Alugoridimu Ẹkọ ẹrọ

ọja Alaye

Awọn pato

  • Orukọ ọja: Latọna oye Abala
  • Onkọwe: Larissa Patricio-Valerio, Thomas
    Schroeder, Michelle J. Devlin, Yi Qin, Scott Smithers
  • Ọjọ Itẹjade: 21 Oṣu Keje ọdun 2022
  • Awọn ọrọ-ọrọ: Himawari-8, awọ okun, Oríkĕ
    nkankikan nẹtiwọki, Nla Idankan duro okun, etikun omi, lapapọ
    daduro okele, ẹrọ eko, omi didara

Awọn ilana Lilo ọja

1. Ifihan

Abala Sensọ Latọna n pese awọn oye si lilo ti
awọn algoridimu ikẹkọ ẹrọ fun gbigba lapapọ awọn ipilẹ ti daduro daduro
ninu Okun Idankan duro Nla ni lilo data lati Himawari-8. Nkan naa
jiroro lori awọn italaya ati awọn anfani ti lilo geostationary
Earth yipo satẹlaiti fun lemọlemọfún akiyesi ti etikun
awọn agbegbe.

2. Ilana igbapada

Nkan naa ṣe afihan pataki ti geostationary
awọn satẹlaiti bii Himawari-8 ni yiya awọn data ti o sunmọ akoko gidi lori
etikun lakọkọ. O tẹnumọ awọn idiwọn ti kekere Earth orbit
awọn satẹlaiti fun ipinnu iyipada igba kukuru ni akawe si
geostationary satẹlaiti.

3. Ocean Awọ sensosi

Nkan naa n mẹnuba pataki ti awọn sensọ awọ okun lori
awọn satẹlaiti fun gbigba alaye aaye ti o ni ibatan si omi
didara. O ti jiroro ni igba akoko dainamiki woye nipa
awọn satẹlaiti geostationary ati ipa wọn lori ibojuwo eti okun
awọn iṣẹlẹ.

Awọn Ibeere Nigbagbogbo (FAQ)

Q: Kini idojukọ akọkọ ti Abala Sensọ Latọna?

A: Idojukọ akọkọ jẹ lori lilo algorithm ikẹkọ ẹrọ pẹlu
Awọn data Himawari-8 lati gba lapapọ awọn ipilẹ to daduro ni Nla
Idankan duro Reef.

Q: Kini idi ti awọn satẹlaiti geostationary ṣe fẹ fun eti okun
mimojuto?

A: Geostationary satẹlaiti nse sunmọ lemọlemọfún akiyesi ti
awọn agbegbe nla pẹlu igbohunsafẹfẹ giga, gbigba fun ibojuwo to dara julọ
ti nyara iyipada etikun lakọkọ.

latọna oye

Abala
Algorithm Ẹkọ Ẹrọ kan fun Himawari-8 Lapapọ Awọn imupadabọ Idaduro Solids ti Daduro ni Okun Idanna Nla
Larissa Patricio-Valerio 1,2,*, Thomas Schroeder 2, Michelle J. Devlin 3, Yi Qin 4 ati Scott Smithers 1

1 College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Scott.smithers@jcu.edu.au
2 Ajo Iwadi Imọ-jinlẹ ati Ile-iṣẹ Agbaye, Awọn Okun ati Afẹfẹ, Apoti GPO 2583, Brisbane, QLD 4001, Australia; thomas.schroeder@csiro.au
3 Ile-iṣẹ fun Awọn Ijaja Ayika ati Imọ Aquaculture, Parkfield Road, Lowestoft, Suffolk NR33 0HT, UK; Michelle.devlin@cefas.co.uk
4 Ajo Iwadi Imọ-jinlẹ ati Ile-iṣẹ Agbaye, Awọn Okun ati Atmosphere, GPO Box 1700, Canberra, ACT 2601, Australia; yi.qin@csiro.au
* Ibamu: larissa.patriciovalerio@my.jcu.edu.au

Itọkasi: Patricio-Valerio, L.; Schroeder, T.; Devlin, MJ; Qyin, Y.; Smithers, S. A Algorithm Ẹkọ Ẹrọ fun Himawari-8 Lapapọ Awọn Idaduro Solids Retrievals ti Daduro ni Okun Idanna Nla. Sens latọna jijin 2022, 14, 3503. https://doi.org/ 10.3390/rs14143503
Olootu ẹkọ: Chris Roelfsema
Ti gba: Oṣu Karun 15, Ọdun 2022 Ti gba: 19 Oṣu Keje 2022 Atejade: 21 Keje 2022
Akiyesi Olutẹwe: MDPI duro ni didoju pẹlu iyi si awọn ẹtọ ẹjọ ni awọn maapu ti a tẹjade ati awọn ibatan igbekalẹ.
Aṣẹ-lori-ara: © 2022 nipasẹ awọn onkọwe. Iwe-aṣẹ MDPI, Basel, Switzerland. Nkan yii jẹ nkan iraye si ṣiṣi ti a pin kaakiri labẹ awọn ofin ati ipo ti iwe-aṣẹ Iṣewadapọ Commons (CC BY) (https://creatcommons.org/licenses/by/ 4.0/).

Áljẹbrà: Imọran jijin ti awọ okun ti jẹ ipilẹ si ibojuwo iwọn-synoptiki ti didara omi oju omi ni Okun Oku nla Barrier (GBR). Bibẹẹkọ, awọn sensọ awọ okun lori awọn satẹlaiti orbit kekere, gẹgẹ bi irawọ Sentinel-3, ni agbara atunbẹwo ti ko to lati yanju iyipada ọjọ-ọjọ ni kikun ni awọn agbegbe eti okun ti o ni agbara pupọ. Lati bori aropin yii, iṣẹ yii ṣafihan algorithm awọ okun eti okun ti o da lori fisiksi fun Aworan Himawari To ti ni ilọsiwaju lori satẹlaiti geostationary Himawari-8. Bi o ti jẹ pe a ṣe apẹrẹ fun awọn ohun elo oju ojo, Himawari-8 n funni ni aye lati ṣe iṣiro awọn ẹya awọ okun ni gbogbo iṣẹju mẹwa 10, ni awọn ohun elo ti o han gbangba mẹrin ati sunmọ-infurarẹẹdi, ati ni ipinnu aaye aaye 1 km2. Awọn iṣeṣiro gbigbe radiative oju-omi okun ti o so pọ ti awọn ẹgbẹ Himawari-8 ni a ṣe fun ibiti o daju ti inu omi ati awọn ohun-ini opiti oju aye ti GBR ati fun ọpọlọpọ oorun ati awọn geometries akiyesi. Awọn data iṣeṣiro naa ni a lo lati ṣe agbekalẹ awoṣe onidakeji ti o da lori awọn imọ-ẹrọ nẹtiwọọki atọwọda lati ṣe iṣiro lapapọ awọn ifọkansi ti daduro (TSS) taara lati awọn akiyesi irisi irisi oju-aye oke-oke ti Himawari-8. Algoridimu naa jẹ ifọwọsi pẹlu data igbakọọkan ni agbegbe GBR eti okun ati pe a ṣe ayẹwo awọn opin wiwa rẹ. Awọn atunṣe TSS ṣe afihan awọn aṣiṣe ibatan to 75% ati awọn aṣiṣe pipe ti 2 mg L-1 laarin iwọn afọwọsi ti 0.14 si 24 mg L-1, pẹlu opin wiwa ti 0.25 mg L-1. A jiroro awọn ohun elo ti o pọju ti awọn ọja TSS ti Himawari-8 diurnal fun imudara ilọsiwaju ati iṣakoso ti didara omi ni GBR.
Awọn ọrọ-ọrọ: Himawari-8; awọ okun; Oríkĕ nkankikan nẹtiwọki; Reef Idankan duro nla; omi etikun; lapapọ ti daduro ṣinṣin; ẹkọ ẹrọ; omi didara
1. Ifihan Awọn sensọ awọ okun lori awọn satẹlaiti kekere Earth orbit (LEO), gẹgẹbi MODIS/Aqua,
VIIRS / Suomi-NPP, ati OLCI / Sentinel-3, ti pese awọn igbasilẹ igba pipẹ ti awọn akiyesi ti o niyelori ati iye owo lati ṣe ayẹwo lojoojumọ si awọn iyipada ti ọdun-ọdun ti didara omi ni Great Barrier Reef (GBR) [15]. Awọn satẹlaiti LEO ṣayẹwo agbegbe agbegbe kanna laarin ọkan tabi ọjọ meji ni o dara julọ; sibẹsibẹ, awọn akoko-aisun laarin meji itẹlera ati aami orbits (ie, àtúnbẹwò periodicity) commonly yatọ laarin ọkan ati soke si mẹrin ọsẹ. Ni afikun, awọn aworan awọ okun le ni ipa pupọ nipasẹ wiwa awọsanma ati didan oorun, ni opin igbapada awọn akiyesi didara to gaju [6]. Eyi le nilo eto osẹ-si-oṣooṣu ti awọn aworan ojoojumọ lati agbegbe kanna lati ṣe agbekalẹ awọsanma akojọpọ akojọpọ view ti okun. Nitoribẹẹ, agbara igba diẹ ti awọn satẹlaiti LEO ko to lati ṣe agbekalẹ eto akiyesi okeerẹ ati lati ṣe abojuto imunadoko ni awọn ilana igba kukuru ti o ni agbara eti okun, gẹgẹbi awọn iyipo diel phytoplankton, lilọsiwaju ojoojumọ ti awọn iṣan omi, ati

