ANALOG DEVICES DC3248A Low VIN High Efficiency 10A Step Down DC to DC Module Regulator

USER GUIDE

General Description

The DC3248A evaluation board circuit features the LTM®4659, a high efficiency, 10A step-down power µModule® regulator. The input voltage range is from 2.25V to 5.5V. The output voltage range is 0.5V to VIN. Derating may be necessary for certain VIN, VOUT, frequency and thermal conditions. The DC3248A evaluation board offers the SSTT pin, allowing the user to program output tracking, soft start period and die temperature monitoring.
The MODE/SYNC pin either synchronizes the switching frequency to an external clock, is a clock output, or sets the PWM mode. It can be externally synchronized to a clock from 1MHz to 2.6MHz. The Pulse width modulation (PWM) modes of operation are Forced continuous mode (FCM) for low noise or pulse-skipping mode (PSM) for high efficiency at light load. The LTM4659 defaults to FCM during synchronization and operates in PSM when both the FREQ and MODE/SYNC pins are connected to VIN.

Ordering Information appears at end of demo manual.

The LTM4659 uses external compensation. Users can tune the compensation circuit to ensure the loop is stable and that the desired transient performance can be achieved.
For output loads that demand more than 10A of current, multiple LTM4659s can be paralleled to run out-of-phase to provide more output current without increasing input and output voltage ripples.
The LTM4659 data sheet must be read in conjunction with this evaluation board manual prior to working on or modifying the DC3248A evaluation board.

Features and Benefits

  • Tiny surface mount, 4mm × 4mm × 1.43mm LGA
  • Silent Switcher®2 architecture
  • Ultralow Electromagnetic Interference (EMI) noise

DC3248A Evaluation Board Files

FILE DESCRIPTION
DC3248A Evaluation board circuit design files.

DC3248A

Figure 1. DC3248A Evaluation Board Circuit (Part Marking Is Either Ink Mark or Laser Mark)

Table 1. Performance Summary

Specifications are at TA = 25°C

PARAMETER CONDITIONS/NOTES MIN TYP MAX UNITS
Input voltage range 2.25 5.5 V
Output voltage 0.985 1.0 1.015 V
Maximum continuous output current Derating is necessary for certain operating conditions. Refer to the data sheet for details. 10 ADC
Operating frequency 2 MHz
Efficiency VIN = 3.3V, VOUT = 1.0V, IOUT = 10A 82.16
(see Figure 3)
%
Load transient VIN = 3.3V, VOUT = 1.0V, ISTEP = 0A to 2.5A 70
(see Figure 5)
mV

Quick Start Required Equipment

  • One 0V to 30V DC, 20A power supply
  • Electronic load with 20A sink capacity
  • Four digital multimeters (DMM)

Procedure

The DC3248A evaluation board is an easy way to evaluate the performance of the LTM4659. See Figure 2 for proper measurement equipment setup and follow the procedure below.

1. Place jumpers in the following positions for a typical application.

JP1 RUN ON
JP2 MODE/CLK CCM

2. With the power off, connect the input power supply, load and meters as shown in Figure 2. Preset the load to 0A and VIN supply to 3.3V.
3. Turn on the power supply at the input. The output voltage should be 1.0V ±1.5% (0.985V to 1.015V).
4. Vary the input voltage from 2.25V to 5.5V and adjust the load current from 0A to 10A. Observe the output voltage regulation, ripple voltage, efficiency, and other parameters.
5. (Optional) To set LTM4659 to PSM, set the MODE/CLK jumper JP8 to PS. See Table 2 for more details.

Table 2. LTM4659 Single-Phase Configuration

FREQ PIN CONNECTION MODE/SYNC PIN CONNECTION MODE OF OPERATION SWITCHING FREQUENCY
VIN Clock input FCM External clock
VIN AGND FCM 2MHz default
VIN VIN PSM 2MHz default
Resistor to AGND Clock output FCM RFREQ-programmed

 

6. (Optional) For the optional load transient test, apply an adjustable pulse signal between IOSTEP_CLK and GND test points. The pulse amplitude sets the load step current amplitude. Keep the pulse width short (<1ms) and pulse duty cycle low (<5%) to limit the thermal stress on the load transient circuit.
7. (Optional) LTM4659 can be synchronized to an external clock signal. Place the JP8 jumper on CLK and apply a clock signal on the CLK test point.

8. (Optional) The output of LTM4659 can track another voltage. This external voltage can be connected to the test point TRACK on this board.

LTM4659

Typical Performance Characteristics

Typical Performance Characteristics

 

Figure 7. Thermal Image of LTM4659 at VIN = 3.3V, VOUT = 1.0V, IOUT = 10A (TA = 25°C, No Forced Airflow)

