invt-logoinvt EC-PG Series PG Encoder Interface Card

invt-EC-PG-Series-PG-Encoder-Interface-Card -product

Litaelo tsa tšebeliso ea karete ea encoder ea PG

Mohlala le litlhaloso

 Khoutu ea mohlala

 Lethathamo la 1-1 Tlhaloso ea Mohlala

Letšoao Tlhaloso Ho reha example
Sehlopha sa lihlahisoa EC: Karete ea ho atolosa
Sehlopha sa karete ea boto PG: Karete ea P/G
Phetolelo ea theknoloji Indicates the generation of a technical version by using odd numbers, for example, 1, 3, and 5 indicate the 1st, 2nd, and 3rd generations of the technical version.
Khoutu
  1. Incremental encoder PG card
  2. Sin/Cos encoder PG card
  3. UVW encoder PG card
  4. Resolver PG karete
  5. Incremental encoder PG interface + pulse direction reference
  6. Absolute encoder PG card interface
Phepelo ea motlakase e sebetsang
  • 00: No power (passive) 05: 5V
  • 12: 12-15V
  • 24:24V

Litlhaloso tsa tekheniki 

Lethathamo la 1-2 Litlhaloso tsa tekheniki 

Mohlala tlhaloso EC-PG101-05 EC-PG101-12 EC-PG101-24
Phepelo ea motlakase e tsoang Phetolelo e ka fetolehangtage range: 4.75V–7V Default setting: 5V±5%Max. out put current: 300mA Supports the voltage output of 11.75V– 16V. Default: 12V±5%. Max. output current:350mA Moqtage output: 24V±5%Max. output current: 300mA
Lets'oao la ho kenya Supports the A, B, and Z signal inputs of differential, open collector, and push-pull encoders. Response speed:0–100kHz Supports the A, B, and Z signal inputs of differential, open collector, and push-pull encoders. Response speed: 0–100kHz Supports the A, B, and Z signal inputs of differential, open collector, and push-pull encoders. Response speed: 0–100kHz
Letshwao la tlhahiso Output frequency: 0–80kHzOutput type: Differential output, push-pull output, open collector output, and frequency-divided output.
Range: 1–256 Output impedance:70Ω
Output frequency: 0–80kHzOutput type: Differential output, push-pull output, open collector output, and frequency-divided output.
Range: 1–256 Output impedance:70Ω
Output frequency: 0–80kHzOutput type: Differential output, push-pull output, open collector output, and frequency-divided output. Range: 1–256 Output impedance:70Ω

Installation and dimensions of incremental encoder PG card invt-EC-PG-Series-PG-Encoder-Interface-Card - (1)

Figure 1-1 Incremental encoder PG Figure 1-2 Outline dimensions of card installation diagram incremental encoder PG card Note: When the incremental encoder PG card is used on GD300L machine, the CN3 lower-row pins of the PG card are valid.

 Litaelo tsa tšebeliso ea karete ea encoder ea PG

 Mosebetsi
You must choose a PG card when using PG vector control. The function of the PG card includes processing two channels of quadrature encoder signals and supporting the Z signal input for spindle positioning, receiving signals of differential, open collector, and push-pull encoders. Frequency-divided output can be performed for the input encoder signals. The output quantity includes two channels of differential signals. You can choose to output push-pull signals or open collector signals through jumper J1 or J2 according to your actual use. 1.2.2 Terminal and switch description
The incremental encoder PG card has two 2*4P user wiring terminals. See the figure.

invt-EC-PG-Series-PG-Encoder-Interface-Card - (2)

PWR and COM1 are for encoder working power output; IA+, IA-, IB+, IB-, IZ+, and IZ- are encoder signal input terminals; OA+, OA-, OB+, OB- are 5V differential frequency-divided signal output terminals, while OA, OB, and COM1 are frequency-divided push-pull signal and open collector signal output terminals (the output signal type is selected by jumper J1 or J2); the PG card does not connect PE to the earth internally, you can ground it during use.