Sens latọna jijin 2022, 14, 3503. https://doi.org/10.3390/rs14143503

https://www.mdpi.com/journal/remotesensing

Sens latọna jijin 2022, 14, 3503

2 ti 23

tidal ati ifasilẹ ti afẹfẹ nfa [79]. Awọn oniwadi ati awọn alakoso ayika ṣi

dale lori awọn ọja ọja awọ okun LEO fun gbigba alaye aaye to munadoko-ninu

GBR eti okun [10,11], ṣugbọn da awọn aropin ti awọn ilana wọnyi lati yanju kukuru-t-igba

iyipada.

Awọn satẹlaiti lori g-eostationary Earth orbit (GEO), bibẹẹkọ, gba laaye lemọlemọfún

akiyesi awọn agbegbe nla ti agbaiye ni igbohunsafẹfẹ giga (iṣẹju si awọn wakati) ni afiwe

si isunmọ atunbẹwo ojoojumọ lojoojumọ ti awọn iru ẹrọ LEO, ni pataki lori awọn nwaye [9]. Awọn

Aworan Awọ Awọ Geostationary akọkọ ni agbaye (GOCI-I), ti a ṣe ifilọlẹ ni ọdun 2010, ti ṣafihan

awọn iṣesi igba diẹ ti awọn ilana iyipada etikun ni iyara ni Northeast Asia, gẹgẹbi

ti turbidity plumes ati ipalara algal blooms [12,13]. Aṣeyọri rẹ pese ọran ti o wulo

fun idagbasoke iwaju ti awọn iṣẹ apinfunni awọ GEO agbaye [14]; sibẹsibẹ, kò ti

awọn iṣẹ apinfunni ti a dabaa fun ifilọlẹ laarin ọdun mẹwa to nbọ ni a ṣe apẹrẹ fun akiyesi

Australian omi. Bibẹẹkọ, awọn satẹlaiti GEO ti ṣiṣẹ ni kariaye fun oju oju-aye oju-aye.

awọn iṣẹ ati awọn ilọsiwaju imọ-ẹrọ aipẹ ti lo awọn agbara wọn fun gbigba data lori awọn okun, gbigba awọn ilana imudara diẹ sii lati ṣe akiyesi lati aaye [-1517].

Tofhbe annedxst-ignentheera-vtiiosinblGe EspOemctreutemor(o2loogri3cailnssetenasdorosfaorenleyq1uibpapnedd)

pẹlu nọmba ti o pọ si ni idapo pẹlu ilọsiwaju

ragreadendovtisaoltyTnmahctpieeeortsornAivaacdlirsldvyoeiawnnpnsgoeciitdednivd,itui-ftHooryfnri-(mavsthliiagemewwnfieaaatlrr-etsi-totouIrm-tno-nimplaoorgiegsee,eci-rceara(daA-lnteioeHnobat)Ires)a-edtnorrdrnvueabeovtoniicaosboirntoldosafr-uHroedrvqiemecudarealvAni-wbicusraiauesrtstiair-ol[8ai1ns/l8ia9ac]ta.,iGopinnEacbOloiulfsidtaEiietnaesrglt[lih9tth]e.–feriTosGhmcBeusRrae-.

Himawa-ri-8 wa ni ipo ni 140.7E loke equator ati pẹlu iwọn ọlọjẹ 10 min, o gba o kere ju awọn akiyesi fu-ll-disk 48 laarin ọjọ kan (8 am si 4 pm akoko agbegbe). Lakoko ti a ṣe apẹrẹ ohun elo AHI fun awọn ohun elo meteorological, ti o han ati sunmọ-in-frared

(VNIR) awọn ẹgbẹ (Nọmba 1 ati Tabili 1) jẹ ki wiwa awọn ẹya omi okun pẹlu agbara

awọn ifihan agbara opitika, gẹgẹbi awọn ti o wa lati inu omi turbid giga [1921]. Ni afikun, Himawari-8

olekenka-giga-akoko-ipinnu o ga akiyesi gba awọn ibojuwo ti okun-ini lati

sub-hourly si inte-r-lododun akoko s-cales fun gbogbo GBR lagoon ati okun to wa nitosi

basin without inter-orbital data g-aps.

wFiigthurtehe1.trHainmsmawisas-riio-n8

Awọn iṣẹ idahun iwoye ti awọn ẹgbẹ ti o han ati infurarẹẹdi (awọn laini funfun to lagbara) ti awọn gaasi oju aye (ila ti o kun grẹy) ati gbigbe nipasẹ ozone (pupa)

laini to lagbara) laarin 400 ati 1000 nm.

Awọn ohun elo lọpọlọpọ fun ibojuwo ati iṣakoso awọn agbegbe okun ni agbara lati wa lati ọdọ Him-awari-8, pẹlu fun awọ okun -[22,23]. Awọn ijinlẹ aipẹ ti ṣe afihan iṣeeṣe ti awọn akiyesi Hima-wari-8 fun wiwa lapapọ awọn ipilẹ ti o daduro (TSS) ni awọn omi eti okun [17,24] ati fun chloroph-yll-a concen-tration (CHL) ni oju-omi nla [22]. Awọn abajade wọnyi daba aye igbadun fun mon-itoring giga-igbohunsafẹfẹ ati awọn ilana ti o ni agbara ni GBR eti okun. Bibẹẹkọ, botilẹjẹpe awọn algoridimu awọ okun s-everal le wa fun igbapada satẹlaiti ti awọn ipilẹ didara omi eti okun, wọn le jẹ aiyẹ fun iloju opitika ti GBR tabi ko wulo si awọn akiyesi Himawari-8.

