ST TSX631, TSX632, TSX634, TSX631A, TSX632A, TSX634A
Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
Datasheet - production data
Related products
- See TSX56x or TSX92x series for higher gain bandwidth products (900 kHz or 10 MHz)
Applications
- Industrial signal conditioning
- Automotive signal conditioning
- Active filtering
- Medical instrumentation
- High impedance sensors
Description
The TSX63x and TSX63xA series of operational amplifiers offer low voltage operation and rail-to-rail input and output. TSX631 is the single version, TSX632 the dual version and TSX634 the quad version, with pinouts compatible with industry standards.
The TSX63x and TSX63xA series offer a 200 kHz gain bandwidth product while consuming 60 μA maximum at 16 V.
The devices are housed in the tiniest industrial packages.
These features make the TSX63x and TSX63xA family ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease the use in harsh automotive applications.
Features
- Low power consumption: 60 μA max at 16 V
- Supply voltage: 3.3 V to 16 V
- Rail-to-rail input and output
- Gain bandwidth product: 200 kHz typ
- Low offset voltage:
- - 500 μV max for "A" version
- - 1 mV max for standard version
- Low input bias current: 1 pA typ
- Automotive qualification
Benefits
- Power savings in power-conscious applications
- Easy interfacing with high impedance sensors
Table 1. Device summary
Op-amp version | Standard VIO | Enhanced VIO |
Single | TSX631 | TSX631A |
Dual | TSX632 | TSX632A |
Quad | TSX634 | TSX634A |
Package pin connections
Figure 1. Pin connections for each package (top view)
Single
SOT23-5 (TSX631)
Dual
DFN8 2x2 (TSX632)
MiniSO-8 (TSX632)
Quad
QFN16 3x3 (TSX634)
TSSOP14 (TSX634)
Absolute maximum ratings and operating conditions
Table 2. Absolute maximum ratings (AMR)
Symbol | Parameter | Value | Unit | |
VCC | Supply voltage(1) | 18 | V | |
Vid | Differential input voltage (2) | ±VCC | ||
Vin | Input voltage(3) | VCC-0.2 to VCC+ 0.2 | V | |
Iin | Input current(4) | 10 | mA | |
Tstg | Storage temperature | -65 to +150 | °C | |
Rthja | Thermal resistance junction to ambient(5)(6) | SOT23-5 | 250 | °C/W |
DFN8 2x2 | 120 | |||
MiniSO-8 | 190 | |||
QFN16 3x3 | 80 | |||
TSSOP14 | 100 | |||
Rthjc | Thermal resistance junction to case | DFN8 2x2 | 33 | °C/W |
QFN16 3x3 | 30 | |||
Tj | Maximum junction temperature | 160 | °C | |
ESD | HBM: human body model(7) | 4 | kV | |
MM: machine model(8) | 200 | V | ||
CDM: charged device model(9) | 1.3 | kV | ||
Latch-up immunity | 200 | mA |
(1) All voltage values, except the differential voltage are with respect to network ground terminal.
(2) The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. See Section 4.5 for precautions of using the TSX631 with high differential input voltage.
(3) VCC-Vin must not exceed 18 V, Vin must not exceed 18 V.
(4) Input current must be limited by a resistor in series with the inputs.
(5) Short-circuits can cause excessive heating and destructive dissipation.
(6) Rth are typical values.