The frequency division coefficient of the incremental encoder PG card is determined by the switch on the card. The switch has 8 bits, and the frequency division coefficient is determined by adding 1 to the binary number that the switch represents. The place labeled with “1” is the low binary bit, and the one labeled with “8” is the high binary bit. When the switch is turned to ON, the bit is valid, indicating “1”; otherwise, the bit indicates “0”. See the following table for frequency division coefficients.

Lethathamo la 1-3 Li-coefficients tsa karohano ea khafetsa

Decimal Binary Khafetsa karohano coefficient
0 00000000 1
1 00000001 2
2 00000010 3
m m+1
255 11111111 256

Wiring principles 

invt-EC-PG-Series-PG-Encoder-Interface-Card - (3)

Litlhokomelo tsa wiring

  1. A PG card signal cable and a power cable must be routed separately and disallow parallel routing.
  2. To avoid interference from encoder signals, use a shielded cable for the PG card signal cable.
  3. The shield layer of the encoder shield cable should be connected to the earth (such as the PE of VFD), and it must be connected to earth only at one end to avoid signal interference.
  4. If the PG card uses frequency-divided output when connecting to an external power supply, the voltage should be less than 24V; otherwise the PG card will be damaged.
  5. O ka seta bophahamo ba modumotage by adjusting the 12–15V incremental encoder PG card potentiometer (clockwise for voltage eketseha) ho ea ka litlhoko tsa sebele, 'me matla ha aa lokela ho ba a maholo haholo ha a potoloha potentiometer.

 Application connection

Input application connection

  1. Differential output encoder connection invt-EC-PG-Series-PG-Encoder-Interface-Card - (4)
  2. Open collector output encoder connection invt-EC-PG-Series-PG-Encoder-Interface-Card - (5)
  3. Push-pull output encoder connection

invt-EC-PG-Series-PG-Encoder-Interface-Card - (6)Note: When the spindle positioning VFD is supported, the Z signal needs to be connected, of which the wiring method is similar to that for the A and B signals.

Output application connection

  1. PG card frequency-divided differential output connection invt-EC-PG-Series-PG-Encoder-Interface-Card - (7)
  2. PG card frequency-divided open collector output connectioninvt-EC-PG-Series-PG-Encoder-Interface-Card - (8)Figure 1-9 Wiring diagram of PG card frequency-divided open collector output
    Note: During open collector output, PWR at J1 and that at J2 are short connected to COA and COB.
  3. PG card frequency-divided push-pull output connection

invt-EC-PG-Series-PG-Encoder-Interface-Card - (9) Hlokomela:

  • During push-pull output, PWR at J1 and that at J2 are short connected to HOA and HOB.
  • Incremental encoder PG cards are mainly used to closed-loop vector control on asynchronous motors.

Litaelo tsa tšebeliso ea karete ea Sin/Cos le UVW encoder PG

 Model description and technical parameters
See Table 2-1 for the specifications of Sin/Cos encoder and UVW encoder PG cards.

Lethathamo la 2-1 Litekanyetso tsa tekheniki

Mohlala tobilengion EC-PG102-05 EC-PG103-05
Karohano ea khafetsa coefficient 1 (Without afrequency-division switch) 1–256 (With frequency-division switch)
Phepelo ea motlakase e tsoang Phetolelo e ka fetolehangtagboholo: 4.75V–7V
Default setting: 5V±5%
Max. tlhahiso ea hona joale: 300mA
Phetolelo e ka fetolehangtagboholo: 4.75V–7V
Default setting: 5V±5%
Max. tlhahiso ea hona joale: 300mA
Letshwao la tlhahiso Output form: Two quadrature frequency division differential outputs, and one open collector output
Open collector output impedance: 70Ω
Output form: Two quadrature differential outputs, and one open collector output
Open collector output impedance: 70Ω

U ka khetha bophahamo ba modumotage according to your actual use. When transmitting encoder signals over long distances, the output supply voltage can be adjusted using a potentiometer (the voltage adjustment method is the same as that for the incremental encoder card) to extend the wiring distance.