Sens latọna jijin 2022, 14, 3503

3 ti 23
– –
Tleanbglteh1s.anHdimbaanwdawrii-d8-thA, dasvsaoncciaetdedHsipmaatiwalarreisIomluatgioenr.vSiisgibnlael-aton-dn- oni-esearr–aintiforsar(SeNd Rb)anfrdosmcpenertrfolm25–etwaan esi].

Ẹgbẹ # (Orukọ) #1 (bulu) #2 (alawọ ewe) #3 (pupa) #4 (NIR)

Band Center (iwọn) 470.64 (45.37) nm 510.00 (37.41) nm 639.15 (90.02) nm 856.69 (42.40) nm

Ipinnu aaye 1 km 1 km 0.5 km 1 km

SNR @100% Albado 585 (641.5) 645 (601.9) 459 (519.3) 420 (309.3)

Awoṣe-b-ased awọn algoridimu awọ okun ti o lo awọn iṣeṣiro gbigbe radiative ti ṣe afihan iṣẹ ṣiṣe ti o ga julọ fun ohun elo ni awọn iwadii imọ-jinlẹ pupọ-akoko ti awọn omi eti okun ni akawe si awọn algoridimu agbara [26]. Ni pataki, awọn nẹtiwọọki nkankikan jẹ ọna ipadasọna ṣiṣe ṣiṣe ṣiṣe iṣiro fun awọn ohun elo oye latọna jijin ni awọn omi eti okun ti o nira nitori agbara wọn lati isunmọ awọn ibatan iṣẹ ṣiṣe ti kii ṣe laini [2735]. Iwe yii ṣapejuwe idagbasoke ti awoṣe-orisun nẹtiwọọki neural awọ algorithm (Aworan 2) fun Himawari-8-ati parameterised fun awọn omi eti okun ti GBR. Algoridimu iyipada-igbesẹ kan jẹ idagbasoke lati ṣe iṣiro TSS taara lati awọn akiyesi Himawari – 8 oke – of – atmosphere (TOA) pẹlu perceptron multilayer kan, kilasi ti awọn nẹtiwọọki nkankikan atọwọda (ANN). Ni akọkọ, pinpin angular spectral ti awọn afihan TOA RTOA() sr-1 ni afarawe ni awọn ẹgbẹ VNIR Himawari–8 pẹlu awoṣe gbigbe radiative oceanatmosphere ti o wa tẹlẹ (RT) (awoṣe siwaju). Awọn iṣeṣiro RT pẹlu awọn iyatọ gidi ni awọn aye didara omi, ati awọn ipo oju aye ati itanna. Ọpọlọpọ awọn adanwo ANN (awọn awoṣe onidakeji) lẹhinna ni iforukọsilẹ, ikẹkọ, ati idanwo lati gba TSS pada ni awọn ẹgbẹ Himawari – 8 ti o da lori awọn radiances TOA afarawe. Lakotan, awọn abajade TSS ti a gba pada ti Himawari-8 ni iṣiro iṣiro ni ilodisi data didara omi ni akoko kanna ni GBR ati awọn idiwọn ti algorithm ti a yan.

Ṣe nọmba 2. Aworan sisan ti awoṣe-orisun awọ algorithm ti o dagbasoke fun Himawari-8.
2. Awọn ọna Awọn parameterisation ti awọn radiative gbigbe iṣeṣiro ati awọn oniru ti awọn
ANN onidakeji awoṣe ti wa ni pato ninu awọn wọnyi aparo. Awọn parameterisations awoṣe siwaju ati idakeji tẹle ọna ti o ti dagbasoke tẹlẹ fun awọn omi eti okun Yuroopu [3638] ṣugbọn wọn ṣe deede ninu iwadi yii f-tabi awọn ipo opiti inu omi ti GBR [39]. Ni afikun, gbigba H-imawari-8, sisẹ ati awọn ilana boju-boju, ati ero isise awọ okun ni a ṣapejuwe fun algorithm ti o da lori awoṣe th-e ni idagbasoke nibi. Ilana afọwọsi ati awọn ọna fun igbelewọn ti aropin algoridimu-s ti gbekalẹ, bakanna bi awọn abajade akọkọ fun ibojuwo TSS ni GBR.

Sens latọna jijin 2022, 14, 3503

4 ti 23
2.1. Awoṣe Iwaju
Ninu iṣẹ yii, ẹya scalar ti Matrix-Operator Model (MOMO) [40,41] ni a gba oojọ fun awọn iṣeṣiro gbigbe radiative oceanatmosphere ti awọn ẹgbẹ Himawari-8 VNIR (Table 1). Aibikita polarization ti oju aye le ja si awọn aṣiṣe ti 12% ni TOA, eyiti o jẹ itẹwọgba fun awọn ohun elo omi eti okun [42]. Awọn Himawari-8 RTOA() jẹ afarawe fun ibiti o daju ti inu omi ati awọn ohun-ini opiti oju aye ti GBR.
Eto oceanaatmosphere ti afarawe ti jẹ stratified ni ọpọlọpọ awọn ipele ti o jọra ọkọ ofurufu isokan nibiti a ti gbero awọn iru asọye ati awọn ifọkansi ti omi ati awọn eroja opiti oju aye. Giga oju-aye afarawe (TOA) jẹ 50 km nipọn ati pin si awọn fẹlẹfẹlẹ 11 nibiti pro ti inarofiles ti titẹ, otutu, ati ọriniinitutu tẹle Atmosphere Standard US [43]. Attenuation nipasẹ tituka Rayleigh jẹ iṣiro fun pẹlu awọn igara dada barometric meji ti 980 hPa ati 1040 hPa. Afẹfẹ ti pin si ipele ti aala (02 km), troposphere ọfẹ kan (212 km), ati stratosphere (1250 km). Ninu Layer kọọkan, a ṣe awọn iṣeṣiro fun awọn apejọ aerosol ọtọtọ mẹjọ pẹlu awọn ifọkansi oriṣiriṣi ti sisanra opiti aerosol (a) ni 550 nm laarin 0.015 ati 1.0. Apejọ aerosol kọọkan jẹ ti awọn awoṣe aerosol akọkọ mẹta, awoṣe Maritaimu ni ipele ala, awoṣe continental kan ninu troposphere ọfẹ, ati awoṣe sulfuric acid ninu stratosphere, ni ọriniinitutu ibatan laarin 70% ati 99%. Iwọn kan ni a pinnu lati awọn akiyesi ipele-ọdun-ọdun Ipele 2 oorun-photometer ti ibudo AERONET [44,45] ni Lucinda Jetty Coastal Observatory (LJCO) ti o wa ni agbedemeji GBR [18.52S, 146.39E]. Onínọmbà àwọn olùsọdipúpọ̀ Ångström tí ó bára mu [46] laarin 550 ati 870 nm ni ibudo LJCO AERONET jẹrisi adalu omi okun ati awọn iru aerosol continental ti o baamu si awọn ti a lo ninu awọn iṣeṣiro RT.
Gbigbe awọn gaasi oju aye (ayafi fun O3) ni a gba lati ibi ipamọ data giga Resolution Transmission Molecular Absorption (HITRAN) [47] ati imuse ni awọn iṣeṣiro gbigbe radiative nipasẹ awoṣe pinpin k-ipin ti Bennartz ati Fischer [48]. Awọn iṣeṣiro gbigbe radiative ni a ṣe ni ero ikojọpọ ozone igbagbogbo ti 344 Dobson Units (DU) [43]. Awọn ẹgbẹ Himawari-8 jẹ afarawe fun oorun 17 ati awọn igun akiyesi ati awọn igun azimuth ibatan 25 ni deede. Awọn iṣeṣiro naa ni a ṣe fun awọn iyipada didara omi ojulowo, ti o jẹ aṣoju nipasẹ awọn ifọkansi alailẹgbẹ ti a yan laileto ti CHL, TSS, ati awọn nkan ofeefee (YEL), lẹhinna tọka si bi awọn meteta ifọkansi. Awọn sakani ti awọn iwọn mẹta ifọkansi ti a ṣe afiwe ni asọye da lori pipinka ti awọn ifọkansi ibamu ni ipo ti a rii ni GBR, ni atẹle ọna nipasẹ Zhang et al. [49]. Awọn meteta ifọkansi ti a ṣe afiwe ni a pin ni dọgbadọgba ni aaye logarithmic, nitorinaa aṣẹ titobi kọọkan jẹ aṣoju kanna lakoko ti o yago fun awọn iṣeṣiro ẹda-iwe.
Lapapọ gbigba iwoye ti omi okun a () jẹ apẹrẹ nipasẹ awoṣe iṣiro bio-opitika mẹrin-paati fun gbigba omi mimọ (aw), gbigba ti phytoplankton ati gbogbo ohun elo Organic ti o ku (ie, detritus) ap1 gẹgẹbi iṣẹ ti CHL [0.01, 15], gbigba ti awọn patikulu ti kii-algal ti T1 ṣiṣẹ. 100.0], ati gbigba awọn nkan ofeefee ay ni 443 nm [0.002, 2.5]. Olusọdipúpọ gbigba ti omi mimọ (aw) jẹ apẹrẹ ni ibamu si Pope ati Fry [50] fun awọn ẹgbẹ hiwari-8 ti o han 13 ati nipasẹ Hale and Querry [51] fun ẹgbẹ 4. Iwoye iwoye ti phytoplankton ati detritus ap1 tẹle parameterisation ti Bricaud et al. [52], lakoko ti gbigba ti awọn patikulu ti kii-algal ap2 jẹ parameterised ni ibamu si Babin et al. [53], pẹlu arosọ Sp2 ti 0.012 ti o jẹyọ lati inu data bio-optical data sampmu ninu GBR laarin ọdun 2002 ati 2013. Olusọdipúpọ gbigba spekitira ti awọn nkan ofeefee ay jẹ apẹrẹ ni ibamu si Babin et al. [53], pẹlu kan tumosi ite Sy of 0.015 ti a tun yo lati ni ipo akiyesi lati GBR [39].
Lapapọ pipinka ti o wa ni oju omi okun (b ()) jẹ apẹrẹ nipasẹ ọna kika bio-optical awoṣe meji-paati [53] iṣiro fun sisọ omi mimọ (bw) ati pipinka tabi Organic ati awọn patikulu inorganic bp gẹgẹbi iṣẹ TSS. Tituka omi okun mimọ

