Kaisai Heat Pump Warranty Guidelines
This document provides installation guidelines for Kaisai brand heat pumps to ensure warranty status. Detailed instructions can be found on www.kaisai.com.
Installation acceptance is only possible after all requirements are met. Failure to comply will result in rejection of the installation by the guarantor until the indicated corrections are made.
1. Before System Startup
1.1 Indoor Unit Installation
- Select appropriate water pipe diameters.
- Position the unit according to the installation manual.
- Install shut-off valves and unions before and after the hydraulic module.
- Install shut-off valves before and after components requiring maintenance (e.g., buffers, tanks, filters, water pumps, 3-way valves).
- Check the pre-charge pressure in expansion vessels.
- Flush the hydraulic system.
- Perform a hydraulic system leak test (2.5 bar/24 h).
- Fill and vent the hydraulic system.
- Set and adjust the static pressure value.
1.2 Outdoor Unit Installation
- Remove the heat exchanger cover.
- Remove the compressor transport lock (for selected models).
- Position the unit according to the installation manual.
- Designate a safety zone for devices operating with R290 refrigerant.
- Place and level the unit on a foundation/support structure.
- Level the unit.
- Ensure free condensate drainage to the ground. If not possible, create a condensate drain with a heating cable.
- Position the unit at least 40 cm above ground level.
1.3 Hydraulic System Installation
Diagram 1: Schematic of an exemplary Split heat pump installation
(Note: The diagram itself is not included here, but its description is provided.)
2. Selection of Electrical Cables and Protection
- Each unit (indoor and outdoor) must have independent power supply.
- Install a residual current device (RCD) on the electrical installation.
- Install overcurrent protection (one size higher than specified in the table is permissible).
- Use shielded cable with a core diameter above 0.5 mm² for connecting the indoor and outdoor units (for split heat pumps).
- Use a 5-wire shielded cable for communication between the outdoor unit and the controller (for monoblock heat pumps).
- Install contactors and overcurrent protection for circulation pump circuits (regardless of pump power) and electric heaters.
WARNING! For installations with multi-core copper cable, the maximum distance from the power supply to the receiver is 20 meters. If this distance is exceeded, recalculate voltage drops and select appropriate wire cross-sections and overcurrent protection. Cables routed outside the building must be placed in PVC conduits, channels, or tunnels.
2.1 MONOBLOK R32 Heat Pumps - Combined Heater and Compressor Power Supply
Model | Electrical Heater Power [kW] | Heater Stages [n] | Total Power Consumption [kW] | Power Supply [V/-/Hz] | Overcurrent Protection [A] | Number x Wire Cross-section [mm²] |
---|---|---|---|---|---|---|
R32 KHC-06RY1-B | 3 | 1 | 5,7 | 230/1/50 | 25 | 3 x 4 mm² |
R32 KHC-08RY3-B | 6 | 2 | 9,3 | 400/3/50 | 25 | 5 x 4 mm² |
9 | 3 | 12,3 | 400/3/50 | 25 | 5 x 4 mm² | |
R32 KHC-10RY3-B | 3 | 1 | 6,6 | 400/3/50 | 25 | 5 x 4 mm² |
6 | 2 | 9,6 | 400/3/50 | 25 | 5 x 4 mm² | |
9 | 3 | 12,6 | 400/3/50 | 25 | 5 x 4 mm² | |
R32 KHC-12RY3-B | 3 | 1 | 8,3 | 400/3/50 | 25 | 5 x 4 mm² |
6 | 2 | 11,3 | 400/3/50 | 25 | 5 x 4 mm² | |
9 | 3 | 14,3 | 400/3/50 | 25 | 5 x 4 mm² | |
R32 KHC-14RY3-B | 3 | 1 | 8,5 | 400/3/50 | 25 | 5 x 4 mm² |
6 | 2 | 11,5 | 400/3/50 | 25 | 5 x 4 mm² | |
9 | 3 | 14,5 | 400/3/50 | 25 | 5 x 4 mm² | |
R32 KHC-16RY3-B | 3 | 1 | 9,3 | 400/3/50 | 25 | 5 x 4 mm² |
6 | 2 | 12,3 | 400/3/50 | 25 | 5 x 4 mm² | |
9 | 3 | 15,3 | 400/3/50 | 25 | 5 x 4 mm² | |
R32 KHC-22RX3 | - | - | 11,5 | 400/3/50 | 20 | 5 x 4 mm² |
R32 KHC-30RX3 | - | - | 17,5 | 400/3/50 | 25 | 5 x 4 mm² |
Table 9 - Overcurrent Protection and Power Cable Cross-sections - Combined Power Supply
2.2 MONOBLOK R32 Heat Pumps - Separate Heater and Compressor Power Supply
Separate power supply is possible using the SIMET ZSG1-10.0N connector or an equivalent.
