຫ້ເໝາະສົມທີ່ສຸດ. ການທົດລອງພິສູດວ່າວິທີການທີ່ສະເຫນີສາມາດບັນລຸໄດ້ປະສິດທິພາບການບີບອັດຕ່ໍາການສູນເສຍການສູນເສຍຂໍ້ມູນ geometric cloud ຈຸດ, ແລະເຫມາະສົມສໍາລັບການບີບອັດເມຄຈຸດ 3D ນໍາໃຊ້ກັບປະເພດຕ່າງໆຂອງ scenes.
ຄໍາສໍາຄັນ: point cloud geometry compression; single-frame clouds ຈຸດ; multi-frame clouds ຈຸດ; ລະ​ຫັດ​ການ​ຄາດ​ຄະ​ເນ​; ລະຫັດເລກຄະນິດສາດ.

ການອ້າງອີງ (ຮູບແບບ 1): ZHANG HR, DONG Z, WANG M S. Spatio-temporal context-guided algorithm for lossless point cloud geometry compression [J]. ZTE Communications, 2023, 21(4): 17–28. DOI: 10.12142/ZTECOM.202304003
ການອ້າງອີງ (ຮູບແບບ 2): HR Zhang, Z. Dong, ແລະ MS Wang, "ສູດການຄິດໄລ່ຂອງສະພາວະຊົ່ວຄາວ-ຊົ່ວຄາວສຳລັບການບີບອັດເລຂາຄະນິດເມຄທີ່ສູນເສຍຈຸດ,", ZTE Communications, vol. 21, ບໍ່. 4, ໜ້າ 17–28, ທັນວາ 2023. doi: 10.12142/ZTECOM.202304003.

 

ແນະນຳ

ດ້ວຍການປັບປຸງປະສິດທິພາບອຸປະກອນການຈັດຫາແບບຫຼາຍເວທີ ແລະຫຼາຍຄວາມລະອຽດ, ເທັກໂນໂລຍີການຊອກຄົ້ນຫາແສງ ແລະລະດັບ (LiDAR) ສາມາດຈຳລອງວັດຖຸ 3 ມິຕິ ຫຼື ສາກດ້ວຍຊຸດຈຸດຂະໜາດໃຫຍ່ໄດ້ຢ່າງມີປະສິດທິພາບ. ເມື່ອປຽບທຽບກັບຂໍ້ມູນມັນຕິມີເດຍແບບດັ້ງເດີມ, ຂໍ້ມູນຄລາວຈຸດມີຂໍ້ມູນການວັດແທກທາງກາຍຍະພາບຫຼາຍກວ່າທີ່ສະແດງເຖິງວັດຖຸທີ່ບໍ່ເສຍຄ່າ viewຈຸດ, ເຖິງແມ່ນວ່າ scenes ທີ່ມີໂຄງສ້າງ topological ສະລັບສັບຊ້ອນ. ນີ້ສົ່ງຜົນໃຫ້ມີການໂຕ້ຕອບທີ່ເຂັ້ມແຂງແລະ immersive ທີ່ໃຫ້ຜູ້ໃຊ້ປະສົບການການເບິ່ງເຫັນ vivid ແລະຈິງ. ນອກຈາກນັ້ນ, ຂໍ້ມູນເມຄຈຸດມີຄວາມສາມາດໃນການຕ້ານສິ່ງລົບກວນທີ່ເຂັ້ມແຂງແລະຄວາມສາມາດໃນການປຸງແຕ່ງຂະຫນານ, ເຊິ່ງເບິ່ງຄືວ່າໄດ້ຮັບການດຶງດູດຈາກອຸດສາຫະກໍາແລະວິຊາການ, ໂດຍສະເພາະສໍາລັບໂດເມນຄໍາຮ້ອງສະຫມັກເຊັ່ນ: ວັດທະນະທໍາ.tage preservation, 3D immersive telepresence ແລະຂັບລົດອັດຕະໂນມັດ[1–2].
ແນວໃດກໍ່ຕາມ, ຂໍ້ມູນເມຄຈຸດໂດຍປົກກະຕິແລ້ວມີຈຸດຫຼາຍລ້ານຫາຕື້ຈຸດຢູ່ໃນພື້ນທີ່ທາງກວ້າງຂອງພື້ນ, ນໍາເອົາພາລະແລະຄວາມທ້າທາຍມາສູ່ຄວາມອາດສາມາດຂອງພື້ນທີ່ເກັບຮັກສາແລະແບນວິດຂອງເຄືອຂ່າຍ. ຕົວຢ່າງເຊັ່ນ, cloud point dynamic ທົ່ວໄປທີ່ໃຊ້ເພື່ອຄວາມບັນເທີງມັກຈະປະກອບດ້ວຍປະມານຫນຶ່ງລ້ານຈຸດຕໍ່ເຟຣມ, ເຊິ່ງ, ໃນ 30 ເຟຣມຕໍ່ວິນາທີ, ຈໍານວນແບນວິດທັງຫມົດ 3.6 Gbit / s ຖ້າປະໄວ້ໂດຍບໍ່ມີການບີບອັດ[3]. ດັ່ງນັ້ນ, ການຄົ້ນຄວ້າກ່ຽວກັບສູດການບີບອັດເລຂາຄະນິດທີ່ມີປະສິດທິພາບສູງສໍາລັບຈຸດເມຄມີຄຸນຄ່າທາງທິດສະດີແລະການປະຕິບັດທີ່ສໍາຄັນ.
ການເຮັດວຽກກ່ອນການແກ້ໄຂບັນຫານີ້ໂດຍການສ້າງຕາຂ່າຍໄຟຟ້າໂດຍກົງຫຼືຕາມຄວາມຕ້ອງການຫຼຸດລົງampling, ເນື່ອງຈາກຂໍ້ຈໍາກັດໃນພະລັງງານຂອງຄອມພິວເຕີ້ຄອມພິວເຕີແລະປະສິດທິພາບການລວບລວມຈຸດຂອງເມຄ, ເຊິ່ງເຮັດໃຫ້ການປະຕິບັດການບີບອັດ spatio-temporal ຕ່ໍາແລະການສູນເສຍຂໍ້ມູນຄຸນສົມບັດ geometric. ການສຶກສາທີ່ຜ່ານມາສ່ວນໃຫຍ່ແມ່ນອີງໃສ່ກາຟິກຄອມພິວເຕີແລະເຕັກນິກການປະມວນຜົນສັນຍານດິຈິຕອນເພື່ອປະຕິບັດການປະຕິບັດການສະກັດຂໍ້ມູນເທິງຄລາວຂອງຈຸດ[4 5] ຫຼືເຕັກໂນໂລຢີການເຂົ້າລະຫັດວິດີໂອລວມກັນ [6 7] ສໍາລັບການເພີ່ມປະສິດທິພາບ. ໃນປີ 2017, ກຸ່ມ Moving Picture Experts Group (MPEG) ໄດ້ຂໍສະເໜີການບີບອັດເມຄຈຸດ ແລະ ໄດ້ດໍາເນີນການສົນທະນາຕໍ່ໄປກ່ຽວກັບວິທີການບີບອັດຂໍ້ມູນປະເພດນີ້. ດ້ວຍວິທີການທີ່ເພີ່ມຂຶ້ນເພື່ອຊີ້ໃຫ້ເຫັນເຖິງການບີບອັດຄລາວທີ່ມີ ແລະນໍາສະເຫນີ, ກອບການບີບອັດຂໍ້ມູນຄລາວສອງຈຸດ—TMC13 ແລະ TMC2 ໄດ້ອອກໃນປີ 2018. ການຄົ້ນຄວ້າຂ້າງເທິງສະແດງໃຫ້ເຫັນຄວາມຄືບໜ້າອັນໂດດເດັ່ນໃນເທັກໂນໂລຍີການບີບອັດຂອງຈຸດຄລາວ. ແນວໃດກໍ່ຕາມ, ວຽກງານກ່ອນໜ້ານີ້ສ່ວນຫຼາຍແມ່ນໄດ້ຈັດການກັບຄວາມສຳພັນທາງກວ້າງຂອງພື້ນ ແລະ ທາງໂລກຂອງຈຸດເມກທີ່ແຍກກັນແຕ່ຍັງບໍ່ທັນໄດ້ນຳໃຊ້ທ່າແຮງອັນເຕັມທີ່ໃນການບີບອັດເມກຈຸດ.
ເພື່ອແກ້ໄຂສິ່ງທ້າທາຍທີ່ໄດ້ກ່າວມາຂ້າງເທິງ, ພວກເຮົາແນະນໍາວິທີການ spatio-temporal context-guided ສໍາລັບການ compression cloud geometry ຈຸດສູນເສຍ. ກ່ອນອື່ນໝົດພວກເຮົາແບ່ງຈຸດເມກອອກເປັນຊັ້ນໜ່ວຍຕາມແກນຫຼັກ. ຫຼັງຈາກນັ້ນ, ພວກເຮົາອອກແບບຮູບແບບການຄາດເດົາຜ່ານຂັ້ນຕອນການຍ່າງທາງຂອງພະນັກງານຂາຍ, ໂດຍການຮັບຮອງເອົາຄວາມສໍາພັນລະຫວ່າງ spatiotemporal. ສຸດທ້າຍ, ສິ່ງເສດເຫຼືອຖືກຂຽນລົງໃນ bit-streams ດ້ວຍຕົວເຂົ້າລະຫັດເລກເລກທີ່ປັບຕົວເຂົ້າກັບ context-adaptive. ການປະກອບສ່ວນຕົ້ນຕໍຂອງພວກເຮົາແມ່ນດັ່ງຕໍ່ໄປນີ້.
1) ພວກເຮົາອອກແບບ- ຮູບແບບການຄາດຄະເນທີ່ໃຊ້ໄດ້ກັບທັງ intra-frame ແລະ inter-frame cloud cloud, ຜ່ານບັນຫາການຂາຍການເດີນທາງຂະຫຍາຍ (TSP). ໂດຍການໃຊ້ຄວາມຊ້ຳຊ້ອນກັນທາງດ້ານພື້ນທີ່ ແລະຊົ່ວຄາວຂອງເມກຈຸດ, ການຄາດຄະເນເລຂາຄະນິດສາມາດເຮັດໃຫ້ການນຳໃຊ້ຄວາມສຳພັນທາງກວ້າງຂອງພື້ນໄດ້ດີຂຶ້ນ ແລະ ດັ່ງນັ້ນຈຶ່ງສາມາດນຳໃຊ້ສະຖານະການຕ່າງໆໄດ້.
2) ພວກເຮົານຳສະເໜີຕົວເຂົ້າລະຫັດເລກເລກທີ່ປັບຕົວໄດ້ດ້ວຍການອັບເດດຂໍ້ຄວາມໄວ, ເຊິ່ງເລືອກບໍລິບົດ 3D ທີ່ດີທີ່ສຸດຈາກວັດຈະນານຸກົມບໍລິບົດ, ແລະສະກັດກັ້ນການເພີ່ມຂຶ້ນຂອງການຄາດຄະເນ entropy. ດັ່ງນັ້ນ, ມັນຊ່ວຍເພີ່ມປະສິດທິພາບການຄິດໄລ່ຄວາມເປັນໄປໄດ້ຂອງຕົວເຂົ້າລະຫັດ entropy ແລະໃຫ້ຜົນໄດ້ຮັບການບີບອັດທີ່ສໍາຄັນ.
ສ່ວນທີ່ເຫຼືອຂອງເອກະສານນີ້ແມ່ນໂຄງສ້າງດັ່ງຕໍ່ໄປນີ້. ພາກ​ທີ 2 ໃຫ້​ໂຄງ​ຮ່າງ​ຂອງ​ວຽກ​ງານ​ທີ່​ກ່ຽວ​ຂ້ອງ​ກ່ຽວ​ກັບ​ການ​ບີບ​ອັດ​ເລ​ຂາ​ຄະ​ນິດ​ຟັງ​ຈຸດ​. ພາກ​ທີ 3 ທໍາ​ອິດ​ສະ​ແດງ​ໃຫ້​ເຫັນ​ກ່ຽວ​ກັບ​ການ​view ຂອງ​ຂອບ​ການ​ສະ​ເຫນີ​. ຫຼັງຈາກນັ້ນ, ວິທີການທີ່ສະເຫນີໄດ້ຖືກອະທິບາຍຢ່າງລະອຽດ. ຜົນໄດ້ຮັບຂອງການທົດລອງແລະບົດສະຫຼຸບແມ່ນນໍາສະເຫນີໃນພາກທີ 4 ແລະ 5, ຕາມລໍາດັບ.

ວຽກງານທີ່ກ່ຽວຂ້ອງ

ມີລະບົບການບີບອັດເລຂາຄະນິດຂອງເມຄຫຼາຍຈຸດທີ່ສະເໜີໄວ້ໃນວັນນະຄະດີ. CAO et al. [8] ແລະ GRAZIOSI et al. [9] ດໍາເນີນການສືບສວນແລະສະຫຼຸບວິທີການບີບອັດເມຄຈຸດໃນປະຈຸບັນ, ສຸມໃສ່ເຕັກໂນໂລຢີການບີບອັດຂະຫນາດທາງກວ້າງຂອງພື້ນແລະກອບມາດຕະຖານ MPEG ຕາມລໍາດັບ. ພວກເຮົາສະຫນອງການຫຍໍ້ Review ການພັດທະນາທີ່ຜ່ານມາໃນສອງປະເພດ: ການບີບອັດເມຄຈຸດດຽວເຟຣມແລະການບີບອັດເມຄຈຸດຫຼາຍເຟຣມ.