Sens latọna jijin 2022, 14, 3503

5 ti 23

olùsọdipúpọ ni a ṣe afihan bi ofin agbara ti o gbẹkẹle gigun ti o da ni Morel [54],

asọye fun aropin salinity agbaye ti 35 PSU. Awọn tituka ilowosi ti Organic ati

awọn patikulu aila-ara ni a ṣe idapo lati gba apapọ iyeida ti o ntuka BP ni atẹle parameterisation ti Babin et al. [55]. Awọn ibi-pato tituka olùsọdipúpọ

ti awọn patikulu TSS bp ti 0.31 m2 g-1 ni iṣiro fun awọn omi GBR, ni atẹle Babin et al. [55]. Awoṣe iṣeeṣe afẹhinti fun Case 2 omi ni a lo [49,56] si

ṣe iṣiro ati yan awọn iṣẹ alakoso pipinka inu omi (, ) da lori ipin ti TSS ati YEL. Awọn iṣeṣiro naa ni a ṣe fun nọmba nla ti ifọkansi laileto

meteta ati awọn ipo oju aye, bi a ti ṣe ilana tẹlẹ, lati kọ okeerẹ kan

database ti azimuthally resolved Himawari-8 RTOA (). Lati yi database, isiro

ikẹkọ aṣoju ati awọn idawọle idanwo ni a yọ jade laileto lati ṣe agbekalẹ onidakeji

awoṣe. Ikẹkọ ati awọn ipin idanwo kọọkan ni 100,000 awọn adaṣe igbewọle

x

ti o ni awọn

awọn: RTOA simulated ni 470, 510, 640, ati 856 nm bands, okun ipele titẹ atmospheric laarin 980 ati 1040 hPa, oorun zenith igun (s), wíwo zenith (v), ati ojulumo azimuth ().

2.2. Awoṣe onidakeji

Ninu iwadi yii, multilayer perceptron (MLP), kilasi ti kikọ sii-siwaju Nẹtiwọọki Neural Neural (ANN) [57], ti ni imuse bi awoṣe onidakeji ti o da lori Eto Neural Network Simulator C-eto ti o dagbasoke nipasẹ Malthouse [58], lati isunmọ ibatan iṣẹ ṣiṣe laarin Himawari-8 RTOA () ati ifọkansi TSS. MLP ti o wa lọwọlọwọ ni Layer igbewọle, Layer ti o farapamọ, ati ipele ti iṣelọpọ ti awọn neuronu. Neuron kọọkan ni asopọ pẹlu neuron kọọkan ti ipele ti o tẹle nipasẹ iwuwo kan. Ẹkọ ẹrọ tabi ilana ikẹkọ le ṣe apejuwe bi atẹle:

·

Awọn neuronu igbewọle (ni) gba fekito igbewọle

x

, ti o ni awọn ifasilẹ simulated

ati data ancillary ti a ṣalaye loke, o si tan kaakiri si awọn neuronu Layer ti o farapamọ

(nh).

Ninu Layer ti o farapamọ, awọn neuron atọwọda ṣe akopọ awọn ifihan agbara titẹ sii iwuwo ati ṣe iwọnyi nipasẹ iṣẹ gbigbe ti kii ṣe laini ati lẹhinna siwaju awọn abajade wọn

si awọn iṣan o wu Layer (ko si).

· Iṣẹ idiyele (ie, tumọ si awọn aṣiṣe onigun mẹrin, MSE–Idogba (1)) laarin sim-

awọn abajade ibi-afẹde ulated yt ati awọn abajade iṣiro iṣiro ANN yc jẹ iṣiro fun gbogbo dataset ikẹkọ (N = 100,000), ati awọn iwọn inu inu (W1, W2) ti nẹtiwọọki jẹ atunṣe.

· Idanileko ti ANN tun ṣe titi iṣẹ iye owo laarin iṣẹjade ati iye ibi-afẹde ti dinku.

MSE = y c – y t /N

(1)

Iṣẹ iye owo ti dinku nipasẹ mimubadọgba awọn matrices iwuwo (W1, W2) ni ilodisi lilo BroydenFletcherGoldfarbShanno iṣapeye algorithm [59]. Fun faaji MLP oni-ila mẹta, iṣẹ itupalẹ pipe ni a fun nipasẹ Idogba (2):

yc

=

S2

×

W2 × S1

W1 × x

(2)

nibiti S1 ati S2 jẹ ti kii ṣe laini (Idogba (3)) ati awọn iṣẹ gbigbe laini ti o ṣiṣẹ ni iṣelọpọ ati Layer farasin, lẹsẹsẹ.

S (x) = 1 + ex -1

(3)

Nọmba awọn neuronu ti o wa ninu titẹ sii ati awọn ipele iṣelọpọ ni ipinnu nipasẹ nọmba awọn igbewọle ati awọn aye iṣelọpọ ti iṣoro naa, lakoko ti awọn igbiyanju idanwo pupọ.