Diagram 2: Method of separating compressor and heater power supply - 6 kW model
Diagram 3: Method of separating compressor and heater power supply - 8-10 kW models
Diagram 4: Method of separating compressor and heater power supply - 12-16 kW models
Model | Compressor/Heater | Heater Stages [n] | Max. Electrical Power [kW] | Power Supply [V/-/Hz] | Overcurrent Protection [A] | Number x Wire Cross-section [mm²] |
---|---|---|---|---|---|---|
R32 KHC-06RY1-B | Compressor | - | 2,7 | 230/1/50 | 16 | 3 x 2,5 mm² |
Heater | 1 | 3 | 230/1/50 | 16 | 3 x 2,5 mm² | |
R32 KHC-08RY3-B | Compressor | - | 3,4 | 230/1/50 | 16 | 3 x 2,5 mm² |
Heater | 1 | 3 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 2 | 6 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 3 | 9 | 400/3/50 | 16 | 5 x 2,5 mm² | |
R32 KHC-10RY3-B | Compressor | - | 3,7 | 230/1/50 | 16 | 3 x 2,5 mm² |
Heater | 1 | 3 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 2 | 6 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 3 | 9 | 400/3/50 | 16 | 5 x 2,5 mm² | |
R32 KHC-12RY3-B | Compressor | - | 5,5 | 400/3/50 | 10 | 5 x 2,5 mm² |
Heater | 1 | 3 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 2 | 6 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 3 | 9 | 400/3/50 | 16 | 5 x 2,5 mm² | |
R32 KHC-14RY3-B | Compressor | - | 5,8 | 400/3/50 | 10 | 5 x 2,5 mm² |
Heater | 1 | 3 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 2 | 6 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 3 | 9 | 400/3/50 | 16 | 5 x 2,5 mm² | |
R32 KHC-16RY3-B | Compressor | - | 6,2 | 400/3/50 | 12 | 5 x 2,5 mm² |
Heater | 1 | 3 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 2 | 6 | 400/3/50 | 16 | 5 x 2,5 mm² | |
Heater | 3 | 9 | 400/3/50 | 16 | 5 x 2,5 mm² |
Table 10 - Overcurrent Protection and Power Cable Cross-sections - Separate Power Supply
2.3 MONOBLOK R290 Heat Pumps - Power Supply
Model | Electrical Heater Power [kW] | Heater Stages [n] | Total Power Consumption [kW] | Power Supply [V/-/Hz] | Overcurrent Protection [A] | Number x Wire Cross-section [mm²] |
---|---|---|---|---|---|---|
R290 KHY-12PY3 | - | - | 4,7 | 400/3/50 | 10 | 5 x 2,5 mm² |
R290 KHY-15PY3 | - | - | 9,4 | 400/3/50 | 16 | 5 x 2,5 mm² |
Table 11 - Overcurrent Protection and Power Cable Cross-sections
2.4 SPLIT R32 Heat Pumps - Outdoor Units
Model | Max. Electrical Power of Unit [kW] | Power Supply [V/-/Hz] | Overcurrent Protection [A] | Number x Wire Cross-section [mm²] |