(7) Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
(8) Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
(9) Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
Table 3. Operating conditions
Symbol | Parameter | Value | Unit |
VCC | Supply voltage | 3.3 to 16 | V |
Vicm | Common mode input voltage range | VCC-0.1 to VCC+ 0.1 | |
Toper | Operating free air temperature range | -40 to +125 | °C |
Electrical characteristics
Table 4. Electrical characteristics at VCC = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 700 | μV | ||
TSX63xA, -40°C < T < 125 °C | 1500 | |||||
TSX63x, T = 25 °C | 1.6 | mV | ||||
TSX63x, -40°C < T < 125 °C | 2.4 | |||||
Vio | Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) | T = 25 °C | 4 | mV | ||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | T = 25 °C | 1 | 8 | μV/°C | |
ΔVio | Input offset voltage drift over temperature | -40°C < T < 125 °C(1) | 1 | 8 | μV/°C | |
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(2) | pA | |
-40°C < T < 125 °C | 200(2) | |||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | 100(2) | pA | |
-40°C < T < 125 °C | 200(2) | |||||
RIN | Input resistance | T = 25 °C | 1 | TΩ | ||
CIN | Input capacitance | T = 25 °C | 5 | pF | ||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 65 | 79 | dB | |
-40°C < T < 125 °C | 62 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 59 | 74 | dB | |
-40°C < T < 125 °C | 55 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) | T = 25 °C | 100 | 110 | ||
-40°C < T < 125°C | 90 | |||||
VOH | High level output voltage Vid = +1 V, VOH = VCC-Vout | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage Vid = -1 V, | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 4.3 | 5.3 | mA | |
-40°C < T < 125 °C | 2.5 | |||||
Iout | Isource (Vout = 0 V) | T = 25 °C | 3.3 | 4.3 | mA | |
-40°C < T < 125 °C | 2.5 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | μA | |
-40°C < T < 125 °C | 60 |
Table 4. Electrical characteristics at VCC = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
AC performance | ||||||
GBP | Gain bandwidth product | 160 | 200 | kHz | ||
Fu | Unity gain frequency | 160 | ||||
φm | Phase margin | RL = 100 kΩ CL = 100 pF | 55 | degrees | ||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/μs | ||
∫ en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | μVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | nV /√Hz |
||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ Vicm = 0.9V, BW = 22 kHz, Vout = 1 Vpp |
0.005 | % |
(1) See Chapter 4.3: Input offset voltage drift over temperature on page 18
(2) Guaranteed by design
Electrical characteristics
Table 5. Electrical characteristics at VCC = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
nV/month
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 700 | μV | ||
TSX63xA, -40°C < T < 125 °C | 1500 | |||||
TSX63x, T = 25 °C | 1.6 | mV | ||||
TSX63x, -40°C < T < 125 °C | 2.4 | |||||
Vio | Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) | T = 25 °C | 4 | mV | ||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | μV/°C | |
ΔVio | Long term input offset voltage drift | T = 25 °C(2) | 17 | |||
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 62 | 79 | dB | |
-40°C < T < 125 °C | 62 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 62 | 77 | dB | |
-40°C < T < 125 °C | 58 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) | T = 25 °C | 100 | 110 | ||
-40°C < T < 125 °C | 90 | |||||
VOH | High level output voltage | RL = 10 kΩ T=25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 11 | 14 | mA | |
-40°C < T < 125 °C | 8 | |||||
Iout | Isource (Vout = 0 V) | T = 25 °C | 9 | 12 | mA | |
-40°C < T < 125 °C | 7 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | μA | |
-40°C < T < 125 °C | 60 |
Table 5. Electrical characteristics at VCC = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
nV/Hz
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
AC performance | ||||||
GBP | Gain bandwidth product | 160 | 200 | kHz | ||
Fu | Unity gain frequency | RL = 100 kΩ CL = 100 pF | 160 | |||
φm | Phase margin | 55 | degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/μs | ||
∫ en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | μVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | |||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ Vicm = 2.5V, BW = 22 kHz, Vout = 1 Vpp |
0.005 | % |
(1) See Chapter 4.3: Input offset voltage drift over temperature on page 18
(2) Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19.