  1. Single-Frame Point Cloud Compression
    ເມກຈຸດເຟຣມດຽວຖືກນໍາໃຊ້ຢ່າງກວ້າງຂວາງໃນການສໍາຫຼວດດ້ານວິສະວະກໍາ, ວັດທະນະທໍາtage ການເກັບຮັກສາ, ລະບົບຂໍ້ມູນຂ່າວສານພູມສາດ, ແລະສະຖານະການອື່ນໆ. octree ແມ່ນໂຄງສ້າງຂໍ້ມູນທີ່ໃຊ້ຢ່າງກວ້າງຂວາງເພື່ອສະແດງເຖິງຈຸດເມຄຢ່າງມີປະສິດທິພາບ, ເຊິ່ງສາມາດຖືກບີບອັດໂດຍການບັນທຶກຂໍ້ມູນຜ່ານໂຫນດທີ່ຖືກຍຶດ. HUANG et al.[10] ສະເໜີວິທີການ octree-based ທີ່ recursively subdivides the point cloud into nodes with their positions are represented by geometric center of each unit. FAN et al.[11] ປັບປຸງວິທີການນີ້ຕື່ມອີກໂດຍການແນະນໍາການວິເຄາະກຸ່ມເພື່ອສ້າງລໍາດັບຊັ້ນລາຍລະອຽດ (LOD) ແລະການເຂົ້າລະຫັດໃນລໍາດັບທໍາອິດ. ຢ່າງໃດກໍ່ຕາມ, ວິທີການເຫຼົ່ານີ້ສາມາດເຮັດໃຫ້ເກີດການບິດເບືອນເນື່ອງຈາກການປະມານຂອງຮູບແບບຕົ້ນສະບັບໃນລະຫວ່າງການຂະບວນການຊ້ໍາກັນ.
    ເພື່ອແກ້ໄຂຂໍ້ຈໍາກັດເຫຼົ່ານີ້, ນັກວິຊາການໄດ້ນໍາສະເຫນີລັກສະນະໂຄງສ້າງເລຂາຄະນິດ, ເຊັ່ນ: ແບບຈໍາລອງພື້ນຜິວສາມຫຼ່ຽມ[12], ແບບຈໍາລອງຫນ້າດິນ [13 14], ແລະກຸ່ມ al-gorithm[15], ສໍາລັບການຄາດຄະເນລະຫວ່າງຊັ້ນແລະການຄິດໄລ່ສ່ວນທີ່ເຫຼືອ. . RENTE et al.[16] ສະເຫນີແນວຄວາມຄິດຂອງການບີບອັດຊັ້ນທີ່ກ້າວຫນ້າທີ່ທໍາອິດໃຊ້ໂຄງສ້າງ octree ສໍາລັບການເຂົ້າລະຫັດແບບຫຍາບແລະຫຼັງຈາກນັ້ນໃຊ້ກາຟ Fourier transform ສໍາລັບການບີບອັດແລະການກໍ່ສ້າງຄືນໃຫມ່ຂອງລາຍລະອຽດເມຄ. ໃນປີ 2019, MPEG ເປີດຕົວເທກໂນໂລຍີການບີບອັດເມກຈຸດພື້ນຖານເລຂາຄະນິດ (G-PCC) ສໍາລັບທັງເມຄຈຸດຄົງທີ່ ແລະແບບເຄື່ອນໄຫວ, ເຊິ່ງຖືກຈັດຕັ້ງປະຕິບັດຜ່ານການປ່ຽນການປະສານງານ, voxelization, ການວິເຄາະໂຄງສ້າງທາງເລຂາຄະນິດ ແລະ ການເຂົ້າລະຫັດເລກຄະນິດເທື່ອລະກ້າວ[17].
    ເນື່ອງຈາກ octants ບາງຢ່າງພາຍໃນ octree ອາດຈະມີປະຊາກອນເລັກນ້ອຍຫຼືແມ້ກະທັ້ງຫວ່າງເປົ່າ, ບາງວິທີການໄດ້ຖືກສະເຫນີເພື່ອເພີ່ມປະສິດທິພາບໂຄງສ້າງຕົ້ນໄມ້ໂດຍການ pruning ຍ່ອຍແລະດັ່ງນັ້ນຈຶ່ງຮັກສາການຈັດສັນຄວາມຊົງຈໍາ. ຕົວຢ່າງample, DRICOT et al. [18] ສະເຫນີຮູບແບບການເຂົ້າລະຫັດໂດຍກົງ inferred (IDCM) ສໍາລັບການຢຸດເຊົາການແບ່ງສ່ວນ octree ໂດຍອີງໃສ່ເງື່ອນໄຂທີ່ກໍານົດໄວ້ກ່ອນຂອງການວິເຄາະ sparsity, ເຊິ່ງກ່ຽວຂ້ອງກັບການຕັດໂຄງສ້າງ octree ເພື່ອຊ່ວຍປະຢັດ bits ຈັດສັນໃຫ້ກັບ nodes ຂອງເດັກນ້ອຍ. ZHANG et al. [19] ແນະນໍາການແບ່ງສ່ວນຍ່ອຍຂອງພື້ນທີ່ຟັງຕາມອົງປະກອບຕົ້ນຕໍ ແລະດັດແປງວິທີການແບ່ງສ່ວນຈາກຕົ້ນໄມ້ຄູ່, quadtree ແລະ octree. ເມື່ອປຽບທຽບກັບການແບ່ງປັນ octree ແບບດັ້ງເດີມ, ຮູບແບບປະສົມທີ່ໄດ້ກ່າວມາຂ້າງເທິງສາມາດຫຼຸດຜ່ອນຈໍານວນບິດທີ່ໃຊ້ໃນການເປັນຕົວແທນຂອງຈຸດທີ່ແຕກຫັກ, ດັ່ງນັ້ນປະຫຍັດຂໍ້ທີ່ຕ້ອງໄດ້ຮັບການເຂົ້າລະຫັດ. ຢ່າງໃດກໍ່ຕາມ, ເງື່ອນໄຂ hyperparameter ສະລັບສັບຊ້ອນແລະການກໍານົດຮູບແບບແມ່ນຈໍາເປັນໃນຂະບວນການ, ເຮັດໃຫ້ມັນຍາກທີ່ຈະຕອບສະຫນອງຄວາມຕ້ອງການຂອງການປັບຕົວແລະຄວາມສັບສົນຕ່ໍາ.
    ດ້ວຍເຄືອຂ່າຍ neural ເລິກເຮັດໃຫ້ຄວາມກ້າວຫນ້າທີ່ສໍາຄັນໃນການບີບອັດຮູບພາບແລະວິດີໂອ, ນັກຄົ້ນຄວ້າໄດ້ຄົ້ນຫາວິທີການຫຼຸດຜ່ອນອັດຕາບິດຕື່ມອີກໂດຍການໃຊ້ຄໍາແນະນໍາກ່ອນຫນ້າແລະການຊ້ໍາຊ້ອນຂອງການສະແດງອອກໃນພື້ນທີ່ latent ໃນລະຫວ່າງການຂະບວນການບີບອັດ. QUACH et al.[20] ແລະ HUANG et al.[21] ສະເຫນີວິທີການທີ່ລວມເອົາແນວຄວາມຄິດເຫຼົ່ານີ້. GUARDA et al. ສົມທົບເຄືອຂ່າຍ neural convolutional ແລະ autoencoders ເພື່ອຂຸດຄົ້ນຊ້ໍາຊ້ອນລະຫວ່າງຈຸດທີ່ຢູ່ໃກ້ຄຽງແລະເສີມຂະຫຍາຍການປັບຕົວເຂົ້າລະຫັດໃນ Ref. [22]. ບໍ່ດົນມານີ້, WANG et al. [23] ສະເຫນີວິທີການບີບອັດເມຄຈຸດໂດຍອີງໃສ່ຕົວເຂົ້າລະຫັດອັດຕະໂນມັດແບບປ່ຽນແປງ, ເຊິ່ງປັບປຸງອັດຕາສ່ວນການບີບອັດໂດຍການຮຽນຮູ້ hyperprior ແລະການຫຼຸດຜ່ອນການບໍລິໂພກຄວາມຈໍາຂອງລະຫັດເລກຄະນິດສາດ. ວິທີການທີ່ໄດ້ກ່າວມາຂ້າງເທິງນີ້ໃຊ້ຕົວເຂົ້າລະຫັດເຄືອຂ່າຍ neural ເພື່ອເກັບກໍາ vector ທີ່ເຊື່ອງໄວ້ທີ່ມີຄໍາສັ່ງສູງຂອງຈຸດເມຄ, ຄວາມເປັນໄປໄດ້ຂອງຕົວແບບ entropy, ແລະຄວາມເປັນໄປໄດ້ຂອງຂອບທີ່ເຫມາະສົມທີ່ດີກວ່າ, ດັ່ງນັ້ນການຫຼຸດຜ່ອນການບໍລິໂພກຄວາມຈໍາຂອງລະຫັດເລກຄະນິດສາດ. ໂດຍທົ່ວໄປແລ້ວ, ການຄົ້ນຄວ້າກ່ຽວກັບການບີບອັດ geometric cloud ຈຸດດຽວແມ່ນຂ້ອນຂ້າງໃຫຍ່, ແຕ່ມີສອງສິ່ງທ້າທາຍທີ່ຍັງຄົງຢູ່. ຄວາມສຳພັນທາງກວ້າງຂອງພື້ນຍັງບໍ່ທັນໄດ້ນຳໃຊ້ຢ່າງມີປະສິດທິພາບ, ແລະວິທີການສ່ວນໃຫຍ່ບໍ່ໄດ້ລະບຸຄວາມສຳພັນຂອງຂໍ້ມູນຈຸດເມຄຢ່າງລະອຽດ ແລະ ມີປະສິດທິພາບ. ນອກຈາກນັ້ນ, ການຄິດໄລ່ແບບຈໍາລອງຄວາມເປັນໄປໄດ້ສໍາລັບການເຂົ້າລະຫັດ entropy ເບິ່ງຄືວ່າຍາວແລະຫຍຸ້ງຍາກເນື່ອງຈາກຈໍານວນບໍລິບົດຈໍານວນຫລາຍ.
  2. Multi-Frame Point Cloud Compression
    ເມຄຈຸດຫຼາຍເຟຣມຖືກໃຊ້ທົ່ວໄປໃນສະຖານະການຕ່າງໆເຊັ່ນ: ການຖ່າຍທອດທາງໄກແບບ 3D ແບບສົດໆ, VR ແບບໂຕ້ຕອບ, 3D ຟຣີ viewການກະຈາຍສຽງຈຸດແລະການຂັບລົດອັດຕະໂນມັດ. ບໍ່ຄືກັບການບີບອັດເມຄຈຸດເຟຣມດຽວ, ການບີບອັດເມຄຈຸດຫຼາຍເຟຣມໃຫ້ຄວາມສຳຄັນກັບການໃຊ້ຄວາມສຳພັນຂອງເວລາ, ເຊັ່ນດຽວກັນກັບການປະເມີນການເຄື່ອນໄຫວ ແລະຄ່າຊົດເຊີຍ. ວິທີການທີ່ມີຢູ່ແລ້ວສໍາລັບການບີບອັດເມຄຈຸດຫຼາຍເຟຣມສາມາດແບ່ງອອກເປັນສອງປະເພດ: ການຄາດຄະເນ 2D ແລະ 3D decorrelation.
    ພາກສະຫນາມຂອງການບີບອັດຮູບພາບແລະວິດີໂອແມ່ນກວ້າງຂວາງແລະໄດ້ຮັບການຂຸດຄົ້ນໄດ້ດີໃນໄລຍະສອງສາມທົດສະວັດທີ່ຜ່ານມາ. ສູດການຄິດໄລ່ຕ່າງໆປ່ຽນເມກຈຸດເປັນຮູບພາບ ແລະຈາກນັ້ນບີບອັດໂດຍກົງໂດຍຕົວເຂົ້າລະຫັດ FFmpeg ແລະ H. 265, ແລະອື່ນໆ. AINALA et al[24] ແນະນຳຮູບແບບການເຂົ້າລະຫັດແບບປະມານແບບແຜນວາດທີ່ເຂົ້າລະຫັດທັງເລຂາຄະນິດ ແລະຄຸນສົມບັດສີຜ່ານການສະແກນ raster ໃນຍົນ. . ຢ່າງໃດກໍ່ຕາມ, ວິທີການນີ້ເຮັດໃຫ້ເກີດການປ່ຽນແປງໃນຮູບຮ່າງເປົ້າຫມາຍໃນລະຫວ່າງຂະບວນການສ້າງແຜນທີ່, ເຮັດໃຫ້ການຄາດເດົາລະຫວ່າງຄວາມຖືກຕ້ອງມີຄວາມຫຍຸ້ງຍາກ. ດັ່ງນັ້ນ, SCHWARZ et al.[25] ແລະ SEVOM et al.[26] ແນະນຳວິທີການວາງແຜນການໝູນວຽນ, ການຄາດຄະເນ cube, ແລະວິທີການຄາດຄະເນແບບ patch ເພື່ອປ່ຽນເມກຈຸດເປັນວິດີໂອ 2D, ຕາມລໍາດັບ. ໂດຍການວາງການຄາດຄະເນທີ່ຄ້າຍຄືກັນຢູ່ໃນກອບທີ່ຢູ່ໃກ້ຄຽງໃນສະຖານທີ່ດຽວກັນໃນຮູບພາບທີ່ຢູ່ຕິດກັນ, ເຄື່ອງບີບອັດວິດີໂອສາມາດກໍາຈັດຄວາມກ່ຽວຂ້ອງຊົ່ວຄາວໄດ້ຢ່າງສົມບູນ. ໃນ Ref. [27], ການຄາດຄະເນລະຫວ່າງເລຂາຄະນິດແມ່ນດໍາເນີນການຜ່ານ TSP, ເຊິ່ງຄິດໄລ່ການຕອບແບບຫນຶ່ງຕໍ່ຫນຶ່ງຂອງ intra-blocks ທີ່ຕິດກັນໂດຍການຊອກຫາບລັອກທີ່ມີຄ່າສະເລ່ຍທີ່ໃກ້ຄຽງທີ່ສຸດ. MPEG ເປີດຕົວເທັກໂນໂລຍີການບີບອັດຄລາວຈາກຈຸດທີ່ອີງໃສ່ວິດີໂອ (V-PCC) ສໍາລັບຄລາວຈຸດແບບເຄື່ອນໄຫວໃນປີ 2019[28]. ໂຄງຮ່າງການນີ້ແບ່ງຈຸດປ້ອນຂໍ້ມູນຂອງເມຄເຂົ້າໄປໃນທ່ອນໄມ້ຂະຫນາດນ້ອຍທີ່ມີ vectors ປົກກະຕິທີ່ຄ້າຍຄືກັນແລະຊ່ອງຕໍ່ເນື່ອງ, ຫຼັງຈາກນັ້ນປ່ຽນໃຫ້ເຂົາເຈົ້າກັບພື້ນຜິວ planar ຜ່ານ cubes ເພື່ອບັນທຶກຮູບພາບການຄອບຄອງແລະຂໍ້ມູນການຊ່ວຍເຫຼືອ. ຮູບພາບຜົນໄດ້ຮັບທັງຫມົດແມ່ນຖືກບີບອັດດ້ວຍຕົວແປງສັນຍານວິດີໂອສໍາລັບຜູ້ໃຫຍ່, ແລະທຸກ bitstreams ໄດ້ຖືກປະກອບເຂົ້າໄປໃນຜົນຜະລິດດຽວ file. ຄວາມພະຍາຍາມອື່ນໆໄດ້ຖືກດໍາເນີນເພື່ອປັບປຸງປະສິດທິພາບຂອງວິທີການເຫຼົ່ານີ້. COSTA et al.[29] ນຳໃຊ້ຍຸດທະສາດການຫຸ້ມຫໍ່ patch ໃໝ່ຫຼາຍອັນຈາກທັດສະນະຂອງການເພີ່ມປະສິດທິພາບຂອງລະບົບການຫຸ້ມຫໍ່, ການເຊື່ອມໂຍງການຫຸ້ມຫໍ່ຂໍ້ມູນ, ການຈັດຮຽງທີ່ກ່ຽວຂ້ອງ, ແລະຕົວຊີ້ວັດການຈັດຕໍາແຫນ່ງ. ນອກຈາກນັ້ນ, PARK et al. [30] ອອກແບບວິທີການບັນຈຸຂໍ້ມູນແບບປັບຕົວທີ່ປັບຕົວຈັດກຸ່ມກອບທີ່ຢູ່ຕິດກັນເຂົ້າໄປໃນກຸ່ມດຽວກັນຕາມຄວາມຄ້າຍຄືກັນຂອງໂຄງສ້າງໂດຍບໍ່ມີຜົນກະທົບຕໍ່ການປະຕິບັດຂອງສາຍນ້ໍາ V-PCC. ເນື່ອງຈາກການສູນເສຍຂໍ້ມູນທີ່ບໍ່ສາມາດຫຼີກລ່ຽງໄດ້ທີ່ເກີດຈາກການຄາດຄະເນເມຄຈຸດ, ນັກວິຊາການໄດ້ພັດທະນາເຕັກນິກທີ່ມີປະສິດທິພາບໃນການບີບອັດຈຸດເມຄຂອງເຟຣມຕິດຕໍ່ກັນໂດຍໃຊ້ເທກໂນໂລຍີການຊົດເຊີຍການເຄື່ອນໄຫວໂດຍອີງໃສ່ພື້ນທີ່ 3D. KAMMERL et al.[31] ສະເໜີວິທີການເຂົ້າລະຫັດເລຂາຄະນິດຕາມ octree, ເຊິ່ງບັນລຸປະສິດທິພາບການບີບອັດສູງໂດຍການປະຕິບັດຄວາມແຕກຕ່າງ OR (XOR) ສະເພາະລະຫວ່າງກອບທີ່ຢູ່ຕິດກັນ. ວິທີການນີ້ບໍ່ພຽງແຕ່ຖືກຮັບຮອງເອົາຢູ່ໃນຫ້ອງສະຫມຸດ Point Cloud ທີ່ນິຍົມ (PCL)[32] ແຕ່ຍັງຖືກນໍາໃຊ້ຢ່າງກວ້າງຂວາງສໍາລັບການຄົ້ນຄວ້າວິທີການຕື່ມອີກ. ວິທີການ interframe ອື່ນປ່ຽນບັນຫາການປະເມີນການເຄື່ອນໄຫວ 3D ເປັນບັນຫາການຈັບຄູ່ຄຸນສົມບັດ[33] ຫຼືໃຊ້ຂໍ້ມູນເລຂາຄະນິດທີ່ສ້າງຂຶ້ນໃໝ່[34] ເພື່ອຄາດຄະເນ vectors ການເຄື່ອນໄຫວ ແລະລະບຸຄວາມສໍາພັນທີ່ສອດຄ້ອງກັນລະຫວ່າງເຟຣມທີ່ຢູ່ໃກ້ຄຽງໄດ້ຢ່າງຖືກຕ້ອງ. ການສຶກສາການລະເບີດທີ່ຜ່ານມາ[35 36] ໄດ້ສະແດງໃຫ້ເຫັນວ່າການບີບອັດວິດີໂອທີ່ໄດ້ຮຽນຮູ້ໃຫ້ປະສິດທິພາບການບິດເບືອນອັດຕາທີ່ດີຂຶ້ນກວ່າແບບດັ້ງເດີມ, ນໍາເອົາຄວາມສໍາຄັນຂອງເອກະສານອ້າງອີງເຖິງຈຸດການບີບອັດເມຄ. ZHAO et al.[37] ແນະນໍາເຄືອຂ່າຍການຄາດຄະເນລະຫວ່າງກອບສອງທິດທາງເພື່ອປະຕິບັດການຄາດຄະເນລະຫວ່າງກອບແລະນໍາເອົາຂໍ້ມູນທີ່ກ່ຽວຂ້ອງທີ່ມີປະສິດທິພາບໃນຂະຫນາດທາງກວ້າງແລະທາງໂລກ. KAYA et al. [38] ອອກແບບຮູບຊົງແບບໃໝ່ສຳລັບການເຂົ້າລະຫັດລັກສະນະທາງເລຂາຄະນິດຂອງລຳດັບເມຄຈຸດທີ່ດົກໜາ, ປັບແຕ່ງ CNN ສຳລັບການປະເມີນການແຈກຢາຍການເຂົ້າລະຫັດເພື່ອຮັບຮູ້ການບີບອັດຂອງເມກຈຸດດົກໜາທີ່ບໍ່ມີການສູນເສຍ.
    ເຖິງວ່າຈະມີຄວາມຄືບຫນ້າໃນເຕັກໂນໂລຢີການບີບອັດລະຫັດຂອງແບບຈໍາລອງຟັງຫຼາຍກອບ, ສອງບັນຫາຍັງຄົງຢູ່. ວິທີການບີບອັດ cloud ຈຸດຫຼາຍເຟຣມທີ່ມີຢູ່ກ່ອນແລ້ວສ່ວນຫຼາຍແມ່ນອີງໃສ່ການເຂົ້າລະຫັດວິດີໂອ ແລະ ການຊົດເຊີຍການເຄື່ອນໄຫວ, ເຊິ່ງແນ່ນອນກ່ຽວຂ້ອງກັບການສູນເສຍຂໍ້ມູນ ຫຼືການບິດເບືອນທີ່ເກີດຈາກການສ້າງແຜນທີ່ ແລະຄວາມບໍ່ຕໍ່ເນື່ອງຂອງຂອບ. ນອກຈາກນັ້ນ, ການເຂົ້າລະຫັດທີ່ຄາດເດົາໄດ້ສະແດງໃຫ້ເຫັນເຖິງການປະຕິບັດທີ່ຕໍ່າເນື່ອງຈາກຄວາມບໍ່ສອດຄ່ອງຂອງເລຂາຄະນິດຟັງຄລາວລະຫວ່າງເຟຣມ. ການຊົດເຊີຍທີ່ເຫັນໄດ້ຊັດເຈນຂອງຈຸດລະຫວ່າງເຟຣມແລະສິ່ງລົບກວນທີ່ບໍ່ສາມາດຫຼີກເວັ້ນໄດ້ເພີ່ມຄວາມຫຍຸ້ງຍາກໃນການນໍາໃຊ້ລະຫັດທີ່ຄາດເດົາໄດ້ຢ່າງມີປະສິດທິພາບໃນການບີບອັດລະຫວ່າງກອບ.