DC3248A Bill of Materials

ITEM QTY REFERENCE PART DESCRIPTION MANUFACTURER/PART NUMBER
Required Circuit Components
1 4 C1, C3, CIN1, CIN5 CAP., 10μF, X7R, 16V, 10%, 0805 TAIYO YUDEN, EMK212BB7106MG-T
2 2 C2, CIN6 CAP., 150μF, ALUM ELECT, 10V, 20%,
8mm × 6.9mm
PANASONIC, 10SVP150MX
3 1 C4 CAP., 0.1μF, X7R, 6.3V, 10%, 0603 AVX, 06036C104KAT2A
4 1 C13 CAP., 680pF, C0G, 25V, 5%, 0603 AVX, 06033A681JAT2A
5 1 CIN2 CAP., 22μF, X5R, 10V, 20%, 0603 AVX, 0603ZD226MAT2A
6 2 CIN3, CIN4 CAP., 22μF, X5R, 16V, 10%, 0805 TDK, C2012X5R1C226M125AC
7 1 COUT1 CAP., 22μF, X5R, 6.3V, 20%, 0603 MURATA, GRM188R60J226MEA0D
8 1 COUT2 CAP., 22μF, X5R, 6.3V, 20%, 0805 MURATA, C0805C226M9PACTU
9 1 COUT3 CAP., 100μF, X5R, 6.3V, 20%, 0805 MURATA, GRM21BR60J107ME15K
10 1 R3 RES., 100kΩ, 1%, 1/10W, 0603 STACKPOLE ELECTRONICS, INC., RMCF0603FG100K
11 2 R4, R6 RES., 60.4kΩ, 1%, 1/10W, 0603, AEC-Q200 VISHAY, CRCW060360K4FKEA
12 1 R15 RES., 6.8 kΩ, 5%, 1/16W, 0603 KOA SPEER, RK73B1JTTD682J
13 1 U1 IC, 5.5VIN, 10A μModule, 4mm × 4mm PCKG, BGA ADI, LTM4659EV#PBF
Additional Evaluation Board Circuit Components
1 0 C5–C7, C12 CAP., OPTION, 0603
2 0 C11 CAP., OPTION, 0805
3 1 R11 RES., 0Ω, 1/10W, 0603 BOURNS, CR0603-J/-000ELF
4 0 R12 RES., OPTION, 0603
5 3 C8–C10 CAP., 1μF, X7R, 16V, 10%, 0603 KEMET, C0603C105K4RAC7867
6 1 L1 IND., 100 AT 100MHz, FERRITE BEAD, 25%, 8A,
6m, 1812
WURTH ELEKTRONIK, 74279226101
7 1 Q1 XSTR., MOSFET, N-CHAN, 30V, 5.5A, 3-PIN
SOT-23
VISHAY, Si2338DS-T1-GE3
8 1 R13 RES., 10kΩ, 1%, 1/10W, 0603, AEC-Q200 VISHAY, CRCW060310K0FKEA
9 1 R14 RES., 10Ω, 1%, 1/10W, 0603 VISHAY, CRCW060310R0FKEA
10 1 RS1 RES., 0.020Ω, 1%, 1W, 1206, PWR, METAL, SENSE, AEC-Q200 VISHAY, WSLP1206R0200FEA
Hardware: For Evaluation Board Circuit Only
1 8 E1-E8 TEST POINT, TURRET, 0.094˝ MTG. HOLE, PCB
0.062˝ THK
MILL-MAX, 2501-2-00-80-00-00-07-0
2 5 J1–J5 CONN., BANANA JACK, FEMALE, THT, NON-
INSULATED, SWAGE, 0.218˝
KEYSTONE, 575-4
3 2 J6, J7 CONN., RF, BNC, RCPT, JACK, 5-PIN, ST, THT, 50 AMPHENOL RF, 112404
4 1 JP1 CONN., HDR, MALE, 1 × 3, 2mm, VERT, ST, THT, NO SUBS. ALLOWED WURTH ELEKTRONIK, 62000311121
5 1 JP8 CONN., HDR., MALE, 2 × 3, 2mm, VERT, ST, THT WURTH ELEKTRONIK, 62000621121
6 4 MP1–MP4 STANDOFF, NYLON, SNAP-ON, 0.50˝ KEYSTONE, 8833
7 2 XJP1, XJP8 CONN., SHUNT, FEMALE, 2-POS, 2mm WURTH ELEKTRONIK, 60800213421

DC3248A Schematic

DC3248A Schematic

Ordering Information

REVISION NUMBER REVISION DATE DESCRIPTION PAGES CHANGED
0 04/24 Initial release

 

ASSUMED BY ANALOG DEVICES FOR ITS USE, NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM ITS USE. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENCE, EITHER EXPRESSED OR IMPLIED, IS GRANTED UNDER ANY ADI PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR ANY OTHER ADI INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS WHICH ADI PRODUCTS ALL INFORMATION CONTAINED HEREIN IS PROVIDED “AS IS” WITHOUT REPRESENTATION OR WARRANTY. NO RESPONSIBILITY IS OR SERVICES ARE USED. TRADEMARKS AND REGISTERED TRADEMARKS ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS.

Documents / Resources

ANALOG DEVICES DC3248A Low VIN High Efficiency 10A Step Down DC to DC Module Regulator [pdf] User Guide
DC3248A Low VIN High Efficiency 10A Step Down DC to DC Module Regulator, DC3248A, Low VIN High Efficiency 10A Step Down DC to DC Module Regulator, High Efficiency 10A Step Down DC to DC Module Regulator, 10A Step Down DC to DC Module Regulator, Step Down DC to DC Module Regulator, DC to DC Module Regulator, Module Regulator, Regulator

References

Leave a comment

Your email address will not be published. Required fields are marked *