(3) Guaranteed by design
Electrical characteristics
Table 6. Electrical characteristics at VCC = +10 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
nV/month
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 500 | μV | ||
TSX63xA, -40°C < T < 125 °C | 1300 | |||||
TSX63x, T = 25 °C | 1 | mV | ||||
TSX63x, -40°C < T < 125 °C | 1.8 | |||||
Vio | Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) | T = 25 °C | 4 | mV | ||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | μV/°C | |
ΔVio | Long term input offset voltage drift | T = 25 °C(2) | 180 | |||
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 71 | 84 | dB | |
-40°C < T < 125 °C | 68 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 69 | 82 | dB | |
-40°C < T < 125 °C | 66 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) | T = 25 °C | 100 | 110 | ||
-40°C < T < 125 °C | 90 | |||||
VOH | High level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 35 | 51 | mA | |
-40°C < T < 125 °C | 25 | |||||
Iout | Isource (Vout = 0 V) | T = 25 °C | 30 | 42 | mA | |
-40°C < T < 125 °C | 20 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | μA | |
-40°C < T < 125 °C | 60 |
Table 6. Electrical characteristics at VCC = +10 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
nV/Hz
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
AC performance | ||||||
GBP | Gain bandwidth product | 160 | 200 | kHz | ||
Fu | Unity gain frequency | RL = 100 kΩ CL = 100 pF | 160 | |||
φm | Phase margin | 55 | degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/μs | ||
∫ en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | μVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | |||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ Vicm = 5 V, BW = 22 kHz, Vout = 1 Vpp |
0.004 | % |
(1) See Chapter 4.3: Input offset voltage drift over temperature on page 18
(2) Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19.
(3) Guaranteed by design
Electrical characteristics
Table 7. Electrical characteristics at VCC = +16 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 700 | μV | ||
TSX63xA, -40°C < T < 125 °C | 1500 | |||||
T = 25 °C | 1.6 | mV | ||||
-40°C < T < 125 °C | 2.4 | |||||
Vio | Offset voltage, high common- mode (Vicm=VCC, RL > 1 MΩ) | T = 25°C | 4 | mV | ||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | μV/°C | |
ΔVio | Long term input offset voltage drift | T = 25 °C(2) | 3.4 | μV /month |
||
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio T = 25 °C CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) |
-40°C < T < 125 °C | 71 | 85 | dB | |
68 | ||||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) |
T = 25 °C | 69 | 83 | dB | |
-40°C < T < 125 °C | 66 | |||||
SVR | Common mode rejection ratio 20 log (ΔVCC/ΔVio) (VCC = 3.3 V to 16 V, Vout = Vicm = VCC/2) |
T = 25 °C | 73 | 87 | dB | |
-40°C < T < 125 °C | 70 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) |
T = 25 °C | 100 | 110 | ||
-40°C < T < 125 °C | 90 | |||||
VOH | High level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 35 | 51 | mA | |
-40°C < T < 125 °C | 25 | |||||
Iout | Isource (Vout = 0 V) | T = 25 °C | 30 | 42 | mA | |
-40°C < T < 125 °C | 20 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | μA | |
-40°C < T < 125 °C | 60 |
Table 7. Electrical characteristics at VCC = +16 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
nV/Hz
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 700 | μV | ||
TSX63xA, -40°C < T < 125 °C | 1500 | |||||
T = 25 °C | 1.6 | mV | ||||
-40°C < T < 125 °C | 2.4 | |||||
Vio | Offset voltage, high common- mode (Vicm=VCC, RL > 1 MΩ) | T = 25°C | 4 | mV | ||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | μV/°C | |
ΔVio | Long term input offset voltage drift | T = 25 °C(2) | 3.4 | μV /month |
||
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) |
T = 25 °C | 71 | 85 | dB | |
-40°C < T < 125 °C | 68 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) |
T = 25 °C | 69 | 83 | dB | |
-40°C < T < 125 °C | 66 | |||||
SVR | Common mode rejection ratio 20 log (ΔVCC/ΔVio) (VCC = 3.3 V to 16 V, Vout = Vicm = VCC/2) |
T = 25 °C | 73 | 87 | dB | |
-40°C < T < 125 °C | 70 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) |
T = 25 °C | 100 | 110 | ||
-40°C < T < 125 °C | 90 | |||||
VOH | High level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 40 | 92 | mA | |
Vout = VCC, -40°C < T < 125 °C | 35 | |||||
Iout | Isource (Vout = 0 V) | Vout = 0 V, T = 25 °C | 30 | 60 | mA | |
Vout = 0 V, -40°C < T < 125 °C | 25 | |||||
ICC | Supply current (per operator, VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | μA | |
-40°C < T < 125 °C | 60 | |||||
AC performance | ||||||
GBP | Gain bandwidth product | 160 | 200 | kHz | ||
Fu | Unity gain frequency | RL = 100 kΩ CL = 100 pF | 160 | |||
φm | Phase margin | 55 | degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/μs | ||
∫ en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | μVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | |||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ Vicm = 8 V, BW = 22 kHz, Vout = 1 Vpp |
0.004 | % |
(1) See Chapter 4.3: Input offset voltage drift over temperature on page 18
(2) Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19.