 Installation and dimensions of UVW encoder PG card invt-EC-PG-Series-PG-Encoder-Interface-Card - (10) invt-EC-PG-Series-PG-Encoder-Interface-Card - (11)

Hlokomela:

  • The UVW encoder PG card is installed in the same way and position as the incremental encoder PG card. It corresponds to a double row of 2 x 10 pins.
  • The Sin/Cos encoder PG card has the same size and mounting method as the UVW encoder PG card, except that it does not have a DIP switch for frequency division, the DP15 female connector is replaced with terminal wiring, and the potentiometer position is R101.

Terminal and switch description
Karete ea PG ea encoder ea UVW e na le sehokelo se le seng sa li-cable le li-terminals tse supileng tsa basebelisi, joalo ka ha ho bonts'itsoe setšoantšong sa 2-3.

invt-EC-PG-Series-PG-Encoder-Interface-Card - (12)Karete ea Sin/Cos encoder PG e na le terminal e le 'ngoe ea mohala oa lets'oao le terminal e le 'ngoe ea mosebelisi, joalo ka ha ho bonts'itsoe ho Setšoantšo sa 2-6.

invt-EC-PG-Series-PG-Encoder-Interface-Card - (13)

Setšoantšo sa 2-6 Wiring interface le li-terminals tsa karete ea Sin/Cos PG
OA+, OA-, OB+, and OB- are differential output signal terminals (LVDS differential level), while OA, OB, and COM1 are open collector signal output terminals.

Hlokomela:

  • The PG card does not connect PE to the earth internally, you can ground it during use.
  • The Sin/Cos encoder PG card and UVW encoder PG card have the similar output signal wiring method as the incremental encoder PG card, but they do not support push-pull output.

The DB15 three-row female interface is the encoder signal input interface. Table 2-2 shows the PG card interface signal arrangement sequence.

Lethathamo la 2-2 DB15 tatellano ea tlhophiso ea pontšo ea sebopeho 

Khokahano ea karete ea PG UVW
5 A+
6 A-
8 B+
1 B-
3 Z+
4 Z-
11 U+
10 U-
12 V+
13 V-
9 PWR
7 GND
14 W
15 W-
2 Ha ho letho

When applying either of the UVW PG card, you need to insert the DB15 male connector of the UVW encoder into the DB15 female connector of the PG card. Setting the frequency division coefficient of a UVW encoder PG card is similar to that for an incremental encoder PG card. For details about frequency division coefficients, see Table 1-3.
Note: UVW encoder PG cards can support 5V incremental encoders with differential signal processing, have the similar wiring method with that for incremental encoder PG cards, and mainly use wiring ports include the A, B, Z, PWR, and GND ports on DB15.

Absolute encoder PG card use instructions

Model description and technical parameters
See Table 1-1 for the specifications of absolute encoder PG card (mainly applicable to ECN1313, ECN413 encoders).

Lethathamo la 3-1 Litekanyetso tsa tekheniki

Mohlalatlhaloso EC-PG106-05
Karohano ea khafetsa coefficient 1 (Ntle le phetoho ea frequency-division)
Lets'oao la ho kenya Supports two differential A and B (sine signal, 1Vpp) inputs with the response speed of 0–50kHz;
Supports the transmission of absolute position value signal, fault and other information in Endat2.1 protocol.
Output powersupply Default setting: 5V±5%
Max. tlhahiso ea hona joale: 300mA
Letshwao la tlhahiso Output form: Two quadrature frequency division differential outputs (LVDS electrical level), and one open collector output
Open collector output impedance: 70Ω

 Installation and dimensions of absolute encoder PG card 

invt-EC-PG-Series-PG-Encoder-Interface-Card - (14)Note: The absolute encoder PG card is installed in the same way and position as the Sin/Cos encoder PG card. It corresponds to a double row of 2 x 10 pins.

 Terminal interfaces
The absolute encoder PG card has one signal cable interface and seven user terminals, as shown in Figure 3-3.