Sens latọna jijin 2022, 14, 3503

6 ti 23

a nilo lati pinnu nọmba ti o dara julọ ti awọn neuronu ni ipele ti o farapamọ. Awọn

A ṣe apẹrẹ awọn idanwo nipasẹ yiyatọ nọmba ti awọn neuronu Layer ti o farapamọ lati 10 si 100,

increments of 10. A ID sugbon fun gbogbo awọn adanwo ti o wa titi irugbin ti a lo lati initialise awọn -

àdánù iṣeto ni ti awọn nẹtiwọki. Awọn adanwo pẹlu paati akọkọ kan

itupale (PCA) gẹgẹbi igbesẹ iṣaju-iṣaaju lati ṣe ọṣọ awọn igbewọle RTOA(). Ni afikun, awọn adanwo naa ni a ṣe pẹlu 0.8% ami iyasọtọ ti ko ni ibamu pẹlu ami-igbẹkẹle rando-m - ariwo ti a ṣafikun si awọn igbewọle RTOA ni ẹgbẹ kọọkan. Awọn adanwo ANN ni ikẹkọ ati idanwo pẹlu ipin kan ti 100,000 awọn adaṣe igbewọle ti a fa jade laileto lati gbigbe radiative

afarawe dataset. Fekito igbewọle kọọkan ni nkan ṣe pẹlu ifọkansi TSS logarithmic kan, - eyiti a yan bi abajade ibi-afẹde lati jẹ isunmọ nipasẹ ikẹkọ abojuto

ilana. Gbogbo awọn adanwo ni ikẹkọ fun awọn aṣetunṣe 1000 ati idinku idiyele naa

iṣẹ (Idogba (1)) jẹ iṣiro lori gbogbo data ikẹkọ ni aṣetunṣe kọọkan. An

dataset idanwo ominira ti N = 100,000 vectors ni a lo lati ṣe atẹle ikẹkọ nẹtiwọọki

išẹ ati lati yago fun ju-yẹ.

2.3.

TBhaesHicipmraowceasrsi-in8- gOscteeapns

Ṣiṣeto awọ fun Himawari-8 aise

data

sinu

TSS

awọn ọja

ni

han

in

Olusin

3.

Ipele 1 (L1) ni kikun disk Himawari-8 awọn idinamọ VNIR ni a gba, ti jade lori agbegbe GBR -

(10 S, 29 S, 140 E, 157 E), geolocated, a-ati lilọ ni atunse. Awọn geolocated aise data

ni a yipada si Ipele 1b (L1b) TOA radiances (LTOA() W m-2sr-1µm-1) nipasẹ –

tghreidawppalsicraetsiaomnpolfedpofrsot-mlau0.n5ckhmuptoda1tkedmctaolimbraattcihonthceoreefsfiocliuetn-itosn[o60f ]t.heTahseso6c4i0atnemd VbNanIRd

awọn ẹgbẹ. L1b calibrated LTOA() ni a ṣe deede nipasẹ afikun itanna oorun-oorun F () W -m-2 fun ẹgbẹ kọọkan. F() ṣe iṣiro bi iṣẹ ti ọjọ ti ọdun

ati lilo awọn afikun-terrestrial oorun irradiance F iye b-ased lori Kurucz [61] ati ki o fara si awọn Himawari-8 igbohunsafefe [62]. Abajade TOA afihan-ances RTOA() sr-1 ni VNIR Himawari-8 bands ti a ṣe bi awọn igbewọle si ọna inver-sion. Ni afikun, awọn

s, v, and values were calculated for each pixel of the satellite image as a function of latitude, longitude, and local time, following existing procedures [63], and converted into

awọn ipoidojuko Katesia (x, y, z).

Ṣe nọmba 3. Himawari-8-Ocean Color Processing flowchart. HSD tọka si data Himawari-8 Stan-dard, GBR tọka si Okuta Barrier nla, VNIR tọka si Himawari-8 ti o han an-d nitosi awọn ẹgbẹ infurarẹẹdi (470, 510, 640, ati 856 nm), ati ANN tọka si Nẹtiwọọki Neural Artificial.

awọn

ACulsoturadlimanasckoinntginoenf tHainmdaswuarrroi–u8nodbisnegrvwaatitoenrss.

je The

ni idagbasoke nipasẹ Qin et al. [64] fun 2 km o ga awọsanma boju wà

resampyori si eruku ati ẹfin

1plkummHesimfraowmabrii-o8mg-raisds

ati pẹlu bojuboju ti awọn piksẹli ti doti pẹlu sisun. Bakanna, awọn piksẹli ṣe idanimọ bi o ti farahan

roboto, gẹgẹ bi awọn continental agbegbe, erekusu, ati shoals, won boju-boju da lori apẹrẹfiles