(3) Guaranteed by design
Electrical characteristics
Table 7. Electrical characteristics at VCC = +16 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
nV/Hz
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 700 | μV | ||
TSX63xA, -40°C < T < 125 °C | 1500 | |||||
T = 25 °C | 1.6 | mV | ||||
-40°C < T < 125 °C | 2.4 | |||||
Vio | Offset voltage, high common- mode (Vicm=VCC, RL > 1 MΩ) | T = 25°C | 4 | mV | ||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | μV/°C | |
ΔVio | Long term input offset voltage drift | T = 25 °C(2) | 3.4 | μV /month |
||
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | 200(3) | |||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) |
T = 25 °C | 71 | 85 | dB | |
-40°C < T < 125 °C | 68 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) |
T = 25 °C | 69 | 83 | dB | |
-40°C < T < 125 °C | 66 | |||||
SVR | Common mode rejection ratio 20 log (ΔVCC/ΔVio) (VCC = 3.3 V to 16 V, Vout = Vicm = VCC/2) |
T = 25 °C | 73 | 87 | dB | |
-40°C < T < 125 °C | 70 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) |
T = 25 °C | 100 | 110 | ||
-40°C < T < 125 °C | 90 | |||||
VOH | High level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage | RL = 10 kΩ T = 25 °C | 70 | mV | ||
RL = 10 kΩ -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 40 | 92 | mA | |
-40°C < T < 125 °C | 35 | |||||
Iout | Isource (Vout = 0 V) | T = 25 °C | 30 | 60 | mA | |
-40°C < T < 125 °C | 25 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | μA | |
-40°C < T < 125 °C | 60 | |||||
AC performance | ||||||
GBP | Gain bandwidth product | 160 | 200 | kHz | ||
Fu | Unity gain frequency | RL = 100 kΩ CL = 100 pF | 160 | |||
φm | Phase margin | 55 | degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/μs | ||
∫ en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | μVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | |||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ Vicm = 8 V, BW = 22 kHz, Vout = 1 Vpp |
0.004 | % |
(1) See Chapter 4.3: Input offset voltage drift over temperature on page 18
(2) Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19.
(3) Guaranteed by design
Application information
4.1 Operating voltages
The amplifiers of the TSX63x and TSX63xA series can operate from 3.3 to 16 V. Their parameters are fully specified at 3.3, 5, 10 and 16 V power supplies. However, the parameters are very stable in the full VCC range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to +125 ° C.
4.2 Rail-to-rail input
The TSX63x and TSX63xA are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from VCC- 0.1 V to VCC+ + 0.1 V.
However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from VCC- - 0.1V to VCC+ - 1.65V).
Beyond VCC+ - 1.65 V, the op-amp is still functional but with a degraded performance as can be observed in the electrical characteristics section of this datasheet (mainly Vio).
These performances are suitable for a number of applications requiring rail-to-rail input and output.
The devices are guaranteed without phase reversal.
4.3 Input offset voltage drift over temperature
The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.
The maximum input voltage drift over temperature is computed using Equation 1.
Equation 1
$$ \Delta V_{io} = \frac{max \left| V_{io}(T) - V_{io}(25^{\circ}C) \right|}{T - 25^{\circ}C} $$
with T = -40 °C and 125 °C.
The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk (process capability index) greater than 2.
4.4 Long term input offset voltage drift
To evaluate product reliability, two types of stress acceleration are used:
- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2.
Equation 2
$$ A_{FV} = e^{\frac{\beta \cdot (V_S - V_U)}{V_U}} $$
Where:
- AFV is the voltage acceleration factor
- β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)
- VS is the stress voltage used for the accelerated test
- VU is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.