A+ A- B+ B- PWR OA+ OA- OB+ OB-
DATA + Lintlha CLK+ CLK- GND OA OB COM1 PE

Setšoantšo sa 3-3 Boema-kepe le liteishene tsa karete ea PG
OA+, OA-, OB+, and OB- are differential output (LVDS) signal terminals, while OA, OB, and COM1 are open collector signal output terminals.
Note: The PG card does not internally connect the PE to the earth, and you need to connect PE to the earth during use.

Ho laela

Related function codes (taking GD300L an example)
The function group numbers correspond to the level-1 menus, the function codes correspond to the level-2 menus, and the function parameters correspond to the level-3 menus.

Tafole ea khoutu ea ts'ebetso e na le:
Kholomo ea 1 "Khoutu ea tšebetso": Khoutu ea sehlopha sa tšebetso le paramethara.
Kholomo 2 "Lebitso": Lebitso le felletseng la paramethara ea ts'ebetso.
Column 3 “Description”: Detailed description of the function parameter. When the default parameter restoring operation is performed, the function code parameters are refreshed and reset to their factory values. However, the actual detected parameter values or recorded values will not be refreshed.
Kholomo 4 "Default": Boleng ba pele bo behiloe fekthering.
Column 5 “Modify”: Whether the parameter can be modified, and conditions for the modification.