wa lati Great Barrier Reef Marine Park Authority [65] database. Oorun-glint

Sens latọna jijin 2022, 14, 3503

7 ti 23
boju-boju ni a ṣẹda nipasẹ ṣiṣe iṣiro awọn ipoidojuko ti aaye akọkọ ti oorun glint (PPS) gẹgẹbi iṣẹ ti ọjọ ti ọdun (itẹri oorun), wakati agbegbe, latitude, ati longitude [66], ni ipinnu aaye 1 km. Apẹrẹ ti disiki oorun jẹ ifipamọ fun rediosi ipin kan ti 1300 km lati awọn ipoidojuko ti PPS. Iwọn rediosi ni a yan lẹhin ọpọlọpọ awọn idanwo wiwo ti a lo lati rii daju pe o pọju agbegbe ti agbegbe disk oorun akọkọ.
Awọn akiyesi Himawari-8 jẹ deede piksẹli-nipasẹ-pixel ati fun ẹgbẹ kọọkan pẹlu data satẹlaiti isunmọ-akoko ti osonu opopo lapapọ ti a fa jade lati Apapọ Ozone lati Analysis of Stratospheric ati Tropospheric Satellite irinše (TOAST) ọja [67] ṣaaju awọn iyipada. Ọja TOAST naa, pẹlu ipinnu aye ti 1.25 nipasẹ awọn iwọn 1 ati ipinnu igba diẹ lojoojumọ, jẹ resampyori si 1 km fun ibamu pẹlu akoj Himawari-8. Awọn akiyesi Himawari-8 ni a ṣe deede ni ẹgbẹ kọọkan nipasẹ ipin laarin gbigbe ti TOAST-ti ari ozone si gbigbe ti iwuwo ọwọn ozone ti a ṣe apẹrẹ ti 344 DU. Ni afikun, data titẹ oju-aye ti o tumọ si lati NCEP/NCAR 'Reanalysis 2' PaRt2m [6870] ni a lo bi awọn igbewọle fun iyipada ti awọn akiyesi Himawari-8. Awọn data `Atunyẹwo 2' jẹ aropin ni gbogbo wakati 6 (0, 6, 12, 18 UTC) ati sampmu lori akoj agbaye deede ti iwọn 2.5 ipinnu aye [71]. Awọn data PaRt2m nigbakanna ti o sunmọ julọ ni a gba ati awọn atunṣeampyori si 1 km Himawari-8 akoj. TSS ti a gba pada, awọn iboju iparada, ati metadata ni a fipamọ sinu NetCDF kan file, pẹlu piksẹli-ọlọgbọn to somọ awọn asia fun awọn igbewọle ti ita ati awọn igbejade. Awọn sakani ti awọn igbewọle to wulo ati awọn igbejade ni asọye ti o da lori data afarawe RT. Fun apẹẹrẹ, ti igbewọle piksẹli kan ati/tabi paramita ti o wujade kọja awọn sakani ti a ṣe afiwe, ẹbun naa ni a yan asia ti o baamu. Iṣawọle ati awọn asia igbejade ni a ṣe akopọ fun piksẹli kọọkan ti akoj Himawari-8. Awọn asia ti o wa ni ita ti a lo si awọn ọja didara omi ṣaaju iṣaaju ti afọwọsi ati awọn itupalẹ ohun elo.
2.4. Reef Idankan duro Nla ni Data Situ
Ni ipo TSS ti a ṣewọn laarin ọdun 2015 ati 2018 nipasẹ Ile-ẹkọ Imọ-jinlẹ ti Ilu Ọstrelia ti Ilu Ọstrelia (AIMS) ati Ajo Agbaye ti Imọ-jinlẹ ati Iwadi Iṣẹ (CSIRO) ni a gba lati inu aaye data IMOS Bio-optical Database [72] nipasẹ ọna abawọle Data Network Ocean Australia (AODN). Mejeeji CSIRO ati AIMS lo ọna gravimetric lati pinnu ifọkansi TSS ni omi okun. Ọna naa ni wiwọn iwuwo gbigbẹ ti awọn ipilẹ ti o daduro lati iwọn didun ti omi okun ti a mọ ti sample lẹhin ti o ti wa ni igbale filtered lori ami-iwọn awopọ àlẹmọ. Awọn alaye siwaju sii lori ilana ti AIMS ati CSIRO gba ni a ṣe apejuwe ninu Great Barrier Reef Marine Park Authority [73] ati Soja-Woz'niak et al. [74], lẹsẹsẹ. Pelu AIMS ati awọn ile-iṣẹ CSIRO ti nlo awọn ọna oriṣiriṣi diẹ lati pinnu TSS (ie, nọmba awọn ẹda, awọn paadi àlẹmọ, rinsing, ati bẹbẹ lọ), awọn data data wọnyi ti ni idapo ni idaraya afọwọsi yii. Apapọ 347 ni awọn aaye data aaye pẹlu TSS ti o wa lati 0.01 si 85 mg L-1 ati iwọn 3.5 mg L-1 ni a gbero. Ni awọn aaye data aaye laarin 1 km lati eti okun tabi awọn okun ni a yọkuro lati inu itupalẹ lati dinku awọn aidaniloju nitori awọn ipa isunmọ [75]. A fi gbogbo rẹ sinu omi okun situ samples ya ni dada (<0.5 m ijinle) ti awọn ibudo ti o wa ni awọn ijinle omi oniyipada (1.5 m si 40 m), pẹlu aaye data aijinile ti n ṣafihan TSS> 10 mg L-1.
2.5. Ilana Ifọwọsi
Ilana afọwọsi ti a lo ninu iwadii yii tẹle iriri ti awọn adaṣe afọwọsi iṣaaju fun akiyesi jijin awọ okun ni Australia, pẹlu ni GBR eti okun [27,76,77]. Awọn ijinlẹ wọnyi ṣapejuwe awọn igbesẹ sisẹ fun isediwon ti awọn akiyesi satẹlaiti nigbakanna si awọn iwọn ipo ni GBR eti okun, bakanna bi awọn metiriki iṣẹ ṣiṣe iṣiro to wulo.
Awọn akiyesi Himawari-8 lọpọlọpọ le ni idapo laarin akoko kan (ie, hourly) lati mu imukuro kuro ni agbara ati dinku sensọ ati ariwo ayika, o ṣee ṣe imudarasi awọn iṣiro ati awọn iṣẹ afọwọsi [7,9,16]. Nitorinaa, gbogbo awọn akiyesi Himawari-8 ti o wa ti ṣayẹwo laarin ± 30 min lati igbasilẹ ni akoko ipo ni a gba fun adaṣe afọwọsi yii. Ti yan ati ṣiṣe awọn akiyesi 10 min Himawari-8 ni VNIR

Sens latọna jijin 2022, 14, 3503

8 ti 23

--

awọn ẹgbẹ pẹlu oorun ti o ni nkan ṣe ati geometry akiyesi jẹ abẹlẹ si 3-by-3-pixe-l bo-x-es,

dojukọ ni awọn ipoidojuko ti igbakọọkan kọọkan ni aaye data aaye. Bakanna, awọn ipin 3-nipasẹ-3-pixel ti awọn iboju iparada nigbakanna (ie, awọsanma, lan-d, reefs, and sun glint) ati data itọsi (ie, – ozone ati titẹ) ni a fa jade. Awọn akojọpọ awọ isunmọ-otitọ ti Himawari-8 ti a yan -

Awọn akiyesi ni a ṣe ayẹwo oju lati yọkuro awọn ibaamu ninu omi pẹlu petele didasilẹ

gradients ni awọn ohun-ini opitika (ie, turbidity fronts) tabi awọn awọsanma nitosi.

HourlAwọn akojọpọ y ti awọn ipin to wulo ni a ṣe iṣiro nipasẹ aropin igba diẹ, aibikita –

boju-boju awọn piksẹli. Awọn hourly kojopo- su-bsset ti ni ilọsiwaju pẹlu iyipada ANN

algoridimu ati ki o boju-boju fun awọn iye ti o wa ni ita. Lakotan, agbedemeji ati iyapa boṣewa

ti hourly TSS awọn ipin ti a ṣe iṣiro, laisi awọn piksẹli m- beere. Awọn ipin-ipin yẹn nikan pẹlu awọn piksẹli meji tabi kere si ti o boju-boju fun apoti-piksẹli ni a gba pe o wulo fun isọdọkan. Awọn ANN

Awọn abajade ni a ṣe iṣiro ni iwọn logarithmic (log10) ati pe igbakanna TSS ni aaye ni a ṣe iyipada fun itupalẹ iṣiro. Ipariview ti afọwọsi ilana ti wa ni alaworan

ni Figure 4. Awọn iṣẹ ti a akojopo pẹlu n ṣakiyesi si wọn root tumosi square aṣiṣe

(RMSE-tabi aṣiṣe pipe), ojuṣaaju, tumọ si ipin pipetage aṣiṣe (MAPE-tabi aṣiṣe ibatan), ati iyeida ti ipinnu (R2). Iyatọ, R2, ati RMSE jẹ iṣiro ni log10

aaye ati MAPE ti ṣe iṣiro ni wiwọn laini ati p satẹlaiti-ti ari

psproadceu,cftowlloitwhi-nNgtEhqeunautimonbser (4o) f (v7a) l, iwd hmearetcmhuispsth. e

RMSE = 1/N (m -p)2

(4)

MAPE = 100/N |(m -p)|/p 2

(5)

R2 =

N

N(mp)- ( m)( p) m2 – ( m)2 N p2 – (

p)2

(6)

Iyatọ = 1/N (m -p)

(7)

Awọn adanwo-soke ANN ni ipo ti o da lori awọn metiriki iṣiro ti a ṣalaye - loke. Ayanfẹ ni a fun awọn adanwo wọnyẹn pẹlu RMSE ti o kere julọ nitori paramita iṣiro yii jẹ iṣẹ idiyele ti o dinku lakoko ikẹkọ ANN. Idanwo ti o dara julọ-perfo-rming pẹlu nọmba ti o kere julọ ti awọn neuronu ni ipele ti o farapamọ ni a yan, lati dinku awọn akitiyan iširo fun iyipada ti awọn akiyesi Himawari-8 - lori gbogbo GBR.

olusin 4. A simplified loriview ti ilana afọwọsi alugoridimu.