---|---|---|---|---|
R32 KHA-06RY1-B | 2,7 | 230/1/50 | 16 | 3 x 2,5 mm² |
R32 KHA-08RY1-B | 3,3 | 230/1/50 | 16 | 3 x 2,5 mm² |
R32 KHA-10RY1-B | 3,6 | 230/1/50 | 16 | 3 x 2,5 mm² |
R32 KHA-12RY3-B | 5,4 | 400/3/50 | 10 | 5 x 2,5 mm² |
R32 KHA-14RY3-B | 5,7 | 400/3/50 | 10 | 5 x 2,5 mm² |
R32 KHA-16RY3-B | 6,1 | 400/3/50 | 12 | 5 x 2,5 mm² |
Table 12 - Overcurrent Protection and Power Cable Cross-sections
2.5 SPLIT R32 Heat Pumps – Hydraulic Modules with/without DHW Tank
Model | Electrical Heater Power [kW] | Heater Stages [n] | Total Power Consumption [kW] | Power Supply [V/-/Hz] | Overcurrent Protection [A] | Number x Wire Cross-section [mm²] |
---|---|---|---|---|---|---|
KMK-60RY1 | 3 | 1 | 3,09 | 230/1/50 | 16 | 3 x 2,5 mm² |
3 | 1 | 3,09 | 400/3/50 | 16 | 5 x 2,5 mm² | |
KMK-100RY3 | 6 | 2 | 6,09 | 400/3/50 | 16 | 5 x 2,5 mm² |
9 | 3 | 9,09 | 400/3/50 | 16 | 5 x 2,5 mm² | |
KMK-160RY3 | 3 | 1 | 3,09 | 400/3/50 | 16 | 5 x 2,5 mm² |
6 | 2 | 6,09 | 400/3/50 | 16 | 5 x 2,5 mm² | |
9 | 3 | 9,09 | 400/3/50 | 16 | 5 x 2,5 mm² | |
KMK-190L-100RY1 | 3 | 1 | 3,10 | 230/1/50 | 16 | 3 x 2,5 mm² |
3 | 1 | 3,10 | 400/3/50 | 16 | 5 x 2,5 mm² | |
KMK-240L-100RY3 | 6 | 2 | 6,10 | 400/3/50 | 16 | 5 x 2,5 mm² |
9 | 3 | 9,10 | 400/3/50 | 16 | 5 x 2,5 mm² | |
KMK-240L-160RY3 | 3 | 1 | 3,10 | 400/3/50 | 16 | 5 x 2,5 mm² |
6 | 2 | 6,10 | 400/3/50 | 16 | 5 x 2,5 mm² | |
9 | 3 | 9,10 | 400/3/50 | 16 | 5 x 2,5 mm² |
Table 13 - Overcurrent Protection and Power Cable Cross-sections
WARNING! For installations with multi-core copper cable, the maximum distance from the power supply to the receiver is 20 meters. If this distance is exceeded, recalculate voltage drops and select appropriate wire cross-sections and overcurrent protection. Cables routed outside the building must be placed in PVC conduits, channels, or tunnels.
3. Water Quality Requirements
Parameter | Requirements for Tap Water |
---|---|
Temperature | Below 60°C |
pH | 7-9 |
Alkalinity | 60 mg/l < HCO₃ < 300 mg/l |
Conductivity | < 500 μS/cm |
Hardness | 3.5 to 8.4 °dH |
Chloride Content | < 200 mg/l at 60°C |
Sulfate Content | [SO₄²⁻] < 100 mg/l and [HCO₃⁻]/[SO₄²⁻] > 1 |
Nitrate Content | NO₃⁻ < 100 mg/l |
Chlorine Content | < 0.5 mg/l |
Glycol Concentration | < 30% |
Table 2 - Water Quality Requirements - Source VDI 2035
CAUTION! Do not soften water below 3.5°dH. Water that is too soft can damage the installation.