Equation 3
$$ A_{FT} = e^{\frac{E_a}{k} \left( \frac{1}{T_U} - \frac{1}{T_S} \right)} $$
Where:
- AFT is the temperature acceleration factor
- Ea is the activation energy of the technology based on the failure rate
- k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)
- TU is the temperature of the die when VU is used (K)
- TS is the temperature of the die under temperature stress (K)
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4).
Equation 4
$$ A_F = A_{FT} \times A_{FV} $$
AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.
Equation 5
$$ Months = A_F \times 1000 h \times \frac{12 \text{ months}}{24 h \times 365.25 \text{ days}} $$
To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).
The Vio drift (in μV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6).
Equation 6
$$ V_{io} = V_{io,max} - V_{io,min} \text{ with } V_{icm} = V_{CC}/2 $$
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7).
Equation 7
$$ \Delta V_{io} = \frac{V_{io, drift}}{\sqrt{(months)}} $$
where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration.
4.5 High values of input differential voltage
In closed loop configuration, which represents the typical use of an op-amp, the input differential voltage is low (close to Vio). However, some specific conditions can lead to higher input differential values, such as:
- operation in an output saturation state
- operation at speeds higher than the device bandwidth, with output voltage dynamics limited by slew rate.
- use of the amplifier in a comparator configuration, hence in open loop
Use of the TSX631 in comparator configuration, especially combined with high temperature and long duration can create a permanent drift of Vio.
All channels of the dual and quad versions of the TSX632 and TSX634 are virtually unaffected when used in comparator configuration.
4.6 PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.
4.7 Macromodel
Accurate macromodels of the TSX63x and TSX63xA are available on STMicroelectronics' web site at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSX63x and TSX63xA operational amplifiers. They emulate the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements.
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.1 SOT23-5 package information
Figure 28. SOT23-5 package mechanical drawing
Table 8. SOT23-5 package mechanical data
Ref. | Millimeters | Inches | ||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.90 | 1.20 | 1.45 | 0.035 | 0.047 | 0.057 |
A1 | 0.15 | 0.006 | ||||
A2 | 0.90 | 1.05 | 1.30 | 0.035 | 0.041 | 0.051 |
B | 0.35 | 0.40 | 0.50 | 0.013 | 0.015 | 0.019 |
C | 0.09 | 0.15 | 0.20 | 0.003 | 0.006 | 0.008 |
D | 2.80 | 2.90 | 3.00 | 0.110 | 0.114 | 0.118 |
D1 | 1.90 | 0.075 | ||||
e | 0.95 | 0.037 | ||||
E | 2.60 | 2.80 | 3.00 | 0.102 | 0.110 | 0.118 |
F | 1.50 | 1.60 | 1.75 | 0.059 | 0.063 | 0.069 |
L | 0.10 | 0.35 | 0.60 | 0.004 | 0.013 | 0.023 |
K | 0° | 10° | 0° | 10° |
5.2 DFN8 2x2 package information
Figure 29. DFN8 2x2 package mechanical drawing
Table 9. DFN8 2x2 package mechanical data
Ref. | Millimeters | Inches | ||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.70 | 0.75 | 0.80 | 0.028 | 0.030 | 0.031 |