ສະເໜີວິທີການບີບອັດ Cloud Cloud-Spatio-Temporal Context-Giometry Lossless Point

ເກີນview
ທໍ່ໂດຍລວມຂອງ spatio-temporal context-guided algorithm ຂອງພວກເຮົາແມ່ນສະແດງຢູ່ໃນຮູບທີ 1. ທໍາອິດ, ພວກເຮົາ preprocess cloud point input ໂດຍນໍາໃຊ້ voxelization ແລະ scale transformation. ຫຼັງຈາກນັ້ນ, ເມກຈຸດຖືກແບ່ງອອກເປັນຫນ່ວຍຄວາມຫນາຂອງຊັ້ນ sliced ​​​​ຕາມແກນຕົ້ນຕໍ. ຕໍ່ໄປ, ພວກເຮົາອອກແບບຮູບແບບການຄາດຄະເນທີ່ເຮັດໃຫ້ການນໍາໃຊ້ຢ່າງເຕັມທີ່ຂອງຂໍ້ມູນຄວາມສໍາພັນທາງໂລກແລະທາງກວ້າງຂອງພື້ນພາຍໃນທັງພາຍໃນເຟຣມແລະລະຫວ່າງເຟຣມ. ພວກເຮົາຄິດໄລ່ເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຂອງຈຸດຂອງຊັ້ນອ້າງອິງ (R-layers) ຜ່ານທາງວິທີທາງນັກຂາຍການເດີນທາງ, ແລະຜົນໄດ້ຮັບຂອງຊັ້ນ R ແມ່ນຖືກໃຊ້ເພື່ອຄາດຄະເນ spatiotemporally ແລະເຂົ້າລະຫັດສ່ວນທີ່ເຫຼືອຂອງຈຸດເມຄ, ຄືຊັ້ນທີ່ຄາດຄະເນ (P-layers. ). ສຸດທ້າຍ, ການປັບປຸງລະບົບການເຂົ້າລະຫັດຂອງ entropy ໄດ້ຖືກຮັບຮອງເອົາເພື່ອໃຫ້ໄດ້ binary ທີ່ຖືກບີບອັດ file.ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (2)

ພາກສ່ວນການຈັດລຳດັບຕາມລຳດັບຮູບ

  1. ການປຸງແຕ່ງກ່ອນ
    ໂມດູນການປຸງແຕ່ງກ່ອນປະກອບມີ voxelization ແລະການຫັນປ່ຽນຂະຫນາດ, ສໍາລັບການດັດສະນີທີ່ດີກວ່າຂອງແຕ່ລະຈຸດທີ່ແນ່ນອນ. ໃນ voxelization, ພວກເຮົາແບ່ງຊ່ອງອອກເປັນ cubes ຂອງຂະຫນາດ N, ເຊິ່ງກົງກັບຄວາມລະອຽດທີ່ແທ້ຈິງຂອງຈຸດເມຄ. ແຕ່ລະຈຸດໄດ້ຖືກມອບຫມາຍເປັນ voxel ເປັນເອກະລັກໂດຍອີງໃສ່ຕໍາແຫນ່ງຂອງມັນ. voxel ຖືກບັນທຶກເປັນ 1; ຖ້າມັນຖືກຄອບຄອງໃນທາງບວກ, ມັນແມ່ນ 0 ຖ້າບໍ່ດັ່ງນັ້ນ. ການຫັນປ່ຽນຂະໜາດສາມາດຫຼຸດຄວາມໜາແໜ້ນສຳລັບການບີບອັດທີ່ດີຂຶ້ນໂດຍການຊູມອອກຈຸດເມຄ, ເຊິ່ງໄລຍະຫ່າງລະຫວ່າງຈຸດຈະນ້ອຍລົງ. ພວກເຮົາຮວບຮວມຈຸດປະສານງານເມຄ ( x, y, z) ໂດຍໃຊ້ scaling factor s, ie,ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (3)
    ເພື່ອຮັບປະກັນການບີບອັດທີ່ບໍ່ມີການສູນເສຍ, ພວກເຮົາຈໍາເປັນຕ້ອງຮັບປະກັນວ່າປັດໄຈການຂະຫນາດ s ບໍ່ສາມາດເຮັດໃຫ້ເກີດການສູນເສຍເລຂາຄະນິດແລະຈໍາເປັນຕ້ອງໄດ້ສາຍໃຫມ່ໃນ header. file.
  2. ການ​ແບ່ງ​ຊັ້ນ​ຊອຍ
    ໂມດູນນີ້ເຮັດວຽກໂດຍການແບ່ງກຸ່ມເມກຈຸດ 3D ຕາມແກນຫນຶ່ງຂອງມັນ, ສ້າງຊັ້ນຫຼາຍຫນ່ວຍທີ່ມີສ່ວນທີ່ມີຂໍ້ມູນທີ່ຖືກຄອບຄອງແລະບໍ່ຖືກຄອບຄອງເທົ່ານັ້ນທີ່ສາມາດຖືກບີບອັດຕື່ມອີກໂດຍໃຊ້ຕົວເຂົ້າລະຫັດທີ່ຄາດເດົາແລະຕົວລະຫັດເລກຄະນິດສາດ. ຫນ້າທີ່ຖືກກໍານົດເປັນ:ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (4)
    ບ່ອນທີ່ G ຫມາຍເຖິງ input point cloud coordinate matrix, axis ຫມາຍເຖິງມິຕິທີ່ເລືອກ, ແລະ S (a, b) ແມ່ນ slice 2D ສະກັດໂດຍແຕ່ລະຊັ້ນ. ໂດຍທົ່ວໄປ, ພວກເຮົາດໍາເນີນການທົດລອງກ່ຽວກັບລໍາດັບການທົດສອບຈໍານວນຫລາຍ, ແລະຜົນໄດ້ຮັບຊີ້ໃຫ້ເຫັນວ່າການແບ່ງສ່ວນຕາມແກນທີ່ຍາວທີ່ສຸດຂອງການປ່ຽນແປງທາງກວ້າງຂອງເມຄຈຸດໃຫ້ອັດຕາບິດຕ່ໍາທີ່ສຸດ, ie.ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (5)
  3. ການສະກັດເອົາກ່ອງທີ່ມີຂອບເຂດຂັ້ນຕ່ໍາ
    ໃນກໍລະນີຫຼາຍທີ່ສຸດ, voxels ທີ່ຖືກຄອບຄອງໂດຍປົກກະຕິແມ່ນບໍ່ສາມາດຫຼີກເວັ້ນໄດ້ແລະຫຼາຍກວ່າ voxels ທີ່ຖືກຄອບຄອງຢ່າງຫຼວງຫຼາຍ. ດັ່ງນັ້ນ, ການປະມວນຜົນ ແລະ ການເຂົ້າລະຫັດທັງສອງປະເພດຂອງ voxels ພ້ອມກັນນັ້ນພາລະຄວາມຊັບຊ້ອນທາງຄອມພິວເຕີ ແລະຄວາມໄວການເຂົ້າລະຫັດຂອງ algorithm ການບີບອັດ. ດັ່ງນັ້ນ, ພວກເຮົາຮັບຮອງເອົາກ່ອງຜູກມັດແບບຮັດກຸມ (OBB) [39] ເພື່ອຄິດໄລ່ກ່ອງຜູກມັດຂັ້ນຕໍ່າສຸດສໍາລັບແຕ່ລະຊັ້ນຕັດ, ຮັບປະກັນວ່າທິດທາງຂອງກ່ອງຜູກມັດແມ່ນສອດຄ່ອງກັນທົ່ວທຸກຊັ້ນ. ໃນການປະມວນຜົນຕໍ່ມາ, ພຽງແຕ່ voxels ທີ່ຢູ່ພາຍໃນສີ່ຫລ່ຽມທີ່ຈໍາກັດໄດ້ຖືກບີບອັດ.