Correct Hydraulic System Installation
- Install a magnetic filter (min. 9000 Gauss) on the heat pump inlet. If the magnetic filter has a mesh filter, the mesh density must be 500 microns or 80 mesh per 1 cm².
- If the magnetic filter does not have a mesh filter, use a separate mesh filter on the heat pump inlet with a mesh density of 500 microns or 80 mesh per 1 cm².
- Install the peak load source:
Heat Pump Model | Minimum Peak Load Source |
---|---|
R290 MODEL 12 | 6 kW; 400V |
R290 MODEL 15 | 6 kW; 400V |
Table 3 - Peak Load Source
- Flush the hydraulic system (use preparations suitable for the materials and components used in the installation).
- Perform a hydraulic system leak test (2.5 bar/24h).
- Fill and vent the hydraulic system (use a corrosion inhibitor).
- Ensure a minimum water volume for stable operation during periods of low output and for defrost cycles:
Heat Pump Model | Minimum Water Volume |
---|---|
R32 MODEL 06/08/10 | 80 L |
R32 MODEL 12/14/16 | 100 L |
R32 MODEL 22/30 | 200 L |
Table 4 - Minimum Water Volume
- Ensure buffer tank installation:
Heat Pump Model | Minimum Buffer Tank |
---|---|
R290 MODEL 12 | 200 L |
R290 MODEL 15 | 250 L |
Table 5 - Minimum Buffer Tank
- Ensure minimum DHW heat exchanger surface area:
Heat Pump Model | Minimum DHW Heat Exchanger Surface Area |
---|---|
R32 MODEL 06/08/10 | 1.4 m² (316L steel) / 2.0 m² (enamel) |
R32 MODEL 12/14/16 | 1.6 m² (316L steel) / 2.5 m² (enamel) |
R32 MODEL 22/30 | 3.5 m² (316L steel) / 5.0 m² (enamel) |
R290 MODEL 12 | 1.9 m² (316L steel) / 2.8 m² (enamel) |
R290 MODEL 15 | 2.8 m² (316L steel) / 3.2 m² (enamel) |
Table 6 - Minimum DHW Heat Exchanger Surface Area
- Recommended minimum KVS for 3-way valve:
Heat Pump Model | Recommended Minimum KVS for 3-Way Valve |
---|---|
R32 MODEL 06 | 6m³/h |
R32 MODEL 08/10 | 8m³/h |
R32 MODEL 12/14/16 | 11m³/h |
R32 MODEL 22/30 | 16m³/h |
R290 MODEL 12/15 | 11m³/h |
Table 7 - Recommended Minimum KVS for 3-Way Valve
- Ensure nominal flow rate:
Heat Pump Model | Nominal Flow Rate | Minimum Flow Rate |
---|---|---|
R32 MODEL 06 | 1.09 m³/h | 0.98 m³/h |
R32 MODEL 08 | 1.44 m³/h | 1.30 m³/h |
R32 MODEL 10 | 1.72 m³/h | 1.55 m³/h |
R32 MODEL 12 | 2.08 m³/h | 1.87 m³/h |
R32 MODEL 14 | 2.49 m³/h | 2.24 m³/h |
R32 MODEL 16 | 2.73 m³/h | 2.46 m³/h |
R32 MODEL 22 | 3.78 m³/h | 3.40 m³/h |
R32 MODEL 30 | 5.18 m³/h | 4.66 m³/h |
R290 MODEL 12 | 1.70 m³/h | 1.53 m³/h |
R290 MODEL 15 | 2.90 m³/h | 2.61 m³/h |
Table 8 - Minimum Flow Rate
Absence of minimum flow rate for a given heat pump model is grounds for rejection of the device.
2.6 MONOBLOK / SPLIT R32 Heat Pumps – Circulation Pump Contactor Distribution Board
Diagram 5: Electrical diagram of the circulation pump contactor distribution board
Legend for Diagram 5:
- P_C - mixing circulation pump
- P_O - primary circulation pump
- P_S - solar circulation pump
- P_D - DHW circulation pump