  • “○” indicates that the value of the parameter can be modified when the VFD is in stopped or running state.
  • “◎” indicates that the value of the parameter cannot be modified when the VFD is in running state.
  • “●” indicates that the value of the parameter is detected and recorded, and cannot be modified.
Mosebetsi khoutu Lebitso Tlhaloso Ea kamehla Fetola
P00 sehlopha Mesebetsi ea motheo
  • 0: SVC
P00.00 Mokhoa oa ho laola lebelo
  • 1: FVC
  • 2: V/F control
  • 3: Closed-loop vector control
2
P00.01 Channel of 0: Keypad (the indicator is running commands 1
Mosebetsikhoutu Lebitso Tlhaloso Ea kamehla Fetola
tima)
  1. Terminal (the indicator blinks)
  2. Communication (the indicator is on)
  3. CAN (the indicator is on)
P00.02 Rated speed ofthe lift 0.100–4.000m/s 1.500m/s
P00.03 Khetho ea taelo ea lebelo
  • 0: senotlolo
  • 1: AI1
  • 2: AI2
  • 3: Multi-step speed running 4: Remote communication 5: AI1 tracking running
  • 6: KA
  • communication-based setting
  • 7: CAN communication-based reference
3
P00.04 Max. sekhahla sa tlhahiso 10.00-600.00Hz 50.00Hz
P00.05 Keypad setspeed 0m/s–P00.02 (lift ratedspeed) 1.500m/s
P00.09 Autotuning parameter parameter
  • 0: Ha ho ts'ebetso
  • 1: Paramethara e potolohang ka koloi e se nang letho ea asynchronous motor
  • 2: Paramethara e tsitsitseng e ikemela ho enjene ea asynchronous
  • 3: Rotating parameter auto tuning on empty-load synchronous motor
  • 4: Static parameter auto tuning on synchronous motor
  • 5: Rotating parameter auto tuning on synchronous motor with load
0
Mosebetsi khoutu Lebitso Tlhaloso Ea kamehla Fetola
P00.10 Phetoho ea paramethara ea ts'ebetso
  • 0: Ha ho ts'ebetso
  • 1: Restore default values 2: Clear fault records
  • 3: Roll back function parameters, reading function parameters that are saved when the LSB of
  • P07.01 e behiloe ho 5.
0
P2 sehlopha Motor parameters
P02.00 Khetho ea mofuta oa koloi
  • 0: Asynchronous motor (AM)
  • 1: Synchronous motor (SM)
0
P02.01 Matla a lekantsoeng ka motlakase
  • 0.1 ~ 3000.0kW
Mohlala o ne o itšetlehile
Mosebetsi khoutu Lebitso Tlhaloso Ea kamehla Fetola
P02.02 Maqhubu a lekantsoeng ka motlakase 0.01Hz–P00.04 (Max. output frequency) 50.00Hz
P02.03 lebelo la koloi 1 ~ 36000rpm Mohlala o ne o itšetlehile
P02.04 Mothapo o lekantsoeng voltage 0 ~ 1200V Mohlala o ne o itšetlehile
P02.05 Enjene e lekanyelitsoe hona joale 0.8~6000.0A Mohlala o ne o itšetlehile
P02.14 Bophara ba pulley 100-2000 limilimithara 500 limilimithara
P02.15 DEC tekanyo 1~460V 1.00
P03 sehlopha sa taolo ea Vector
P03.00 Speed loop proportional gain1 0-200 20
P03.01 Nako ea bohlokoa ea loop 1 0.000-10.000s 0.200s
P03.02 Low-point frequency for switching 0.00Hz~P03.05 5.00Hz
P03.03 Speed loop proportional gain2 0-200 20
P03.04 Nako ea bohlokoa ea loop 2 0.000-10.000s 0.200s
P03.05 High-point frequency for switching P03.02~P00.04 (Max. maqhubu a tlhahiso) 10.00Hz
Mosebetsi khoutu Lebitso Tlhaloso Ea kamehla Fetola
P03.06 Speed loop out put filter 0–8 (corresponds to 0–2^8*125μs) 0
P03.09 Current-loop proportional coefficient Hlokomela:
  1. These two parameters adjust the PI adjustment parameter of the current loop which affects the dynamic response speed and control accuracy directly. Generally, keep the default values.
  2. Applicable to SVC mode 0 (P00.00=0) only. Setting range: 0–20000
1000
P03.10 Current-loop integral coefficient I 1000
P20 sehlopha sa Encoder parameters
P20.00 Encoder type encoder pulse count
  • 0: Keketseho ea khouto (AB)
  • 1: ABZUVW encoder
  • 2: Sesebelisoa sa ho rarolla mathata
  • 3: Sin/Cos encoder ntle le matšoao a CD
  • 4: Sin/Cos encoder e nang le matšoao a CD
  • 5: EnDat
0
P20.01 Number of pulses generated  when the encoder revolves for one  circle.
Setting range: 0–60000
1024
Mosebetsi khoutu Lebitso Tlhaloso Ea kamehla Fetola
P20.02 Tataiso ea encoder Ones: AB direction 0: Forward1: Reverse Tens: Reserved
Hundreds: CD/UVW pole signal direction0: Forward1: Reverse
0x000
P20.03 Detection time of encoder disconnection fault Indicates the detection time of encoder disconnection fault
Setting range: 0.0–10.0s
1.0s
P20.04 Detection time of encoder reversal fault Indicates the detection time of encoder reversal fault. Setting range: 0.0–100.0s 0.8s
P20.05 Filter times of encoder detection Setting range: 0x000– 0x999
Ones: Low-speed filter times, corresponding to 2^(0–9)×125μs
Tens: High-speed filter times, corresponding to 2^(0–9)×125μs.
Hundreds: Subdivision speed filter times, corresponding to 2^(0– 9)×125μs.
0x133
Mosebetsi khoutu Lebitso Tlhaloso Ea kamehla Fetola
P20.09 Initial angle of Z pulse Indicates the relative electrical angle of encoder Z pulse to motor magnetic pole position.Setting range: 0.00–359.99 0
P20.10 Pole angle ea pele Indicates the relative electrical angle of encoder position to motor magnetic pole position. Setting range: 0.00–359.99 0

Examples

Commissioning procedure for closed-loop vector control on AMs

  1. Set P0.09=1 to restore to default settings.
  2. Set P0.03, P0.04 and motor nameplate parameters in group P02.
  3. Verify whether the encoder is installed and set properly. Slowly rotate the motor or manually oscillate the motor. If the encoder is a resolver, the value of Pb.02 or Pb.04 should increase or decrease uniformly within the range of 0 to 359.9, indicating correct encoder wiring.

