TECHNOSOFT HREYFISTÝRING BC90100 Snjallstýringareining
Tæknilýsing
- Vara: BC90100 eining
- Virkni: Stærðarleiðbeiningar fyrir kælibúnað og skurðviðnám
- Application: Braking module for thermal and electrical performance under braking scenarios
- Verndarkerfi: Hitastig og rekstrarmörk
- Hitavörn: Engin innbyggð
Umsóknarlýsing
Þessi notkunarleiðbeining veitir leiðbeiningar um val og víddarstillingu á klippiviðnámi og viðbótarkæli fyrir BC90100 BX hemlunareininguna, sem tryggir áreiðanlega varma- og rafmagnsafköst við ýmsar hemlunaraðstæður.
About BC90100 BX
- The BC90100 BX unit does not apply PWM to the chopping resistor.
- When the DC bus voltage fer yfir overvoltage threshold, the drive sends an “ON” signal to the BC90100 B module. This connects the chopping resistor directly across the DC bus.
- Once the DC bus voltage fer niður fyrir ofmagntagVið e-mörk sendir drifið „SLÖKKT“ merki til að aftengja skurðarviðnámið.
BC90100 BX – Protection Features and Thermal Guidelines
Núverandi verndarkerfi:
- Fast Short-Circuit Protection:
- Triggered when the chopping current exceeds 240 A.
- Svartími: 4 μs.
- Slow Short-Circuit Protection:
- Activated when current is between 105 A and 240 A.
- Svartími: um það bil 1 sekúndu.
- Automatic Reset (Hiccup Mode):
- The short-circuit protection resets after 2 seconds.
- If the fault persists, the unit re-enters protection mode cyclically.
Thermal and Operating Limits
- The BC90100 BX unit can sustain 35 A continuously at ambient temperatures up to 40°C, without additional heatsinking.
- For higher continuous currents, an external heatsink is required.
- During operation without external heatsink, keep the baseplate temperature below 75°C.
- BC90100 BX hefur enga innbyggða hitavörn.
Rafmagns einkenni:
Internal Equivalent Resistance: 4.5 mΩ
Chopping Resistor Dimensioning
Known values
- VMOT – Nafnt árgtage of the DC motor bus
- ÍBR – Maximum regenerative current that the drives can feed back into the system during braking, under worst-case conditions.
Athugið: For a safe and conservative design, assume IBR equals the drive’s declared current limit. In worst-case braking, the drive limits current to the value set as Current Limit in EasyMotion Studio (under Protection and Limits → Drive Operation Parameters). - ICR – Desired current through the chopping resistor
Athugið: We recommend ICR = 1.1 × IBR to ensure proper energy dissipation
Calculating the Chopping Resistor Value (RCR)
Theoretical Calculation
Notaðu lögmál Ohms til að ákvarða kjörviðnámsgildi: RCR = VMOT / ICR
Example:
- VMOT = 48 V
- IBR = 10 A → ICR = 1.1 × 10 A = 11 A
- RCR = 48 V / 11 A = 4.36 Ω
Selecting a Realistic Resistor Value
Veldu næsta lægra staðlaða viðnámsgildi við fræðilegu niðurstöðuna.
Example:
- Closest lower standard resistor: RCR(real) = 3.9 Ω
- Resulting current: ICR(real) = VMOT / R CR(real) = 48 V / 3.9 Ω = 12.3 A
Determining Chopping Resistor Power Requirements
Hemlunarhegðun fer eftir gerð notkunar og álagsvirkni. Metið afl viðnámsins út frá annað hvort samfelldri eða slitróttri hemlun:
Continuous Braking (e.g., Gravitational Loads)
- Fyrir langvarandi hemlun skal meðhöndla aflsgildi viðnámsins sem nafnafl þess (PNOM):
- Power dissipated: PCR = ICR(real)² × RCR(real)
Example:
- PCR = 12.32 × 3.9 = 590.8 W
- Choose a resistor where PCR < PNOM
- A suitable option: 3.9 Ω rated at 800 W
Short-Duration Braking (Intermittent Use)
Fyrir stuttar hemlunarlotur er hægt að nota ofhleðsluafl viðnáms (POL), eins og framleiðandi tilgreinir:
- POL = k × PNOM
- Gakktu úr skugga um: PCR < POL
You must also respect average power limits for repeated braking cycles:
- tBR = Braking time
- TBR = Minimum interval between braking events
- PCR(avg) = PCR × (tBR / TBR)
- Final condition: PCR(avg) < PNOM
Example:
- tBR = 5 s
- Resistor: RS150 (150 W nominal), with k = 5
- POL = 5 × 150 W = 750 W
- PCR = 590.8 W < 750 W
Now calculate the minimum TBR:
- 150 W = (590.8 W × 5 s) / TBR → TBR ≥ 19.7 s
- Þessi uppsetning gerir kleift að hemla í 5 sekúndur á 20 sekúndna fresti með því að nota 150 W nafnafjölda skurðarviðnáms.
STÆRÐ
Dimensioning the Thermal Resistivity of the Heatsink for BC90100 BX (if required)
Known Values
- RSW – Equivalent resistance of the internal chopping switch in the BC90100 BX: RSW = 4.5 mΩ
- TSW – Maximum allowable temperature of the switch case:
- TSW = 100°C
Calculating the Required Thermal Resistivity for an Additional Heatsink
Theoretical Cooling Model
The heat transfer model is analogous to Ohm’s Law:
- Voltage → Temperature difference
- Current → Thermal power
- Resistance → Thermal resistivity
Skilgreiningar hugtaka í líkaninu:
- TSW – Temperature of the BC90100 BX switch (must remain below 100°C)
- THS – Temperature at the baseplate of the BC90100 BX
- líka - Umhverfishiti
- PSW – Power dissipated in the internal switch
- Hægri SV – Internal thermal resistance between the switch and baseplate:
- Hægri SV = 0.8°C/V
- RthHS – Thermal resistivity of the additional heatsink (this is the value to be determined)
Calculating Power Dissipated by the Switch
Formúla:
PSW = ICR(real) × ICR(real) × RSW
Example:
- For ICR(real) = 100 A:
- PSW = 100 A × 100 A × 4.5 mΩ = 45 W
Calculating Required Thermal Resistivity of the Additional Heatsink
Formúla:
- RthHS = (TSW – Tamb) / PSW – RthSW
- Þetta gefur hámarks leyfilega hitaviðnám viðbótar kælisins.
Example:
- ICR(real) = 100 A
- Tamb = 40°C
- PSW = 45 W
- TSW = 100°C
- RthSW = 0.8°C/W
- RthHS = (100°C – 40°C) / 45 W – 0.8°C/W
- RthHS = 60°C / 45 W – 0.8°C/W = 1.33 – 0.8 = 0.53°C/W
Í þessu frvampÞ.e., auka kælirinn verður að hafa varmaviðnám upp á 0.53°C/W eða lægra.
Algengar spurningar
Is thermal protection built-in for the BC90100 BX?
No, the BC90100 BX does not have built-in thermal protection.
How to select a realistic resistor value for chopping?
Choose the nearest lower standard resistor value to the theoretical result obtained using Ohm's law.
Skjöl / auðlindir
![]() |
TECHNOSOFT HREYFISTÝRING BC90100 Snjallstýringareining [pdfNotendahandbók BC90100 greindar drifeining, BC90100, greindar drifeining, drifeining, eining |