2.6. Igbelewọn ti Idiwọn

Awọn ipin ifihan-ton-oise (SNR) ni a ṣe iṣiro fun ti o han ati isunmọ-inf-rared

HEaimstearwnaSrti-a-8ndLtaOrdA

(Tim) oeb–seArvEaStTio) nast

ti ṣayẹwo ti yan

laarin 08:00 to 16:00 agbegbe ọjọ ati awọsanma-fr-ee agbegbe

akoko (Australian ti Okun Coral

Sens latọna jijin 2022, 14, 3503

9 ti 23

(16.25S, 151E ati ni 20.60S, 153.53E). Awọn akiyesi lẹhin-Oṣu Keje ọdun 2017 nikan ni a gbero fun itupalẹ yii, fun ni pe a ṣe atunṣe awọn ilodisi isọdọtun wọn fun ariwo isokan ati petele [63,78]. Awọn aworan ifaworanhan awọ otitọ ti o wa nipasẹ Eto Atẹle P-Tree Himawari-8 [79] ni a ṣe lilọ kiri lori yiyan agbegbe ibi-afẹde ati lati rii daju pe iwọnyi jẹ aṣọ aye ati pe ko ṣeeṣe lati ni ipa nipasẹ awọn awọsanma, glint oorun, awọn ẹya opitika bio, ati ẹfin lati gbigbo ilẹ [80,81]. Awọn akiyesi Himawari-8 ti a yan ni iyipada lati awọn iṣiro aise si awọn ẹya ti ara nipa lilo awọn iye-iye isọdiwọn [60], pẹlu awọn ipin ti 51-nipasẹ-51-pixels ti a fa jade ati dojukọ ni awọn ipoidojuko ti awọn agbegbe ti iwulo. Ni afikun, awọn ipin, awọn iboju iparada, ati awọn paramita jiometirika jẹ hourly kojọpọ. Awọn iṣẹju 10 ati hourly ti a kojọpọ awọn ipilẹ ti a ti boju-boju fun awọn awọsanma, ilẹ, awọn okun, ati awọn glint oorun, ati awọn akojọpọ awọ ti o sunmọ-otitọ ni a ṣe ayẹwo fun awọn ẹya ti a ko ri gẹgẹbi coral cays, reefs, awọn ojiji awọsanma, ati awọn ohun elo sensọ.
A ṣe iṣiro SNR fun ẹgbẹ Himawari-8 kọọkan ti o tẹle Idogba (8) [80]. Apapọ LTOA() fun gbogbo awọn piksẹli to wulo laarin agbegbe ibi-afẹde yoo fun Ltypical (), ati gbigba iyapa boṣewa () laarin agbegbe kanna yoo fun ariwo ni deede radiance (Lnoise()). SNR jẹ iṣiro bi ipin laarin Ltypical ati Lnoise ni ẹgbẹ kọọkan:

SNR() = Aṣoju ()/Lnoise() = LTOA()/(LTOA())

(8)

Iyatọ ti ojojumọ ati awọn iyatọ titobi laarin SNR ṣe iṣiro pẹlu awọn iṣẹju 10 ati hourly kojọpọ awọn akiyesi Himawari-8 (SNRSING () ati SNGG (), lẹsẹsẹ) ni a ṣe ayẹwo ni ẹgbẹ kọọkan. Ni afikun, awọn abuda iwoye wọn jẹ iṣiro fun awọn sakani ti s nitori awọn ipele ariwo ni a mọ lati yatọ pẹlu igbega oorun [80]. Lakotan, ogorun ti o somọtage awọn ipele ariwo (% Ariwo) ni a ṣe iṣiro fun s = 45 ± 1 ati pe a lo lati ṣe iṣiro ifamọ algorithm si awọn ipele ariwo aṣoju Himawari-8.
Algorithm TSS ti o ni idagbasoke ninu iwadi yii ni ikẹkọ pẹlu ariwo fọtonu alapin (aiṣedeede) (0.8%) ti a ṣafikun si iwe data ikẹkọ, ti o ro pe oye to lopin ti awọn abuda iṣẹ ṣiṣe sensọ lori awọn ibi-afẹde okun. Lati ṣe iṣiro iduroṣinṣin ipadasẹhin ati lati pese itupalẹ ifamọ ipilẹ ti algorithm TSS, ariwo photon alapin alapin ti 0.1, 1.0, ati 10 ati 50% ni a ṣafikun si dataset idanwo ati yipo. Ni afikun,% Ariwo ti o ni nkan ṣe pẹlu awọn ẹgbẹ Himawari-8 ni a ṣafikun si data data idanwo lati ṣe iwọn awọn ipa ti awọn ipele ariwo ti o gbẹkẹle ni iwọn lori deede ti awọn atunpada TSS. Iduroṣinṣin imupadabọ ni a tumọ ni awọn ofin ti awọn ilọsiwaju igbagbogbo ti RMSE kọja titobi pupọ ti TSS (0.01 si 100 mg L-1) ni deede ni aaye ni awọn ifọkansi logarithmic. Ni afikun, awọn transects gigun ti awọn ọja TSS ti o mu ni isokan ati awọn omi ti ko ni awọsanma ti GBR eti okun ati ni Okun Coral ni a ṣe iṣiro ni iwọn piksẹli fun igbelewọn agbara ti awọn ipele ariwo ti Himawari-8.

3. esi
3.1. Afọwọsi alugoridimu
Awọn nẹtiwọọki lọpọlọpọ ni ikẹkọ pẹlu ọpọlọpọ awọn atunto faaji ati nẹtiwọọki iṣẹ ṣiṣe ti o dara julọ pẹlu RMSE ti o kere julọ ati nọmba ti o kere julọ ti awọn neuronu ni ipele ti o farapamọ ni a yan fun awọn iyipada. Idanwo ti a yan, pẹlu awọn neuronu 50 ni ipele ti o farapamọ, ti gba TSS ti o wa lati 0.14 si 24 miligiramu L-1, pẹlu R2 rere ati abosi ti 0.014 mg L-1, MAPE ti 75.5%, ati 10RMSE ti 2.08 mg L-1, bi a ṣe han ni Nọmba 5.

Sens latọna jijin 2022, 14, 3503

10 ti 23

Nọmba 5. Ni ipo ati Himawari-8-de-r-ived TSS pẹlu idanwo ANN ti o n ṣe b-est, pẹlu ni ipo TSS awọn iye awọ-koodu-d ni iwọn logarithmic. Awọn ifi aṣiṣe ṣe afihan iyapa intra-pix-el ti TSS laarin apoti 3-nipasẹ-3–pi-xe-l kan. Awọn aami oriṣiriṣi tọka si ni ipo data ti a gba nipasẹ AIMS
ati nipasẹ CSIRO ni LJCO.

3.2. Himawari-8 Lapapọ S-olids ti daduro fun Idena Nla Ree-f
olusin 6 fihan a sunmọ-otito awọ apapo ti Himawari-8 (osi nronu) ti o ya lori 27 October 2017 ove-r agbegbe GBR, ati awọn ti o baamu TSS ọja ni 10 min igba akoko ipinnu (ọtun nronu). Awọn omi ti o wa laarin adagun GBR ni TSS ni gbogbogbo ni tabi loke 1 miligiramu L-1, lakoko ti awọn omi ti ilu okeere awọn iye GBR ti o wa ni isalẹ 1 mg L-1. Ọja TSS ṣe afihan granulation lile ati ariwo didin ni awọn agbegbe ita gbangba ti Okun Coral.

Nọmba 6. Awọn aworan ti o sunmọ-otito Himaw-ari-8 ti GBR ti a gba ni 27 Oṣu Kẹwa 2017 ni 15: 00 AEST (papa osi) ati TSS p-roduct [mg L-1] (panel ọtun). Awọn piksẹli boju-boju ni dudu nitori awọsanma-s a-ati awọn iye ti o wa ni ita.