Commissioning procedure for closed-loop vector control on SMs|

  1. Set P0.09=1 to restore to default settings.
  2. Set P0.00=1 (FVC), set P0.03=3, P0.04, and motor nameplate parameters in group P2.
  3. Set the encoder parameters P4.00 and P4.01. When the encoder is a resolver-type encoder, set the encoder pulse count value to (resolver pole pair count x 1024). For example, if the pole pair count is 4, set P4.01 to 4096.
  4. Verify whether the encoder is installed and set properly.
    Slowly rotate the motor. If the encoder is a resolver, the value of Pb.02 or Pb.04 should increase or decrease uniformly within the range of 0 to 359.9, indicating correct encoder wiring.
  5. Autotune the initial position of magnetic pole.
    Set P0.08 to 1 (rotary autotuning) or 2 (static autotuning), and press the RUN key to run the VFD.
    • Rotary autotuning (P0.08=1)
      Detect the present magnetic pole position when autotuning starts, and then accelerate to XX Hz (depending on the set speed), and then decelerate to stop.
      During autotuning process, if a PCE fault occurs, indicating an encoder disconnection or reversed encoder wiring, repeat step (4). If no issues are found, set P4.02 = 1 (opposite to the initial value) and restart autotuning.
    • Static autotuning
      The autotuning process only detects the present pole position without rotating the motor. The magnetic pole position obtained from autotuning is saved to P4.03 automatically.
      When using static autotuning, it is recommended to perform the process multiple times. If the identified pole angle varies by more than 30° between attempts, check whether Pb.03 (SM static identification current) is close to 100%. If not, adjust P4.10 (static identification current) and repeat the static autotuning process until Pb.03 is close to 100%.
  6. Perform closed-loop vector pilot-run.
    If current oscillation (noise) occurs, properly adjust the current loop parameters P3.08 and P03.09 (different encoder and motor types require appropriate PI parameters. It is recommended to start with smaller values and gradually increase them until the current oscillation and noise disappear). If speed oscillation occurs, properly adjust the speed loop parameters P3.00 and P3.04. Similarly, start with smaller values and increase gradually until the speed becomes stable. If current oscillation noise occurs during low speed running, adjust P3.02.

Note: You must re-determine P4.02 (encoder direction) and perform magnetic pole position autotuning again if the motor or encoder wires are swapped.

Lihlahisoa ke tsa Shenzhen INVT Electric Co., Ltd.

Likhamphani tse peli li laetsoe ho etsa: (Bakeng sa khoutu ea sehlahisoa, sheba sebaka sa 2/3 sa S/N setlapeng sa mabitso.)
INVT Power Electronics (Suzhou) Co., Ltd. (khoutu ea tšimoloho: 06)
Aterese: No. 1 Kunlun Mountain Road, Saense & Technology Town, Setereke sa Gaoxin, Suzhou, Jiangsu, Chaena

Industrial Automation: HMI Energy & Power:

  • Sistimi ea Taolo e Bohlale ea Elevator
  • UPS
  • Koloi e Ncha ea Matla
  • Sistimi ea Powertrain
  • E Ncha ea Koloi ea Matla
  • PLC VFD Rail Transit
  • Traction System DCIM Solar Inverter
  • Sistimi ea Servo
  • SVG
  • Sistimi e Ncha ea ho tjhaja Koloi ea Matla

LBH

What should I do if the PG card does not power up?

Check the power supply connection and ensure that the correct voltage is being supplied to the card. Refer to the manual for detailed troubleshooting steps.

Can I use the PG card with different types of encoders?

Yes, the PG card supports various types of encoders including A, B, and Z signal inputs of differential, open collector, and push-pull encoders.

Litokomane / Lisebelisoa

invt EC-PG Series PG Encoder Interface Card [pdf] Buka ea Taelo
01, 02, 03, 04, 05, 06, EC-PG Series PG Encoder Interface Card, EC-PG Series, PG Encoder Interface Card, Encoder Interface Card, Interface Card

Litšupiso

Tlohela maikutlo

Aterese ea hau ea lengolo-tsoibila e ke ke ea phatlalatsoa. Libaka tse hlokahalang li tšoailoe *