A1 | 0.00 | 0.02 | 0.05 | 0.000 | 0.001 | 0.002 |
b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 |
D | 2.00 | 0.079 | ||||
E | 2.00 | 0.079 | ||||
e | 0.50 | 0.020 | ||||
L | 0.045 | 0.55 | 0.65 | 0.018 | 0.022 | 0.026 |
N | 8 | 8 |
5.3 MiniSO-8 package information
Figure 30. MiniSO-8 package mechanical drawing
Table 10. MiniSO-8 package mechanical data
Ref. | Millimeters | Inches | ||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.1 | 0.043 | ||||
A1 | 0 | 0.15 | 0 | 0.006 | ||
A2 | 0.75 | 0.85 | 0.95 | 0.030 | 0.033 | 0.037 |
b | 0.22 | 0.40 | 0.009 | 0.016 | ||
C | 0.08 | 0.23 | 0.003 | 0.009 | ||
D | 2.80 | 3.00 | 3.20 | 0.11 | 0.118 | 0.126 |
E | 4.65 | 4.90 | 5.15 | 0.183 | 0.193 | 0.203 |
E1 | 2.80 | 3.00 | 3.10 | 0.11 | 0.118 | 0.122 |
e | 0.65 | 0.026 | ||||
L | 0.40 | 0.60 | 0.80 | 0.016 | 0.024 | 0.031 |
L1 | 0.95 | 0.037 | ||||
L2 | 0.25 | 0.010 | ||||
k | 0° | 8° | 0° | 8° | ||
CCC | 0.10 | 0.004 |
5.4 QFN16 3x3 package information
Figure 31. QFN16 3x3 package mechanical drawing
Table 11. QFN16 3x3 package mechanical data
Ref. | Millimeters | Inches | ||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.50 | 0.65 | 0.020 | 0.026 | ||
A1 | 0 | 0.05 | 0 | 0.002 | ||
b | 0.18 | 0.25 | 0.30 | 0.007 | 0.010 | 0.012 |
D | 3.00 | 0.118 | ||||
E | 3.00 | 0.118 | ||||
e | 0.50 | 0.020 | ||||
L | 0.30 | 0.50 | 0.012 | 0.020 | ||
aaa | 0.15 | 0.006 | ||||
bbb | 0.10 | 0.004 | ||||
ccc | 0.10 | 0.004 | ||||
ddd | 0.05 | 0.002 | ||||
eee | 0.08 | 0.003 |
5.5 TSSOP14 package information
Figure 32. TSSOP14 package mechanical drawing
Table 12. TSSOP14 package mechanical data
Ref. | Millimeters | Inches | ||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.20 | 0.047 | ||||
A1 | 0.05 | 0.15 | 0.002 | 0.004 | 0.006 | |
A2 | 0.80 | 1.00 | 1.05 | 0.031 | 0.039 | 0.041 |
b | 0.19 | 0.30 | 0.007 | 0.012 | ||
C | 0.09 | 0.20 | 0.004 | 0.0089 | ||
D | 4.90 | 5.00 | 5.10 | 0.193 | 0.197 | 0.201 |
E | 6.20 | 6.40 | 6.60 | 0.244 | 0.252 | 0.260 |
E1 | 4.30 | 4.40 | 4.50 | 0.169 | 0.173 | 0.176 |
e | 0.65 | 0.0256 | ||||
L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 |
L1 | 1.00 | 0.039 | ||||
k | 0° | 8° | 0° | 8° | ||
aaa | 0.10 | 0.004 |
6 Ordering information
Table 13. Order codes
Order code | Temperature range | No. of channels | Package | Packing | Marking |
TSX631ILT | 1 | SOT23-5 | K27 | ||
TSX632IQ2T | 2 | DFN8 2x2 | K27 | ||
TSX632IST | -40 to 125 °C | 2 | MiniSO8 | K27 | |
TSX634IQ4T | 4 | QFN16 3x3 | K27 | ||
TSX634IPT | 4 | TSSOP14 | TSX6341 | ||
TSX631IYLT | -40 to 125 °C Automotive grade(1) |
1 | SOT23-5 | Tape and reel | K188 |
TSX632IYST | 2 | MiniSO8 | K188 | ||
TSX634IYPT | 4 | TSSOP14 | TSX634IY | ||
TSX631AILT | 1 | SOT23-5 | K189 | ||
TSX632AIST | -40 to 125 °C | 2 | MiniSO8 | K189 | |
TSX634AIPT | 4 | TSSOP14 | TSX634AI | ||
TSX631AIYLT | -40 to 125°C Automotive grade(1) |
1 | SOT23-5 | K190 | |
TSX632AIYST | 2 | MiniSO8 | K190 | ||
TSX634AIΥΡΤ | 4 | TSSOP14 | TSX634AIY |
(1) Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.
7 Revision history
Table 14. Document revision history
Date | Revision | Changes |
26-Mar-2013 | 1 | Initial release |