ການເຂົ້າລະຫັດການຄາດເດົາທີ່ແນະນຳໂດຍບໍລິບົດທາງພື້ນທີ່

ເປົ້າ​ຫມາຍ​ຂອງ​ການ​ເຂົ້າ​ລະ​ຫັດ​ການ​ຄາດ​ຄະ​ເນ​ການ​ຊີ້​ນໍາ​ສະ​ພາບ​ພື້ນ​ທີ່​ແມ່ນ​ການ​ເຂົ້າ​ລະ​ຫັດ​ຈຸດ​ທັງ​ຫມົດ​ໂດຍ​ຊັ້ນ​. ໂດຍໄດ້ຮັບແຮງບັນດານໃຈຈາກ TSP, ພວກເຮົາອອກແບບຮູບແບບການຄາດເດົາເພື່ອສຳຫຼວດການສັ່ງຊື້ ແລະ ຄວາມສຳພັນທີ່ອາດເກີດຂຶ້ນພາຍໃນແຕ່ລະຊັ້ນຊອຍ. ໂມດູນນີ້ປະກອບດ້ວຍການແບ່ງປັນແລະການຄິດໄລ່ເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດ.
ທໍາອິດ, ພວກເຮົາແບ່ງຊັ້ນຊັ້ນນໍາແລະກໍານົດ R-layer ແລະ R-layers ສໍາລັບແຕ່ລະກຸ່ມ. ພວກເຮົາຜ່ານຊັ້ນຟັງຈຸດໂດຍຊັ້ນຕາມແກນທີ່ເລືອກ. ເມື່ອຄວາມຍາວຂອງທິດທາງຕົ້ນຕໍຂອງປ່ອງຜູກມັດຕໍາ່ສຸດທີ່ລະຫວ່າງຊັ້ນທີ່ຢູ່ຕິດກັນແຕກຕ່າງກັນໂດຍຄວາມຍາວຂອງຫນ່ວຍງານທີ່ກໍານົດໄວ້, ມັນຖືກບັນທຶກເປັນກຸ່ມດຽວກັນ. ຖ້າບໍ່ດັ່ງນັ້ນ, ມັນຖືກນໍາໃຊ້ເປັນຊັ້ນອ້າງອີງຂອງກຸ່ມຕໍ່ໄປ, ແລະແຕ່ລະຈຸດ cloud ໃນກຸ່ມຕໍ່ໄປນີ້ໃຊ້ເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຄືກັນ. ໃນເອກະສານນີ້, ພວກເຮົາກໍານົດຊັ້ນທໍາອິດຂອງແຕ່ລະກຸ່ມເປັນຊັ້ນ R, ແລະຊັ້ນອື່ນໆເປັນຊັ້ນ P. ພວກເຮົາຍັງດໍາເນີນການທົດລອງໃນຈໍານວນຂະຫນາດໃຫຍ່ຂອງການທົດສອບ se-uences ແລະແນະນໍາໃຫ້ກໍານົດພາລາມິເຕີທີ່ລະບຸໄວ້ນີ້ເປັນ 3 ຫນ່ວຍເພື່ອໃຫ້ໄດ້ການບີບອັດທີ່ດີທີ່ສຸດ.
ຫຼັງຈາກນັ້ນ, ພວກເຮົາດໍາເນີນການຄິດໄລ່ເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດໃນຊັ້ນ R ແລະບັນທຶກສ່ວນທີ່ເຫຼືອຂອງຜູ້ນ. ອີງຕາມກົດລະບຽບການແຈກຢາຍຂອງຈຸດເມຄຂອງແຕ່ລະຊັ້ນຊັ້ນນໍາ, ພວກເຮົາຈັດແຈງເມຄຈຸດທີ່ບໍ່ສະຫມໍ່າສະເຫມີສໍາລັບແຕ່ລະຊັ້ນ slice ໂດຍອີງໃສ່ TSP algorithm. ນີ້ຊ່ວຍໃຫ້ພວກເຮົາສາມາດຄິດໄລ່ເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດໄປສູ່ຈຸດເມຄຂອງຊັ້ນ R ທີ່ມີປະສິດຕິຜົນ, ແລະຫຼັງຈາກນັ້ນບັນທຶກສ່ວນທີ່ເຫຼືອຂອງຊັ້ນການຄາດຄະເນທີ່ສອດຄ້ອງກັນ. Algorithm 1 ສະແດງໃຫ້ເຫັນລະຫັດ pseudo ຂອງຂັ້ນຕອນການຄາດເດົາ.

ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (6)

ກ່ອນອື່ນ ໝົດ, ພວກເຮົາ ກຳ ນົດກົດລະບຽບການຄິດໄລ່ໄລຍະທາງລະຫວ່າງຈຸດຢູ່ໃນທ້ອງຖິ່ນແລະເລີ່ມຕົ້ນສະຖານະເສັ້ນທາງດ້ວຍຈຸດທີ່ເລືອກແບບສຸ່ມ pc1. ໃນແຕ່ລະ iteration, ທຸກຄັ້ງທີ່ pci ຈຸດໃຫມ່ຖືກເພີ່ມ, permutation ໄດ້ຖືກປັບປຸງແບບເຄື່ອນໄຫວໂດຍຜ່ານເສັ້ນທາງສະມະການການປ່ຽນແປງຂອງລັດ (P – i, i) ຈົນກ່ວາຈຸດທີ່ເພີ່ມທັງຫມົດຈະຖືກບັນທຶກໄວ້ໃນ P ໃນລໍາດັບຂອງເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດ. ຂະບວນການນີ້ຖືກແກ້ໄຂເທື່ອລະກ້າວໂດຍອີງໃສ່ເງື່ອນໄຂໄລຍະຫ່າງຫນ້ອຍທີ່ສຸດ. ຫຼັງ​ຈາກ​ການ​ທົດ​ສອບ​ທັງ​ຫມົດ​ແມ່ນ​ສໍາ​ເລັດ​ໃນ​ເສັ້ນ​ທາງ​ສັ້ນ​ທີ່​ສຸດ​ທັງ​ຫມົດ​, ພວກ​ເຮົາ​ຄິດ​ໄລ່ min ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (8) dist(pci, pcj ) ໃນແຕ່ລະຊັ້ນ R, ແລະສົ່ງຄືນຕາຕະລາງບັນທຶກເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຂອງຈຸດເມຄໃນແຕ່ລະຊັ້ນ R. ສໍາລັບການບີບອັດຕື່ມອີກ, ພວກເຮົາຄິດໄລ່ການ deviation ຂອງ P-layers ຈາກເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຂອງ R-layer ພາຍໃນກຸ່ມດຽວກັນແລະບັນທຶກພວກມັນເປັນສ່ວນທີ່ເຫຼືອທີ່ຄາດຄະເນ. ສຸດທ້າຍ, ເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຂອງ Rlayer ແລະສ່ວນທີ່ເຫຼືອຂອງແຕ່ລະກຸ່ມແມ່ນຜົນຜະລິດແລະຖືກສົ່ງໄປຫາຕົວເຂົ້າລະຫັດ entropy ເພື່ອບີບອັດສ່ວນທີ່ເຫຼືອຂອງການຄາດຄະເນຕື່ມອີກ.

Spatio-Temporal Context-Guide Predictive Encoding
ໂໝດການຄາດເດົາທີ່ແນະນຳບໍລິບົດທາງພື້ນທີ່ເຂົ້າລະຫັດ
ຈຸດເຟຣມດຽວ ຟັງເປັນແຕ່ລະບຸກຄົນ. ແນວໃດກໍ່ຕາມ, ການນຳໃຊ້ການເຂົ້າລະຫັດທາງກວ້າງຂອງແຕ່ລະກຸ່ມເມກຈຸດໜຶ່ງເຟຣມແຍກກັນສາມາດພາດໂອກາດທີ່ເປີດເຜີຍໂດຍຄວາມສຳພັນຊົ່ວຄາວໃນທົ່ວເມຄຫຼາຍກອບ. ພິຈາລະນາວ່າເມຄຈຸດຫຼາຍເຟຣມແບ່ງປັນການທັບຊ້ອນກັນຢ່າງຫຼວງຫຼາຍ, ພວກເຮົາສຸມໃສ່ການໃຊ້ການຊໍ້າຊ້ອນຊົ່ວຄາວເພື່ອເພີ່ມປະສິດທິພາບການບີບອັດຕື່ມອີກ. ດັ່ງນັ້ນ, ໂດຍອີງໃສ່ຮູບແບບການຄາດເດົາທີ່ແນະນໍາໂດຍບໍລິບົດທາງພື້ນທີ່ທີ່ສະເຫນີ, ພວກເຮົາສາມາດບີບອັດ multiframe cloud ໂດຍການກໍານົດການຕິດຕໍ່ລະຫວ່າງຊັ້ນທີ່ຢູ່ຕິດກັນໃນທົ່ວກອບ.

  1. ການແບ່ງສ່ວນລະຫວ່າງເຟຣມ
    ເພື່ອເພີ່ມປະສິດຕິຜົນຂອງຮູບແບບການຄາດຄະເນລະຫວ່າງກອບ, ມັນເປັນສິ່ງ ສຳ ຄັນທີ່ຈະຮັບປະກັນຄວາມຄ້າຍຄືກັນທີ່ພຽງພໍລະຫວ່າງຊັ້ນadja⁃cent. ດັ່ງນັ້ນ, ພວກເຮົາຈໍາເປັນຕ້ອງໄດ້ແບ່ງກຸ່ມລະຫວ່າງກອບທີ່ຢູ່ຕິດກັນແລະກໍານົດ R-layers ແລະ P-layers ໃນທົ່ວກອບ. ໂດຍການປະເມີນເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຂອງ P-layers ໂດຍອີງໃສ່ເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຂອງຊັ້ນ R, ພວກເຮົາບັນທຶກການຕົກຄ້າງຂອງການຄາດຄະເນແລະຕື່ມຂໍ້ມູນໃສ່ພວກມັນຜ່ານຕົວເຂົ້າລະຫັດ entropy. Algorithm 2 ສະແດງໃຫ້ເຫັນ pseudocode ຂອງ interframe partition.ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (7)
    ໂດຍອີງໃສ່ການຈັດວາງການຈັດວາງຊັ້ນຊັ້ນໃນຊັ້ນນໍາ, ພວກເຮົາຮັບຮູ້ການແບ່ງສ່ວນຫຍາບ ແລະ ການແບ່ງສ່ວນອັນລະອຽດຕາມລໍາດັບ. ສໍາລັບການແບ່ງສ່ວນຫຍາບ, ພວກເຮົາຈັດຮຽງຊັ້ນນໍາຂອງແຕ່ລະກອບໂດຍອີງໃສ່ຈຸດປະສານງານທີ່ສອດຄ້ອງກັນກັບແກນແບ່ງ, ຈາກຂະຫນາດນ້ອຍໄປຫາຂະຫນາດໃຫຍ່. ດັ່ງນັ້ນ, ແຕ່ລະຊັ້ນຊັ້ນຂອງແຕ່ລະກອບມີຕົວເລກຊັ້ນທີ່ເປັນເອກະລັກ, ຊ່ວຍໃຫ້ພວກເຮົາສາມາດແບ່ງຊັ້ນຊັ້ນນໍາດ້ວຍຈໍານວນດຽວກັນລະຫວ່າງກອບທີ່ຢູ່ຕິດກັນ. ຫຼັງຈາກນັ້ນ, ພວກເຮົາຄິດໄລ່ຄວາມແຕກຕ່າງລະຫວ່າງຄວາມຍາວຂອງແກນຫຼັກຂອງກ່ອງຂອບຂັ້ນຕ່ໍາຂອງຊັ້ນທີ່ຢູ່ໃກ້ຄຽງທີ່ມີຕົວເລກດຽວກັນ. ຖ້າຄ່ານີ້ໜ້ອຍກວ່າ ຫຼືເທົ່າກັບຫົວໜ່ວຍຄວາມຍາວທີ່ກຳນົດໄວ້, ຊັ້ນຕ່າງໆຈະຖືກແບ່ງເປັນກຸ່ມດຽວກັນ. ຖ້າບໍ່ດັ່ງນັ້ນ, ພວກເຮົາສົມທຽບຄວາມແຕກຕ່າງຂອງຄວາມຍາວຂອງແກນທິດທາງຕົ້ນຕໍຂອງປ່ອງຜູກມັດຕໍາ່ສຸດທີ່ໃນຊັ້ນທີ່ສອດຄ້ອງກັນຂອງກອບທີ່ຢູ່ໃກ້ຄຽງກັບຊັ້ນທີ່ກໍານົດໄວ້ກ່ອນແລະຫຼັງຈາກຕົວເລກໃນກອບທີ່ຢູ່ໃກ້ຄຽງ. ຫຼັງຈາກນັ້ນ, ຊັ້ນທີ່ມີຄວາມແຕກຕ່າງທີ່ນ້ອຍທີ່ສຸດແມ່ນໄດ້ຖືກແບ່ງອອກເປັນກຸ່ມດຽວກັນ. ນີ້ຮັບປະກັນການແບ່ງສ່ວນອັນດີງາມລະຫວ່າງຊັ້ນທີ່ຢູ່ຕິດກັນ, ແລະເພື່ອຮັບຮູ້ການແບ່ງປັນອັນດີງາມຂອງຄວາມສໍາພັນທີ່ຢູ່ໃກ້ຄຽງ.
  2. ໂໝດການຄາດເດົາທີ່ຊີ້ທິດທາງໃນບໍລິບົດ-ຊົ່ວຄາວ
    ອີງຕາມການແບ່ງສ່ວນ, ພວກເຮົານໍາໃຊ້ແລະຂະຫຍາຍຮູບແບບການຄາດຄະເນທີ່ໄດ້ກ່າວມາໃນພາກ 3.3. ພວກເຮົາລວມເອົາສະພາບການລະຫວ່າງກອບໃນຂະບວນການ, ຊຶ່ງຫມາຍຄວາມວ່າຊັ້ນທໍາອິດຂອງແຕ່ລະກຸ່ມ, ເຊິ່ງເຮັດຫນ້າທີ່ເປັນຊັ້ນ R, ອາດຈະບໍ່ຈໍາເປັນທີ່ຈະໃຫ້ຜົນໄດ້ຮັບການຄາດຄະເນທີ່ດີທີ່ສຸດ. ເພື່ອສຳຫຼວດຄວາມສຳພັນທີ່ເປັນໄປໄດ້ລະຫວ່າງຊັ້ນທີ່ຢູ່ຕິດກັນຢ່າງຄົບຖ້ວນ, ພວກເຮົາຈໍາເປັນຕ້ອງເປີດເຜີຍຮູບແບບການຄາດເດົາທີ່ດີທີ່ສຸດ.
    ກ່ອນອື່ນ ໝົດ, ພວກເຮົາຄິດໄລ່ສ່ວນທີ່ເຫຼືອຂອງການຄາດຄະເນ ສຳ ລັບແຕ່ລະຊັ້ນຕັດໃນກຸ່ມປະຈຸບັນເມື່ອໃຊ້ເປັນຊັ້ນ R. ໂດຍການປຽບທຽບການຄາດເດົາການຕົກຄ້າງໃນທຸກກໍລະນີ, ພວກເຮົາເລືອກຊັ້ນ R ທີ່ມີຄ່າທີ່ເຫຼືອໜ້ອຍທີ່ສຸດເປັນຮູບແບບການຄາດຄະເນທີ່ດີທີ່ສຸດ. ສຳລັບການຄຳນວນເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຂອງ R-layer, ພວກເຮົາໃຊ້ວິທີການເດີນທາງຂອງພະນັກງານຂາຍເພື່ອຄຳນວນເສັ້ນທາງທີ່ສັ້ນທີ່ສຸດຂອງຊັ້ນ R ພາຍໃຕ້ຮູບແບບການຄາດເດົາທີ່ດີທີ່ສຸດ. ຍິ່ງໄປກວ່ານັ້ນ, ພວກເຮົາຄິດໄລ່ການຄາດຄະເນທີ່ເຫຼືອສໍາລັບແຕ່ລະກຸ່ມພາຍໃຕ້ຮູບແບບການຄາດຄະເນທີ່ດີທີ່ສຸດຂອງພວກເຂົາ. ພວກເຮົາຍັງບັນທຶກຄວາມຍາວ occupancy ແລະຂໍ້ມູນ R-layer ຂອງແຕ່ລະກຸ່ມສໍາລັບການບີບອັດເພີ່ມເຕີມໃນການປຸງແຕ່ງຕໍ່ມາ. ໃນການປະຕິບັດການຕິດຕາມ, ພວກເຮົາໃຊ້ລະຫັດເລກຄະນິດສາດໂດຍອີງໃສ່ການເລືອກບໍລິບົດທີ່ດີທີ່ສຸດສໍາລັບຂໍ້ມູນຂ້າງເທິງເພື່ອເຮັດສໍາເລັດຂະບວນການທັງຫມົດຂອງສູດການບີບອັດເລຂາຄະນິດເມຄຫຼາຍກອບ.

ການເຂົ້າລະຫັດເລກຄະນິດສາດໂດຍອີງໃສ່ວັດຈະນານຸກົມບໍລິບົດ
ບໍລິບົດຈຳນວນມະຫາສານໃນຈຸດເມຄນັ້ນສ້າງຄວາມເສຍຫາຍຕໍ່ລະບົບການບີບອັດທັງໝົດໃນແງ່ຂອງຄວາມສັບສົນທາງເລກເລກຄະນິດທາງເລກຄະນິດ. ພວກເຮົາປັບປຸງລະຫັດເລກຄະນິດສາດຈາກສອງໂມດູນຕໍ່ໄປນີ້. 1) ພວກເຮົາຕັ້ງວັດຈະນານຸກົມບໍລິບົດ, ແລະເລືອກ ແລະປັບປຸງຄ່າທີ່ດີທີ່ສຸດທົ່ວໂລກຕາມການຄາດຄະເນຂອງ entropy, ແລະຫຼັງຈາກນັ້ນ 2) ພວກເຮົາຮັບຮອງເອົາຕົວເຂົ້າລະຫັດແບບປັບຕົວເພື່ອຄິດໄລ່ຂອບເຂດສູງສຸດ ແລະ ຕ່ໍາຂອງຄວາມເປັນໄປໄດ້.

  1. ການກໍ່ສ້າງວັດຈະນານຸກົມເນື້ອໃນZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (10)
  2. ພວກເຮົາສ້າງວັດຈະນານຸກົມບໍລິບົດທີ່ສະແດງເຖິງແຖວສາມເທົ່າ, ປະກອບດ້ວຍຈຸດພິກັດຂອງຈຸດເມຄຢູ່ແຕ່ລະຊັ້ນທີ່ຊອຍໃຫ້ບາງໆ ແລະການເປັນຕົວແທນຈຳນວນເຕັມຂອງບໍລິບົດທີ່ບໍ່ຫວ່າງເປົ່າທີ່ສອດຄ້ອງກັນ. ດັ່ງນັ້ນ, ພວກເຮົາເຊື່ອມໂຍງ voxels ທີ່ມີຢູ່ໃນຈຸດເມຄກັບກ່ອງຂອບຂັ້ນຕ່ໍາຂອງແຕ່ລະຊັ້ນທີ່ມີສະພາບການທີ່ບໍ່ຫວ່າງເປົ່າຂອງມັນ. ເພື່ອສະແດງການສ້າງແຖວສາມແຖວຂອງວັດຈະນານຸກົມບໍລິບົດຢ່າງຈະແຈ້ງ, ພວກເຮົາໃຫ້ຄຳອະທິບາຍທີ່ເຂົ້າໃຈໄດ້ໃນຮູບທີ 2. ສຳລັບຮູບສີ່ຫຼ່ຽມສີ່ຫຼ່ຽມມົນໃນຮູບທີ 2, ພຽງແຕ່ພິຈາລະນາຕຳແໜ່ງແຜນທີ່ບໍລິບົດ pc1 ແລະ pc2. ການປະກອບສ່ວນບໍລິບົດຕາມແກນ x ແລະແກນ y ຖືກບັນທຶກໃສ່ສອງແຖວ QX – ແລະ QY – ຕາມລໍາດັບ. ດັ່ງນັ້ນວັດຈະນານຸກົມບໍລິບົດປະກອບດ້ວຍ QX – ແລະ QY-. ອົງປະກອບຄິວທີ່ມີຈຸດປະສານງານດຽວກັນຖືກລວມເຂົ້າເປັນ triplet, ການສະແດງຜົນຈຳນວນເຕັມບໍລິບົດທີ່ຖືກຄິດໄລ່ເປັນຜົນລວມຂອງການປະກອບສ່ວນຂອງບໍລິບົດຂອງ triplet ທີ່ຖືກລວມເຂົ້າກັນ.
    ດັ່ງນັ້ນ, ສະພາບການຂອງແຕ່ລະ voxel ສາມາດຖືກຄິດໄລ່ເປັນຜົນລວມຂອງການປະກອບສ່ວນເອກະລາດຂອງ voxels ທີ່ຖືກຄອບຄອງຢູ່ໃນວັດຈະນານຸກົມຂອງມັນ. ໂຄງສ້າງນີ້ຊ່ວຍກໍານົດວ່າ voxel ຄວນຖືກເພີ່ມເຂົ້າໃນວັດຈະນານຸກົມບໍລິບົດໂດຍບໍ່ມີການຊອກຫາມາຕຣິກເບື້ອງທີ່ຫນ້າເບື່ອ, ເຊິ່ງເຮັດໃຫ້ມີການຫຼຸດຜ່ອນຄວາມຊັບຊ້ອນຂອງຄອມພິວເຕີ້ແລະເວລາແລ່ນຢ່າງຫຼວງຫຼາຍ.
  3. ການ​ຄິດ​ໄລ່​ຄວາມ​ເປັນ​ໄປ​ໄດ້​
    ເພື່ອຄິດໄລ່ຄວາມເປັນໄປໄດ້ຂອງ entropy, ທັງຄວາມຍາວຂອງລໍາດັບແລະສະພາບການຂອງ voxels ອົງປະກອບຂອງມັນຕ້ອງຖືກພິຈາລະນາ. ໃນໂມດູນນີ້, ພວກເຮົາອອກແບບຕົວເຂົ້າລະຫັດແບບປັບຕົວທີ່ທໍາອິດຄາດຄະເນຂອບເຂດຄວາມເປັນໄປໄດ້ສະສົມເທິງແລະຕ່ໍາສໍາລັບແຕ່ລະກຸ່ມຈາກວັດຈະນານຸກົມສະພາບການ, ແລະຫຼັງຈາກນັ້ນເຂົ້າລະຫັດມັນຕໍ່ມາ. ກ່ອນອື່ນ ໝົດ, ພວກເຮົາກໍ່ສ້າງຕົ້ນໄມ້ຄູ່ໂດຍອີງໃສ່ຮູບແບບຕ່ອງໂສ້ Markov. ໂດຍຂ້າມການຄອບຄອງຂອງ voxels, ພວກເຮົາກໍານົດຄ່າຂອງ 1 ແລະ 0 ໃຫ້ກັບ voxels ຄອບຄອງ ແລະຫວ່າງເປົ່າ, ຕາມລໍາດັບ, ແລະຄິດໄລ່ຄວາມເປັນໄປໄດ້ໂດຍອີງໃສ່ໂຄງສ້າງຕົ້ນໄມ້. ເລີ່ມຕົ້ນຈາກ node ຮາກ, ເມື່ອ voxel ຖືກຄອບຄອງ, ພວກເຮົາບັນທຶກ node ເດັກຊ້າຍເປັນ 1. ຖ້າບໍ່ດັ່ງນັ້ນ, ພວກເຮົາຫມາຍ node ເດັກທີ່ຖືກຕ້ອງເປັນ 0 ແລະດໍາເນີນການຂັ້ນຕອນຕໍ່ໄປຂອງການຕັດສິນແລະການແບ່ງສ່ວນ. ສູດການຄິດໄລ່ສໍາລັບຄວາມເປັນໄປໄດ້ຂອງການແລ່ນຂອງ voxels ຄອບຄອງສາມາດພົບໄດ້ໃນ Eq. (4).

ສໍາລັບຄວາມຍາວຂອງການແລ່ນຫນ້ອຍກວ່າ ຫຼືເທົ່າກັບ n, ອາດຈະມີ 2n ຂອງ nodes ຕົ້ນໄມ້ທີ່ເປັນຕົວແທນຂອງສະຖານະຂອງ voxels. ດັ່ງນັ້ນ, ຄວາມເປັນໄປໄດ້ຂອງ voxel ທີ່ຖືກຄອບຄອງໃດໆແມ່ນສະແດງໂດຍຄວາມເປັນໄປໄດ້ຮ່ວມກັນທີ່ເປັນເອກະລາດຂອງ traversing ລັດທັງຫມົດເລີ່ມຕົ້ນຈາກຮາກແລະສິ້ນສຸດໃນ node ທີ່ບໍ່ມີເດັກນ້ອຍຂອງຕົ້ນໄມ້. ອີງໃສ່ Eq. (4), ເພື່ອປະຕິບັດການເຂົ້າລະຫັດເລກຄະນິດຕາມການຄອບຄອງຂອງລຳດັບ voxel, ພວກເຮົາຕ້ອງການຄວາມເປັນໄປໄດ້ສະສົມເທິງ ແລະ ລຸ່ມຂອງລຳດັບ, ດັ່ງທີ່ສະແດງຢູ່ໃນ Eq. (5).ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (11)

ການໃຊ້ວິທີການນີ້, ພວກເຮົາສາມາດນໍາໃຊ້ຄຸນສົມບັດການປັບຕົວຂອງລະຫັດເລກຄະນິດສາດເພື່ອປັບຄ່າການຄາດຄະເນຄວາມເປັນໄປໄດ້ຂອງແຕ່ລະສັນຍາລັກໂດຍອີງໃສ່ຮູບແບບການຄາດຄະເນຄວາມເປັນໄປໄດ້ທີ່ດີທີ່ສຸດແລະຄວາມຖີ່ຂອງແຕ່ລະສັນຍາລັກໃນລໍາດັບສັນຍາລັກໃນປະຈຸບັນ. ນີ້ອະນຸຍາດໃຫ້ພວກເຮົາຄິດໄລ່ຂອບເຂດເທິງແລະຕ່ໍາຂອງຄວາມເປັນໄປໄດ້ສະສົມຂອງ voxels ຄອບຄອງແລະສໍາເລັດຂະບວນການເຂົ້າລະຫັດ.

ທົດລອງ

ລາຍລະອຽດການຈັດຕັ້ງປະຕິບັດ

  1. ຊຸດຂໍ້ມູນ. ເພື່ອກວດສອບການປະຕິບັດຂອງວິທີການທີ່ສະເຫນີຂອງພວກເຮົາ, ການທົດລອງຢ່າງກວ້າງຂວາງໄດ້ຖືກດໍາເນີນໃນໄລຍະ 16 ຈຸດ cloud datasets ທີ່ສາມາດດາວໂຫຼດໄດ້ຈາກ Ref. [40], ດັ່ງທີ່ສະແດງຢູ່ໃນຮູບທີ 3, ໃນທີ່ Fig. 3(a)– 3(l) ເປັນຮູບຄົນທີ່ມີຈຸດໜາແໜ້ນ, ແລະຮູບ. 3(m) – 3(p) ແມ່ນສະຖາປັດຕະຍະກໍາທີ່ມີຈຸດອ່ອນໆ. ໝາກເດື່ອ. 3(a) – 3(h) ແມ່ນ voxelized ເທິງຮ່າງກາຍຊີ້ລໍາດັບຂໍ້ມູນຄລາວຂອງສອງຄວາມລະອຽດທາງກວ້າງຂອງພື້ນທີ່ໄດ້ມາຈາກ Microsoft. ໝາກເດື່ອ. 3(i)– 3(l) ຖືກເລືອກຈາກ 8i voxelized full body pointing cloud data sequences. ເມກກະຈ່າງແຈ້ງຂະໜາດໃຫຍ່ທີ່ຍັງເຫຼືອຢູ່ໃນຮູບ. 3(k)– 3(p) ແມ່ນຊຸດຂໍ້ມູນ facade static ແລະສະຖາປັດຕະຍະກໍາ.
  2. ຕົວຊີ້ວັດການປະເມີນຜົນ. ການປະຕິບັດຂອງວິທີການທີ່ສະເຫນີແມ່ນຖືກປະເມີນໃນແງ່ຂອງບິດຕໍ່ຈຸດ (BPP). BPP ຫມາຍເຖິງຜົນລວມຂອງ bits ທີ່ຄອບຄອງໂດຍຂໍ້ມູນປະສານງານທີ່ຕິດກັບຈຸດ. ມູນຄ່າຕ່ໍາ, ການປະຕິບັດທີ່ດີກວ່າ. ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (12)ບ່ອນທີ່ Sizedig ເປັນຕົວແທນຂອງຈໍານວນບິດທີ່ຄອບຄອງໂດຍຂໍ້ມູນປະສານງານຂອງຂໍ້ມູນເມຄຈຸດ, ແລະ k ຫມາຍເຖິງຈໍານວນຈຸດຢູ່ໃນເມຄຈຸດຕົ້ນສະບັບ.
  3. ມາດຕະຖານ. ພວກເຮົາສ່ວນໃຫຍ່ປຽບທຽບວິທີການຂອງພວກເຮົາກັບສູດການຄິດໄລ່ພື້ນຖານອື່ນໆ, ລວມທັງ: PCL-PCC: octree-based compression ໃນ PCL; G-PCC (ຮູບແບບການທົດສອບ MPEG intra-coders) ແລະ interEM (ຮູບແບບການທົດສອບ MPEG inter-coders) ເປົ້າຫມາຍການບີບອັດເມຄເຟຣມດຽວແລະຫຼາຍເຟຣມຕາມລໍາດັບ; Silhouette 3D (S3D)[41] ແລະ Silhouette 4D (S4D)[42] ເປົ້າໝາຍການບີບອັດເມຄເຟຣມດຽວ ແລະຫຼາຍເຟຣມຕາມລຳດັບ.
    ສໍາລັບ PCL, ພວກເຮົາໃຊ້ວິທີການບີບອັດ octree point cloud ໃນ PCL-v1.8.1 ສໍາລັບການບີບອັດເລຂາຄະນິດເທົ່ານັ້ນ. ພວກເຮົາກໍານົດພາລາມິເຕີການແກ້ໄຂ octree ຈາກຄວາມແມ່ນຍໍາຈຸດແລະຄວາມລະອຽດ voxel. ສໍາລັບ G-PCC (TM13-v11.0), ພວກເຮົາເລືອກເລຂາຄະນິດທີ່ບໍ່ມີການສູນເສຍ ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (13) ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (14)— ສະ​ພາບ​ຄຸນ​ລັກ​ສະ​ນະ​ສູນ​ເສຍ​ໃນ​ຮູບ​ແບບ​ການ​ຄາດ​ຄະ​ເນ octree​, ເຮັດ​ໃຫ້​ຕົວ​ກໍາ​ນົດ​ການ​ເປັນ​ຄ່າ​ເລີ່ມ​ຕົ້ນ​. ສໍາລັບ interEM (tmc3v3.0), ພວກເຮົາໃຊ້ຜົນການທົດລອງພາຍໃຕ້ເລຂາຄະນິດທີ່ບໍ່ມີການສູນເສຍ ແລະເງື່ອນໄຂຄຸນສົມບັດທີ່ສູນເສຍເປັນການປຽບທຽບ[43]. ສໍາລັບ S3D
    ແລະ S4D, ພວກເຮົາປະຕິບັດຕາມເງື່ອນໄຂແລະຕົວກໍານົດການເລີ່ມຕົ້ນ.
  4. ຮາດແວ. ສູດການຄິດໄລ່ທີ່ສະເໜີໃຫ້ຖືກປະຕິບັດຢູ່ໃນ Matlab ແລະ C++ ໂດຍໃຊ້ບາງໜ້າທີ່ຂອງ PCL-v1.8.1. ການທົດລອງທັງໝົດໄດ້ຖືກທົດສອບຢູ່ໃນໂນດບຸກທີ່ມີ CPU Intel Core i7- 8750 @2.20 GHz ພ້ອມກັບໜ່ວຍຄວາມຈຳ 8 GB.

ຜົນໄດ້ຮັບຂອງການບີບອັດຄລາວຂອງຈຸດເຟຣມດຽວ

  1. ຜົນການບີບອັດຂອງຮູບຄົນຂອງລຳດັບຂໍ້ມູນຄລາວຈຸດໜາແໜ້ນ
    ຕາຕະລາງ 1 ສະແດງໃຫ້ເຫັນການປະຕິບັດຂອງ contextguided lossless point cloud cloud contextguided spatial cloud algorithms compression geometry ເມື່ອປຽບທຽບກັບວິທີການ PCL-PCC, G-PCC ແລະ S3D ກ່ຽວກັບຮູບຄົນຂອງລໍາດັບຂໍ້ມູນເມຄຈຸດທີ່ຫນາແຫນ້ນ. ມັນສາມາດເຫັນໄດ້ຈາກຕາຕະລາງ 1 ວ່າສໍາລັບທຸກຈຸດຂອງເມຄຂອງລໍາດັບດຽວກັນ, ວິທີການທີ່ສະເຫນີບັນລຸໄດ້ BPP ການບີບອັດຕ່ໍາສຸດເມື່ອທຽບກັບວິທີການອື່ນໆ. ສູດການຄິດໄລ່ຂອງພວກເຮົາໃຫ້ກຳໄລສະເລ່ຍຈາກ −1.56% ເປັນ -0.02% ຕໍ່ກັບ S3D, ແລະ ເພີ່ມຂຶ້ນຈາກ −10.62% ເປັນ −1.45% ຕໍ່ G-PCC. ມັນສະແດງໃຫ້ເຫັນເຖິງ advan ທີ່ຈະແຈ້ງກວ່າtage, ນັ້ນແມ່ນ, ຜົນປະໂຫຍດຂອງການປະຕິບັດການບີບອັດຂອງ algorithm ທີ່ສະເຫນີຕັ້ງແຕ່ −10.62% ຫາ −1.45%; ສໍາລັບ PCL-PCC, ສູດການຄິດໄລ່ທີ່ສະເຫນີສະແດງໃຫ້ເຫັນເຖິງການເພີ່ມຂຶ້ນເກືອບສອງເທົ່າໃນທຸກລໍາດັບ, ຕັ້ງແຕ່ −154.43% ຫາ -85.39%.
  2. ຜົນການບີບອັດຂອງຂໍ້ມູນຄລາວຈຸດຂະໜາດໃຫຍ່
    ເນື່ອງຈາກວ່າ S3D ບໍ່ສາມາດເຮັດວຽກໄດ້ໃນກໍລະນີນີ້, ພວກເຮົາພຽງແຕ່ປຽບທຽບ spatial context-guided lossless geometry point cloud compression algorithm with PCL-PCC ແລະ G-PCC method on large-scale sparse point cloud data. ອີກເທື່ອຫນຶ່ງ, ສູດການຄິດໄລ່ຂອງພວກເຮົາບັນລຸການປະຕິບັດຢ່າງຫຼວງຫຼາຍກັບ G-PCC ແລະ PCL-PCC, ດັ່ງທີ່ສະແດງຢູ່ໃນຕາຕະລາງ 1. ຜົນໄດ້ຮັບສະແດງໃຫ້ເຫັນວ່າການໄດ້ຮັບ BPP ໂດຍສະເລ່ຍຕັ້ງແຕ່ − 8.84% ຫາ -4.35% ແມ່ນຖືກຈັບເມື່ອປຽບທຽບກັບ G-PCC. ສໍາລັບ PCL- PCC, ສູດການຄິດໄລ່ທີ່ສະເຫນີຂອງພວກເຮົາສະແດງໃຫ້ເຫັນເຖິງ advan ທີ່ຊັດເຈນກວ່າtages, ມີກໍາໄລຕັ້ງແຕ່ −34.69% ຫາ −23.94%.
  3. ສະຫຼຸບ
    ເພື່ອສະໜອງການປຽບທຽບທີ່ເຂົ້າໃຈໄດ້ຫຼາຍຂຶ້ນຂອງຜົນການບີບອັດຄລາວຂອງຈຸດເຟຣມດຽວ, ຕາຕະລາງ 2 ນຳສະເໜີຜົນໄດ້ຮັບໂດຍສະເລ່ຍລະຫວ່າງວິທີການບີບອັດຕາມບໍລິບົດທາງກວ້າງຂອງພື້ນຂອງພວກເຮົາ ແລະວິທີການມາດຕະຖານມາດຕະຖານອື່ນໆ. ເມື່ອປຽບທຽບກັບ S3D, ວິທີການທີ່ສະເຫນີຂອງພວກເຮົາສະແດງໃຫ້ເຫັນຜົນປະໂຫຍດສະເລ່ຍຕັ້ງແຕ່ − 0.58% ຫາ − 3.43%. ສຳລັບ G-PCC ແລະ PCL-PCC, ອັດຕາກຳໄລສະເລ່ຍບັນລຸໄດ້ຢ່າງໜ້ອຍ −3.43% ແລະ −95.03% ຕາມລຳດັບ. ການວິເຄາະແບບທົດລອງເປີດເຜີຍວ່າວິທີການບີບອັດ contextguided spatial ຂອງພວກເຮົາເກີນ S3D, G-PCC ແລະ PCL-PCC ໃນປັດຈຸບັນໂດຍຂອບທີ່ສໍາຄັນ. ດັ່ງນັ້ນ, ມັນສາມາດຕອບສະຫນອງຄວາມຕ້ອງການການບີບອັດທີ່ບໍ່ມີການສູນເສຍຂອງເລຂາຄະນິດເມຄຈຸດສໍາລັບປະເພດ scene ຕ່າງໆ, ຕົວຢ່າງ, ການແຈກຢາຍທີ່ມີຄວາມຫນາແຫນ້ນຫຼື sparse, ແລະປະສິດທິຜົນຂອງວິທີການຂອງພວກເຮົາຍັງຄົງຢູ່ສະເຫມີ.
  4. ຜົນໄດ້ຮັບຂອງການບີບອັດຄລາວຈຸດຫຼາຍເຟຣມ
    ພວກເຮົາປະເມີນຂັ້ນຕອນການບີບອັດເລຂາຄະນິດຂອງຈຸດ cloud geometry ທີ່ໄດ້ສະເໜີມາຂອງພວກເຮົາຕໍ່ກັບລະບົບການບີບອັດທີ່ມີຢູ່ເຊັ່ນ: S4D, PCL-PCC, G-PCC ແລະ interEM. ມີພຽງຮູບຄົນຂອງລຳດັບຂໍ້ມູນຄລາວຈຸດໜາແໜ້ນເທົ່ານັ້ນທີ່ຖືກນໍາໃຊ້ໃນການທົດລອງນີ້. ຜົນໄດ້ຮັບແມ່ນສະແດງໃຫ້ເຫັນໃນ.

ຕາຕະລາງ 1. ການປຽບທຽບ BPP ຂອງລະບົບການບີບອັດທີ່ແນະນຳໂດຍບໍລິບົດທາງກວ້າງຂອງພື້ນທີ່ຂອງພວກເຮົາ ແລະວິທີການພື້ນຖານ.

ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (15)

ຕາຕະລາງ 2. ການປຽບທຽບ BPP ກັບ algorithms ທີ່ທັນສະໄຫມກ່ຽວກັບຂໍ້ມູນຄລາວຈຸດດຽວ.ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (16)

ຕາຕະລາງ 3. ດັ່ງທີ່ພວກເຮົາສາມາດເຫັນໄດ້, ຫຼັງຈາກການເພີ່ມປະສິດທິພາບໃນຮູບແບບການຄາດຄະເນແລະຕົວເຂົ້າລະຫັດເລກເລກ, ສູດການຄິດໄລ່ທີ່ສະເຫນີສະແດງໃຫ້ເຫັນຄວາມດີກວ່າໃນທຸກລໍາດັບການທົດສອບ. ໂດຍສະເພາະ, ເມື່ອປຽບທຽບກັບ interEM ແລະ G-PCC, ສູດການຄິດໄລ່ທີ່ສະເຫນີສະແດງໃຫ້ເຫັນເຖິງຜົນປະໂຫຍດທີ່ສໍາຄັນຕັ້ງແຕ່ −51.94% ຫາ −17.13% ແລະ −46.62% ຫາ -5.7% ຕາມລໍາດັບ. ເມື່ອປຽບທຽບກັບ S4D, ສູດການຄິດໄລ່ທີ່ສະເຫນີສະແດງໃຫ້ເຫັນການປັບປຸງທີ່ເຂັ້ມແຂງຕັ້ງແຕ່ −12.18% ຫາ -0.33%. ສໍາລັບ PCL-PCC, algorithm ທີ່ສະເຫນີຂອງພວກເຮົາໄດ້ຫຼຸດລົງເກືອບເຄິ່ງຫນຶ່ງຂອງລໍາດັບການທົດສອບທັງຫມົດ.
ນອກຈາກນັ້ນ, ພວກເຮົາສະຫຼຸບຜົນການບີບອັດ ແລະ ຜົນປະໂຫຍດຂອງວິທີການທີ່ສະເໜີໄວ້ໃນລໍາດັບຂໍ້ມູນເມຄຈຸດດົກໜາຂອງຮູບຄົນ, ລະບຸໄວ້ໃນຕາຕະລາງ 4. ໂດຍສະເລ່ຍແລ້ວ, ມັນໃຫ້ກຳໄລລະຫວ່າງ −11.5% ແລະ −2.59% ເມື່ອປຽບທຽບກັບບໍລິບົດທີ່ແນະນຳຈຸດເມຄ. ສູດການບີບອັດເລຂາຄະນິດທີ່ສະເໜີກ່ອນໜ້ານີ້. ຍິ່ງໄປກວ່ານັ້ນ, ມັນສະແດງໃຫ້ເຫັນຜົນປະໂຫຍດສະເລ່ຍດີກວ່າ − 19% ເມື່ອປຽບທຽບກັບ G-PCC ແລະໄດ້ບັນລຸຜົນການເຂົ້າລະຫັດສະເລ່ຍຂອງ −24.55% ເມື່ອທຽບກັບ interEM. ນອກຈາກນັ້ນ, ເມື່ອທຽບກັບ S3D ແລະ S4D, ມັນເພີ່ມຂຶ້ນຫຼາຍກວ່າ −6.11% ແລະ −3.64% ໂດຍສະເລ່ຍຕາມລໍາດັບ. ການວິເຄາະການທົດລອງໂດຍລວມສະແດງໃຫ້ເຫັນວ່າວິທີການບີບອັດເມຄຈຸດທີ່ແນະນໍາ spatiotemporal context-guided ສາມາດເຮັດໃຫ້ການນໍາໃຊ້ຢ່າງເຕັມທີ່ຂອງການພົວພັນທາງກວ້າງຂອງພື້ນແລະຊົ່ວຄາວຂອງຊັ້ນທີ່ຢູ່ຕິດກັນພາຍໃນພາຍໃນເຟຣມແລະລະຫວ່າງເຟຣມ. ພວກເຮົາຍັງປັບປຸງການເລືອກບໍລິບົດທົ່ວໂລກ ແລະຮູບແບບຄວາມເປັນໄປໄດ້ຂອງຕົວເຂົ້າລະຫັດເລກເລກເພື່ອໃຫ້ໄດ້ອັດຕາບິດທີ່ຕໍ່າກວ່າ. ວິທີການທີ່ສະເຫນີແມ່ນເກີນກວ່າການປະຕິບັດຂອງສູດການຄິດໄລ່ທີ່ທັນສະໄຫມ, ດັ່ງນັ້ນເພື່ອຕອບສະຫນອງຄວາມຕ້ອງການຂອງການບີບອັດຂອງເມຄຄລາວທີ່ບໍ່ມີເລຂາຄະນິດໃນສະຖານະການຄໍາຮ້ອງສະຫມັກມັນຕິມີເດຍເຊັ່ນ: ຮູບຄົນແບບເຄື່ອນໄຫວ.

ຕາຕະລາງ 3. ການປຽບທຽບບິດຕໍ່ຈຸດຂອງ spatio-temporal context-guid compression algorithm ຂອງພວກເຮົາ ແລະວິທີການພື້ນຖານ.ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (17)

ຕາຕະລາງ 4. ການປຽບທຽບ bit-per-point ກັບ algorithms ທີ່ທັນສະໄໝກ່ຽວກັບຂໍ້ມູນຄລາວຫຼາຍເຟຣມ.ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (18)

ການສຶກສາ Ablation
ພວກເຮົາປະຕິບັດການສຶກສາ ablation ກ່ຽວກັບການເຂົ້າລະຫັດແບບຄາດຄະເນໃນໄລຍະ 8i voxelized ລໍາດັບຂໍ້ມູນຄລາວຈຸດເຕັມຮ່າງກາຍເພື່ອສະແດງໃຫ້ເຫັນປະສິດທິພາບຂອງການແບ່ງປັນ. ມັນສາມາດເຫັນໄດ້ຈາກຕາຕະລາງ 5 ວ່າການປັບປຸງສະແດງໃຫ້ເຫັນເຖິງການເພີ່ມຂຶ້ນຂອງຄວາມຫມັ້ນຄົງຂອງ −70% ກ່ຽວກັບການບີບອັດເມຄຈຸດຫຼາຍເຟຣມ ແລະ − 60% ຕໍ່ການບີບອັດເມຄຈຸດເຟຣມດຽວຕໍ່ກັບລະຫັດຄາດການທີ່ບໍ່ແມ່ນພາທິຊັນ.
ຕໍ່ໄປ, ພວກເຮົາດໍາເນີນການທົດລອງ ablation ກ່ຽວກັບລະຫັດເລກຄະນິດສາດເພື່ອສະແດງໃຫ້ເຫັນປະສິດທິພາບຂອງວັດຈະນານຸກົມບໍລິບົດ. ດັ່ງທີ່ສະແດງຢູ່ໃນຕາຕະລາງ 6, ການປັບປຸງທີ່ເຂັ້ມແຂງຂອງ −33% ກ່ຽວກັບການບີບອັດເມຄຈຸດຫຼາຍເຟຣມ ແລະ −41% ກ່ຽວກັບການບີບອັດເມຄຈຸດດຽວໃນຂອບດຽວຕໍ່ກັບລະຫັດເລກເລກທີ່ບໍ່ມີວັດຈະນານຸກົມແມ່ນສັງເກດເຫັນໃນວິທີການຂອງພວກເຮົາ.

ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (19) ZTE-Guided-Algorithm-for-Lossless-Point-Cloud-Geometry-Compression- (20)

ການຊົມໃຊ້ເວລາ
ພວກເຮົາທົດສອບການບໍລິໂພກເວລາເພື່ອປະເມີນຄວາມສັບສົນຂອງສູດການຄິດໄລ່ແລະປຽບທຽບວິທີການທີ່ສະເຫນີກັບຄົນອື່ນ. ຄວາມສັບສົນຂອງ algorithm ແມ່ນການວິເຄາະໂດຍ encoders ແລະ decoders ເປັນເອກະລາດ, ລະບຸໄວ້ໃນຕາຕະລາງ 7. ດັ່ງທີ່ພວກເຮົາສາມາດເຫັນໄດ້, G-PCC, interEM ແລະ PCL-PCC ສາມາດບັນລຸເວລາເຂົ້າລະຫັດຫນ້ອຍກວ່າ 10 s ແລະເວລາຖອດລະຫັດຫນ້ອຍກວ່າ 5 s ສໍາລັບ portrait-dense cloud data. ພວກເຂົາເຈົ້າຍັງປະຕິບັດໄດ້ດີໃນຂະຫນາດໃຫຍ່ sparse cloud data ເມື່ອທຽບກັບຄົນອື່ນ. ສູດການຄິດໄລ່ທີ່ສະເໜີຂອງພວກເຮົາໃຊ້ເວລາປະມານ 60 s ແລະ 15 ວິນາທີເພື່ອເຂົ້າລະຫັດ ແລະຖອດລະຫັດລໍາດັບຮູບຄົນ, ຫຼາຍກວ່ານັ້ນຢູ່ໃນຂໍ້ມູນຄລາວຂອງ facade ແລະສະຖາປັດຕະຍະກໍາ. ມີການຊື້ຂາຍລະຫວ່າງອັດຕາບິດແລະຄວາມໄວການບີບອັດ. ເມື່ອປຽບທຽບກັບ S3D ແລະ S4D, ເຊິ່ງໃຊ້ເວລາຫຼາຍຮ້ອຍວິນາທີເພື່ອເຂົ້າລະຫັດ, ວິທີການທີ່ໃຊ້ເວລາຂອງພວກເຮົາສາມາດສະແດງໃຫ້ເຫັນດີກວ່າ.
ສະຫລຸບລວມແລ້ວ, ການໃຊ້ເວລາຂອງວິທີການທີ່ສະເຫນີຂອງພວກເຮົາແມ່ນຂະຫນາດກາງໃນບັນດາ algorithms ປຽບທຽບທັງຫມົດແຕ່ຍັງມີຄວາມຈໍາເປັນທີ່ຈະປັບປຸງຕື່ມອີກ.

ບົດສະຫຼຸບ

ໃນເອກະສານນີ້, ພວກເຮົາສະເຫນີວິທີການ spatiotemporal context-guided ສໍາລັບ lossless point cloud geometry compres⁃ sion. ພວກເຮົາພິຈາລະນາຈຸດເມກຂອງຄວາມໜາຂອງຫົວໜ່ວຍເປັນຫົວໜ່ວຍປ້ອນຂໍ້ມູນ ແລະນຳໃຊ້ຮູບແບບການເຂົ້າລະຫັດການຄາດເດົາທາງເລຂາຄະນິດໂດຍອີງໃສ່ສູດການຄິດໄລ່ຂອງພະນັກງານຂາຍການເດີນທາງ, ເຊິ່ງນຳໃຊ້ກັບທັງພາຍໃນເຟຣມ ແລະລະຫວ່າງເຟຣມ. ຍິ່ງໄປກວ່ານັ້ນ, ພວກເຮົາໃຊ້ຂໍ້ມູນບໍລິບົດທົ່ວໂລກຢ່າງເຕັມທີ່ ແລະຕົວເຂົ້າລະຫັດເລກເລກທີ່ປັບຕົວໄດ້ໂດຍອີງຕາມການອັບເດດ context-fast ເພື່ອບັນລຸຜົນການບີບອັດທີ່ບໍ່ມີການສູນເສຍແລະການບີບອັດຂອງ point clouds. ຜົນໄດ້ຮັບຂອງການທົດລອງສະແດງໃຫ້ເຫັນເຖິງປະສິດທິພາບຂອງວິທີການຂອງພວກເຮົາແລະຄວາມດີກວ່າຂອງເຂົາເຈົ້າຫຼາຍກວ່າການສຶກສາທີ່ຜ່ານມາ. ສໍາລັບການເຮັດວຽກໃນອະນາຄົດ, ພວກເຮົາວາງແຜນທີ່ຈະສຶກສາຕື່ມອີກກ່ຽວກັບຄວາມສັບສົນໂດຍລວມຂອງ algorithm, ໂດຍການຫຼຸດຜ່ອນຄວາມສັບສົນຂອງ algorithm ເພື່ອບັນລຸອັດຕາການບີບອັດຄວາມໄວສູງແລະຜົນການບີບອັດອັດຕາບິດຕ່ໍາ. ອັດຕາບິດຕໍ່າ ແລະວິທີການທີ່ຮອງຮັບໃນເວລາຈິງ/ການຊັກຊ້າຕໍ່າແມ່ນເປັນທີ່ຕ້ອງການຫຼາຍໃນຫຼາຍໆສາກ.

ເອກະສານອ້າງອີງ

  1. MI XX, YANG BS, DONG Z, et al. ການສະກັດເຂດແດນທາງ 3D ອັດຕະໂນມັດ ແລະ vectorization ໂດຍໃຊ້ MLS point clouds [J]. ທຸລະກຳ IEEE ກ່ຽວກັບລະບົບການຂົນສົ່ງອັດສະລິຍະ, 2022, 23(6): 5287 – 5297. DOI: 10.1109/ TITS.2021.3052882
  2. DONG Z, LIANG FX, YANG BS, et al. ການ​ຈົດ​ທະ​ບຽນ laser ພື້ນ​ດິນ​ຂະ​ຫນາດ​ໃຫຍ່ scanner ຈຸດ​ຟັງ​: review ແລະມາດຕະຖານ [J]. ISPRS ວາລະສານການຖ່າຍຮູບແລະການຮັບຮູ້ທາງໄກ, 2020, 163: 327– 342. DOI: 10.1016/j.isprsjprs.2020.03.013.
  3. GRAZIOSI D, NAKAGAMI O, KUMA S, et al. ຫຼາຍກວ່າview ຂອງກິດຈະກໍາມາດຕະຖານການບີບອັດຄລາວທີ່ກຳລັງດຳເນີນຢູ່ຄື: ວິດີໂອທີ່ອີງໃສ່ (V-PCC) ແລະເລຂາຄະນິດ (G-PCC) [J]. ທຸລະກຳ APSIPA ກ່ຽວກັບການປະມວນຜົນສັນຍານ ແລະຂໍ້ມູນ, 2020, 9:e13
  4. DE QUEIROZ RL, CHOU P A. ການບີບອັດເມກຈຸດ 3D ໂດຍໃຊ້ການຫັນປ່ຽນຕາມລຳດັບຂັ້ນພາກພື້ນທີ່ປັບຕົວໄດ້ [J]. ທຸລະກຳ IEEE ກ່ຽວກັບການປະມວນຜົນຮູບພາບ, 2016, 25(8): 3947–3956. DOI: 10.1109/TIP.2016.2575005
  5. BLETTERER A, PAYAN F, ANTONINI M, et al. ຈຸດບີບອັດຄລາວໂດຍໃຊ້ແຜນທີ່ຄວາມເລິກ [J]. ການ​ຖ່າຍ​ຮູບ​ເອ​ເລັກ​ໂຕຣ​ນິກ, 2016, 2016(21):1–6
  6. MEKURIA R, BLOM K, CESAR P. ການອອກແບບ, ການປະຕິບັດ, ແລະການປະເມີນຜົນຂອງຕົວແປງສັນຍານຄລາວຈຸດສໍາລັບວິດີໂອ tele-immersive [J]. ທຸລະກຳ IEEE ກ່ຽວກັບວົງຈອນ ແລະລະບົບສຳລັບເທັກໂນໂລຢີວິດີໂອ, 2017, 27(4): 828 – 842. DOI: 10.1109/ TCSVT.2016.2543039
  7. DE QUEIROZ RL, CHOU P A. ການບີບອັດແບບເຄື່ອນທີ່ທີ່ມີການຕອບແທນຂອງເມຄຈຸດ voxelized ແບບເຄື່ອນໄຫວ [J]. ການເຮັດທຸລະກໍາ IEEE ກ່ຽວກັບການປະມວນຜົນຮູບພາບ, 2017, 26 (8): 3886–3895. DOI: 10.1109/TIP.2017.2707807
  8. CAO C, PREDA M, ZAHARIA T. ການບີບອັດເມຄ 3D ຈຸດ: ການສໍາຫຼວດ [C]// ກອງປະຊຸມສາກົນກ່ຽວກັບ 24D ຄັ້ງທີ 3 Web ເຕັກໂນໂລຊີ. ACM, 2019: 1–9. DOI: 10.1145/3329714.3338130
  9. GRAZIOSI D, NAKAGAMI O, KUMA S, et al. ຫຼາຍກວ່າview ຂອງກິດຈະກໍາມາດຕະຖານການບີບອັດຄລາວທີ່ກຳລັງດຳເນີນຢູ່ຄື: ວິດີໂອທີ່ອີງໃສ່ (V-PCC) ແລະເລຂາຄະນິດ (G-PCC) [J]. ທຸລະກຳ APSIPA ກ່ຽວກັບການປະມວນຜົນສັນຍານ ແລະຂໍ້ມູນ, 2020, 9(1): e13. DOI: 10.1017/atsip.2020.12
  10. HUANG Y, PENG JL, KUO CJ, et al. ການເຂົ້າລະຫັດເລຂາຄະນິດທີ່ກ້າວໜ້າຕາມ Octree ຂອງຈຸດເມກ [C]//ກອງປະຊຸມ Eurographics/IEEE VGTC ຄັ້ງທີ 3 ກ່ຽວກັບກາຟິກທີ່ອີງໃສ່ຈຸດ. IEEE, 2016: 103–110
  11. FAN YX, HUANG Y, PENG J L. ຈຸດການບີບອັດເມກໂດຍອີງໃສ່ການຈັດກຸ່ມຈຸດຕາມລຳດັບ [C]//ສະມາຄົມປະມວນຜົນສັນຍານ ແລະຂໍ້ມູນອາຊີ-ປາຊີຟິກ ກອງປະຊຸມສຸດຍອດ ແລະກອງປະຊຸມປະຈຳປີ. IEEE, 2014: 1 – 7. DOI: 10.1109/APSIPA.2013.6694334
  12. DRICOT A, ASCENSO J. ແກງສາມຫຼ່ຽມຫຼາຍລະດັບແບບປັບຕົວໄດ້ສຳລັບການເຂົ້າລະຫັດເມຄທີ່ອີງໃສ່ຈຸດເລຂາຄະນິດ [C]//ກອງປະຊຸມສາກົນຄັ້ງທີ 21 ກ່ຽວກັບການປະມວນຜົນສັນຍານມັນຕິມີເດຍ (MMSP). IEEE, 2019: 1 – 6. DOI: 10.1109/ MMSP.2019.8901791
  13. HE C, RAN LQ, WANG L, et al. ຈຸດກໍານົດການບີບອັດພື້ນຜິວໂດຍອີງໃສ່ການວິເຄາະຮູບແບບຮູບຮ່າງ [J]. ເຄື່ອງມື ແລະແອັບພລິເຄຊັນມັນຕິມີເດຍ, 2017, 76(20): 20545–20565. DOI: 10.1007/s11042-016-3991-0
  14. IMDAD U, ASIF M, AHMAD M, et al. ການບີບອັດກຸ່ມເມກຈຸດສາມມິຕິ ແລະການບີບອັດໂດຍໃຊ້ polynomials ຂອງລະດັບໜຶ່ງ [J]. ຄວາມສົມມາດ, 2019, 11(2): 209. DOI: 10.3390/sym11020209
  15. SUN XB, MA H, SUN YX, et al. ສູດການຄິດໄລ່ການບີບອັດເມຄຈຸດໃໝ່ໂດຍອີງໃສ່ກຸ່ມ [J]. IEEE ຫຸ່ນຍົນ ແລະຕົວອັກສອນອັດຕະໂນມັດ, 2019, 4(2): 2132–2139. DOI: 10.1109/LRA.2019.2900747
  16. DE OLIVEIRA RENTE P, BRITES C, ASCENSO J, et al. ກຣາບ-ອີງ 3D ຈຸດ static clouds geometry coding [J]. ທຸລະກຳ IEEE ໃນມັນຕິມີເດຍ, 2019, 21(2): 284–299. DOI: 10.1109/TMM.2018.2859591
  17. ISO. ການບີບອັດເມກຕາມຈຸດເລຂາຄະນິດ (G-PCC): ISO/IEC 23090-9 [S]. 2021
  18. DRICOT A, ASCENSO J. Hybrid octree-plane point cloud geometry coding [C]//The 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019: 1–5
  19. ZHANG X, GAO W, LIU S. ການແບ່ງພາຕິຊັນເລຂາຄະນິດທາງອ້ອມສຳລັບການບີບອັດຄລາວຈຸດ [C]//Proceedings of 2020 Data Compression Conference (DCC). IEEE, 2020: 73–82. DOI: 10.1109/DCC47342.2020.00015
  20. QUACH M, VALENZISE G, DUFAUX F. ການຮຽນຮູ້ການຫັນປ່ຽນແບບ convolutional ສໍາລັບການບີບອັດເລຂາຄະນິດຄລາວຈຸດ lossy [C]//ກອງປະຊຸມສາກົນຂອງ IEEE 2019 ກ່ຽວກັບການປະມວນຜົນຮູບພາບ (ICIP). IEEE, 2019: 4320–4324. DOI: 10.1109/ICIP.2019.8803413
  21. HUANG TX, LIU Y. ການບີບອັດເລຂາຄະນິດເມຄ 3D ຈຸດກ່ຽວກັບການຮຽນຮູ້ເລິກ [C]//ກອງປະຊຸມສາກົນກ່ຽວກັບມັນຕິມີເດຍ ACM ຄັ້ງທີ 27. ACM, 2019: 890–898. DOI: 10.1145/3343031.3351061
  22. GUARDA AFR, RODRIGUES NMM, PEREIRA F. Point cloud coding: ການນຳໃຊ້ວິທີການຮຽນຮູ້ແບບເລິກເຊິ່ງ [C]//Picture Coding Symposium (PCS). IEEE, 2020: 1–5. DOI: 10.1109/PCS48520.2019.8954537
  23. WANG JQ, ZHU H, MA Z, et al. ຮຽນຮູ້ການບີບອັດເລຂາຄະນິດຄລາວຈຸດ [EB/OL]. [2023-09-01]. https://arxiv.org/abs/1909.12037.pdf
  24. AINALA K, MEKURIA RN, KHATHARIYA B, et al. ຊັ້ນປັບປຸງປັບປຸງໃຫ້ດີຂຶ້ນສໍາລັບການບີບອັດເມຄຈຸດທີ່ອີງໃສ່ octree ດ້ວຍການຄາດການຍົນ ap⁃ proximation [C]//SPIE Optical Engineering+ Applications. SPIE, 2016: 223– 231. DOI: 10.1117/12.2237753
  25. SCHWARZ S, HANNUKSELA MM, FAKOUR-SEVOM V, et al. ການເຂົ້າລະຫັດວິດີໂອ 2D ຂອງຂໍ້ມູນວິດີໂອ volumetric [C]//Picture Coding Symposium (PCS). IEEE, 2018: 61–65. DOI: 10.1109/PCS.2018.8456265
  26. FAKOUR SEVOM V, SCHWARZ S, GABBOUJ M. Geometry-guided data interpolation for projection-based dynamic point cloud coding [C]//ກອງປະຊຸມເອີຣົບຄັ້ງທີ 3 ກ່ຽວກັບການປະມວນຜົນຂໍ້ມູນພາບ ​​(EUVIP). IEEE, 7: 2019–1. DOI: 6/EUVIP.0.1109
  27. KATHARIYA B, LI L, LI Z, et al. ການບີບອັດເລຂາຄະນິດຂອງເມຄຈຸດແບບເຄື່ອນໄຫວທີ່ບໍ່ມີການສູນເສຍດ້ວຍການໃຫ້ຄ່າຕອບແທນລະຫວ່າງກັນ ແລະ ການຄາດຄະເນຂອງພະນັກງານຂາຍການເດີນທາງ [C]// ກອງປະຊຸມການບີບອັດຂໍ້ມູນ. IEEE, 2018: 414. DOI: 10.1109/ DCC.2018.00067
  28. ISO. Visual volumetric video-based coding (V3C) ແລະ video-based point cloud compression: ISO/IEC 23090-5 [S]. 2021
  29. PARK J, LEE J, PARK S, et al. ລະຫັດແຜນທີ່ການຄອບຄອງທີ່ອີງໃສ່ການຄາດຄະເນສໍາລັບການບີບອັດຄລາວຈຸດ 3D [J]. ທຸລະກຳ IEIE ກ່ຽວກັບການປະມວນຜົນ ແລະຄອມພິວເຕີອັດສະລິຍະ, 2020, 9(4): 293–297. DOI: 10.5573/ieiespc.2020.9.4.293
  30. COSTA A, DRICOT A, BRITES C, et al. ການປັບປຸງການຫຸ້ມຫໍ່ patch ສໍາລັບມາດຕະຖານ MPEG V-PCC [C]// IEEE 21st International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2019: 1 – 6. DOI: 10.1109/ MMSP.2019.8901690
  31. KAMMERL J, BLODOW N, RUSU RB, et al. ການບີບອັດແບບສົດໆຂອງ point cloud streams [C]//Proceedings of 2012 International Conference on Robotics and Automation IEEE. IEEE, 2012: 778 – 785. DOI: 10.1109/ ICRA.2012.6224647
  32. PCL. ຈຸດຫໍສະໝຸດຄລາວ. [EB/OL]. [2023-09-01]. http://pointclouds.org/
  33. ThanOU D, CHOU PA, FROSSARD P. ການບີບອັດຕາມກຣາບຂອງ 3D point cloud sequences [J]. ທຸລະກຳ IEEE ກ່ຽວກັບການປະມວນຜົນຮູບພາບ, 2016, 25(4): 1765–1778. DOI: 10.1109/TIP.2016.2529506
  34. LI L, LI Z, ZAKHARCHENKO V, et al. ການຄາດຄະເນການເຄື່ອນໄຫວແບບ 3D ແບບພິເສດສຳລັບການບີບອັດຄຸນສົມບັດຄລາວຈາກຈຸດທີ່ອີງໃສ່ວິດີໂອ [C]//ກອງປະຊຸມການບີບອັດຂໍ້ມູນ (DCC). IEEE, 2019: 498–507. DOI: 10.1109/DCC.2019.00058
    ZHAO LL, MA KK, LIN XH, et al. ການບີບອັດຄລາວຂອງຈຸດ LiDAR ໃນເວລາຈິງໂດຍໃຊ້ການຄາດເດົາສອງທິດທາງ ແລະ ການປັບຕົວເຂົ້າລະຫັດຈຸດເລື່ອນໄລຍະ [J]. ທຸລະກຳ IEEE ກ່ຽວກັບການອອກອາກາດ, 2022, 68(3): 620 – 635. DOI: 10.1109/TBC.2022.3162406
  35. LIN JP, LIU D, LI HQ, et al. M-LVC: ການຄາດເດົາຫຼາຍເຟຣມສຳລັບການບີບອັດວິດີໂອທີ່ໄດ້ຮຽນຮູ້ [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 3543 – 3551. DOI: 10.1109/ CVPR42600.2020.00360
  36. YANG R, MENTZER F, VAN GOOL L, et al. ການຮຽນຮູ້ສຳລັບການບີບອັດວິດີໂອດ້ວຍຄຸນນະພາບຕາມລຳດັບ ແລະການປັບປຸງແບບຊ້ຳໆ [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 6627–6636.DOI: 10.1109/CVPR42600.2020.00666
  37. KAYA EC, TABUS I. ການບີບອັດທີ່ບໍ່ມີການສູນເສຍຂອງລໍາດັບເມຄຄລາວໂດຍໃຊ້ລໍາດັບ CNN ແບບ optimized [J]. ການເຂົ້າເຖິງ IEEE, 2022, 10: 83678 – 83691. DOI: 10.1109/ACCESS.2022.3197295
  38. DING S, MANNAN MA, POO A N. Oriented bounding box and octree-based global interference detection in 5-axis machining of free-form surface [J]. ການອອກແບບຄອມພິວເຕີຊ່ວຍ, 2004, 36(13): 1281-1294
  39. ALEXIOU E, VIOLA I, BORGES TM, et al. ການສຶກສາທີ່ສົມບູນແບບຂອງການປະຕິບັດການບິດເບືອນອັດຕາໃນການບີບອັດເມຄຈຸດ MPEG [J]. ທຸລະກຳ APSIPA ກ່ຽວກັບການປະມວນຜົນສັນຍານ ແລະຂໍ້ມູນ, 2019, 8: e27. doi:10.1017/ ATSIP.2019.20
  40. PEIXOTO E. ການບີບອັດພາຍໃນເຟຣມຂອງເລຂາຄະນິດເມກຈຸດໂດຍໃຊ້ dyadic decomposition [J]. IEEE Signal Processing Letters, 2020, 27:246–250. DOI: 10.1109/LSP.2020.2965322
  41. RAMALHO E, PEIXOTO E, MEDEIROS E. Silhouette 4D ດ້ວຍການເລືອກບໍລິບົດ: ການບີບອັດເລຂາຄະນິດທີ່ບໍ່ສູນເສຍຂອງເມກຈຸດແບບເຄື່ອນໄຫວ [J]. IEEE Signal Processing Letters, 2021, 28: 1660 – 1664. DOI: 10.1109/ lsp.2021.3102525
  42. ISO. ເງື່ອນໄຂການທົດສອບທົ່ວໄປສໍາລັບເອກະສານ G-PCC N00106: ISO/IEC JTC 1/ SC 29/WG 7 MPEG [S]. 2021

ຊີວະປະຫວັດຫຍໍ້

  • Zhang Huiran ໄດ້ຮັບປະລິນຍາ BE ແລະ ME ຂອງນາງໃນໂຮງຮຽນ Geodesy ແລະ Geomatics ແລະຫ້ອງທົດລອງທີ່ສໍາຄັນຂອງລັດຂອງວິສະວະກໍາຂໍ້ມູນຂ່າວສານໃນການສໍາຫຼວດແຜນທີ່ແລະການຮັບຮູ້ທາງໄກ, ທັງຈາກມະຫາວິທະຍາໄລ Wuhan, ຈີນໃນປີ 2020 ແລະ 2023, ຕາມລໍາດັບ. ປະຈຸ​ບັນ​ນາງ​ເປັນ​ນັກ​ສຳ​ຫຼວດຂອງ​ສະ​ຖາ​ບັນ​ຄົ້ນຄວ້າ​ແຜນການ​ແລະ​ການ​ອອກ​ແບບ​ຕົວ​ເມືອງ​ກວາງ​ໂຈ່​ວ, ຈີນ. ຄວາມສົນໃຈການຄົ້ນຄວ້າຂອງນາງປະກອບມີການປະມວນຜົນຂໍ້ມູນຄລາວຈຸດແລະການບີບອັດ. ນາງ​ໄດ້​ເຂົ້າ​ຮ່ວມ​ໃນ​ຫຼາຍ​ໂຄງການ​ທີ່​ກ່ຽວ​ຂ້ອງ​ກັບ​ຂົງ​ເຂດ​ການ​ຮັບ​ຮູ້​ທາງ​ໄກ ​ແລະ​ໄດ້​ພິມ​ເຜີຍ​ແຜ່​ເອກະສານ​ໜຶ່ງ​ໃນ​ວິຊາ Geomatics ແລະ​ວິທະຍາສາດ​ຂໍ້​ມູນ​ຂ່າວສານ​ຂອງ​ມະຫາວິທະຍາ​ໄລ Wuhan.
  • ດົງ​ຈ້ຽນ (dongzhenwhu@whu.edu.cn) ໄດ້ຮັບປະລິນຍາ BE ແລະປະລິນຍາເອກໃນດ້ານການຮັບຮູ້ທາງໄກແລະການຖ່າຍຮູບຈາກມະຫາວິທະຍາໄລ Wuhan, ຈີນໃນປີ 2011 ແລະ 2018, ຕາມລໍາດັບ. ລາວເປັນອາຈານທີ່ມີຫ້ອງທົດລອງທີ່ສໍາຄັນຂອງລັດຂອງວິສະວະກໍາຂໍ້ມູນຂ່າວສານໃນການສໍາຫຼວດ, ການສ້າງແຜນທີ່ແລະການຮັບຮູ້ທາງໄກ (LIESMARS), ມະຫາວິທະຍາໄລ Wuhan. ຄວາມສົນໃຈໃນການຄົ້ນຄວ້າຂອງລາວປະກອບມີການຟື້ນຟູ 3D, ຄວາມເຂົ້າໃຈໃນ scene, ການປຸງແຕ່ງເມຄຈຸດເຊັ່ນດຽວກັນກັບຄໍາຮ້ອງສະຫມັກຂອງພວກເຂົາໃນລະບົບການຂົນສົ່ງອັດສະລິຍະ, ຕົວເມືອງຄູ່ແຝດດິຈິຕອນ, ການພັດທະນາແບບຍືນຍົງໃນຕົວເມືອງແລະຫຸ່ນຍົນ. ລາວໄດ້ຮັບກຽດຕິຍົດຫຼາຍກວ່າ 10 ຈາກການແຂ່ງຂັນລະດັບຊາດແລະສາກົນແລະພິມເຜີຍແຜ່ປະມານ 60 ເອກະສານໃນວາລະສານແລະກອງປະຊຸມຕ່າງໆ.
    ວັງ ມິງເຊັງ ໄດ້ຮັບປະລິນຍາ BE ໃນວິທະຍາໄລວິທະຍາສາດຄອມພິວເຕີແລະເຕັກໂນໂລຊີຈາກມະຫາວິທະຍາໄລ Jilin, ຈີນໃນປີ 2001, ແລະປະລິນຍາ ME ໃນໂຮງຮຽນວິທະຍາສາດຄອມພິວເຕີແລະວິສະວະກໍາຈາກ South China University of Technology, ຈີນໃນປີ 2004. ລາວປະຈຸບັນເປັນວິສະວະກອນອາວຸໂສຂອງ Guangzhou Urban Planning. & ສະຖາບັນຄົ້ນຄວ້າສໍາຫຼວດການອອກແບບ, ຈີນ. ຄວາມສົນໃຈການຄົ້ນຄວ້າຂອງລາວປະກອບມີຄໍາຮ້ອງສະຫມັກຄອມພິວເຕີແລະຊອບແວ, physiography, ແລະການສໍາຫຼວດ. ລາວໄດ້ຮັບຫຼາຍກວ່າ 20 ກຽດຕິຍົດຈາກການແຂ່ງຂັນລະດັບຊາດແລະພິມເຜີຍແຜ່ປະມານ 50 ເອກະສານໃນວາລະສານແລະກອງປະຊຸມຕ່າງໆ.

DOI: 10.12142/ZTECOM.202304003
https://kns.cnki.net/kcms/detail/34.1294.TN.20231108.1004.002.html, ຈັດພີມມາອອນໄລນ໌ໃນວັນທີ 8 ພະຈິກ 2023
ໜັງສືໃບລານທີ່ໄດ້ຮັບ: 2023-09-11

ເອກະສານ / ຊັບພະຍາກອນ

ZTE Guided Algorithm ສໍາລັບ Lossless Point Cloud Geometry Compression [pdf] ຄູ່ມືຜູ້ໃຊ້
ຂັ້ນຕອນການແນະນຳສຳລັບການບີບອັດທາງເລຂາຄະນິດຂອງຄລາວຈາກຈຸດສູນເສຍ, ແນະນຳ, ສູດການຄິດໄລ່ສຳລັບການບີບອັດເລຂາຄະນິດຂອງຄລາວຈຸດສູນເສຍ, ການບີບອັດເລຂາຄະນິດຂອງຄລາວຈຸດເສຍ, ການບີບອັດເລຂາຄະນິດຂອງຈຸດ, ການບີບອັດເລຂາຄະນິດຂອງຈຸດ

ເອກະສານອ້າງອີງ

ອອກຄໍາເຫັນ

ທີ່ຢູ່ອີເມວຂອງເຈົ້າຈະບໍ່ຖືກເຜີຍແຜ່. ຊ່ອງຂໍ້ມູນທີ່ຕ້ອງການຖືກໝາຍໄວ້ *