Awọn iyipada Himawari – 8 TSS ni a ṣe iwadii ẹnu Odò Burdekin ati lori gusu GBR

fun matrix reef omi eti okun (olusin 7

saunrdroaunn-imdinatgiothnes

ni ọna asopọ). Iṣẹlẹ iṣan omi Burdekin ti Oṣu kejila ọjọ 12, ọdun 2019 ṣe agbejade erupẹ erofo pe

de awọn okun ode (50 km lati ẹnu) laarin 3 si 4 irọlẹ, pẹlu TSS> 20 mg L-1.

-

Sens latọna jijin 2022, 14, 3503

--


11 ti 23

Th- e Burdekin River erofo plume ni idagbasoke nigba ti nwọle ṣiṣan pẹlu kan ibiti o ti 0.3 m laarin kekere ati ki o ga ṣiṣan. Awọn omi eti okun ti o wa nitosi awọn okun ti o ni iriri titobi titobi ni TSS (3.6, 26.4 mg-L-1) laarin s-emi-diurnal tidal cycle (ami agbelebu ni Figure 7 (panel osi) ati Figure 8a). Awọn okun ti o bo nipasẹ awọn iṣan omi ti farahan si TSS ~ 40 awọn akoko ti o ga ju ala itọnisọna ti 0.7- mg L-1 [82]. Awọn agbegbe nibiti-e TSS ti kọja 100 mg-L-1, nitosi ẹnu, ni iboju-boju (awọn agbegbe dudu) bi- ou-t-ti-iye iye (awọn asia ANN). Idaraya ti awọn iyipada TSS ti o tẹle iṣẹlẹ idasilẹ akọkọ wa ni Nọmba S1.

Nọmba 7. Ikun omi ṣiṣan lati Odò Burdekin, Kínní 2019 (panel osi). Awọn ọkọ oju-omi kekere ti TSS laarin matrix GBR reef ni Oṣu kọkanla ọdun 2016 (panel ọtun). Akiyesi awọn orisirisi awọn sakani ni kọọkan Idite. Awọn piksẹli ti o boju-boju ni dudu jẹ nitori awọn iye TSS ti ko-ra-nge.
Lakoko ti awọn iṣẹlẹ iṣan omi nla ṣe afihan awọn ẹya TSS ti o han gbangba ni GBR eti okun, awọn ọkọ oju-omi kekere meso-meso-scale tidal tidal ni a ṣe akiyesi yika matrix ti aijinile ati awọn omi inu omi ni gusu GBR (Nọmba 7 (panel ọtun)), ti n ṣe afihan bii awọn ipo oriṣiriṣi wọnyi mejeeji ṣe ni ipa ni igba kukuru- iyipada TSS. Idaraya ti a pese ni Nọmba S2 ṣe afihan awọn agbara ti awọn iyipada TSS ti o ni idawọle, nibiti awọn ṣiṣan giga (4 m) ati kekere (0.2 m) waye ni 10 owurọ ati 6 irọlẹ, lẹsẹsẹ (Aworan 8b). Awọn ifọkansi TSS nitosi Heralds Reef (ami agbelebu) yipada nipa aṣẹ kan ni titobi laarin ọjọ kan (0.3, 2.0 miligiramu L-1), awọn iye ti o kọja awọn ala itọnisọna didara omi ṣeduro-nded fun ṣiṣi GBR eti okun (0.7 mg L-1). –

Nọmba 8. Aago akoko ti 10 min Himawa-ri-8-ti ari TSS ni ẹnu Odò Burdekin nigba awọn iṣan omi ti Kínní 2019 (a) ati ni gusu GBR reef matrix ni Kọkànlá Oṣù 2016 (b), bi a ṣe han ni Nọmba 7. Awọn ọpa aṣiṣe jẹ aṣoju intr-a-pixel boṣewa iyapa. Awọn iloro itọnisọna fun okun (2.0 miligiramu L-1) ati agbedemeji-selifu (0.7 mg-L-1) omi jẹ aami pupa. Ṣe akiyesi awọn sakani akoko oriṣiriṣi ni nọmba kọọkan.
– –

Sens latọna jijin 2022, 14, 3503

12 ti 23
3.3. Awọn idiwọn Wiwa SNR ti a ṣe iṣiro lati awọn eto meji ti awọn akiyesi Himawari-8 ni a fihan ninu
awọn eya aworan ti Nọmba 9. Awọn akiyesi diẹ ẹyọkan ni o padanu nitori iṣeduro awọsanma aladanla, paapaa ni 06 Oṣu Kẹsan 2017, ati pe o fa awọn ela data ninu jara akoko. SNRSING ati SNRAGG ṣe afihan awọn iyipada diurnal ti o han gbangba, pẹlu SNR ti o ga julọ ti o waye ni awọn s ni asuwon ti (<30), laarin 11 am ati 12 pm Iwọn titobi ati iyipada diurnal jẹ ti o ga julọ fun SNGGG ati ni awọn ẹgbẹ buluu ati alawọ ewe (470 ati 510 nm), nigbati a bawe si awọn iye SNING. SNR ti a ṣe iṣiro fun awọn ẹgbẹ 640 nm ati 856 nm jẹ o kere ju igba mẹta ni isalẹ ju SNR ti a ṣe iṣiro fun awọn ẹgbẹ buluu ati alawọ ewe, pẹlu awọn iyatọ ọjọ-ọjọ arekereke. Awọn iyipada ojoojumọ ti SNR laarin awọn ọjọ ati awọn ipo yatọ, pataki fun ẹgbẹ buluu ati lati SNGGG. Ni 06 Oṣu Kẹsan 2017 (tumọ v ~ 22), SSRAGG ni awọn ẹgbẹ buluu ati alawọ ewe jẹ iru ni titobi (Nọmba 9b). Ni 25 Oṣu Kẹsan 2017 (ni ipo ti o yatọ pẹlu iwọn v ~ 28), ẹgbẹ buluu ti gbekalẹ SNRSING fẹrẹẹmeji bi giga bi ẹgbẹ alawọ ewe (Figure 9d).

Nọmba 9. Aago akoko ti sig-na-l-to-noise ratios (SNR, ọtun axis) ti a ṣe iṣiro fun ẹyọkan (SNRSING) (a,c) ati fun awọn akiyesi (SNRAGG) ti a kojọpọ (b, d) pẹlu s (apa osi). S-NR jẹ
awọ-se amin nipa iye.

Awọn ẹgbẹ ti

spectral iyipada ti s, ibi ti awọn bošewa

SNRSING ati SRRAGG jẹ afihan awọn iyapa laarin ẹgbẹ kọọkan

ni Figure gbìmọ bi

10 fun capped

mẹta aṣiṣe

ifi. Awọn akiyesi ẹyọkan ni igbagbogbo mu SNR kekere ju awọn akiyesi akojọpọ

ni gbogbo awọn ẹgbẹ, ati SNR wà ga fun Figure 9. Awọn boṣewa iyapa ti SNR

s <30, ni ibamu pẹlu data ti a ṣe iṣiro fun ẹyọkan ati akojọpọ

gbekalẹ ni akiyesi-tions

wfoerresm>o4r0epartotnhoeubnlcueedbfoanr dsp>re4s0enatendd

ni theblue ati awọ ewe iye. Awọn boṣewa iyapa ti 27 ati ti

SNR ṣe iṣiro 51 fun SNRSING

ati SNGG iyapa ti

, lẹsẹsẹ, nigba ti 13 ati 26, lẹsẹsẹ.

Iṣiro SNR fun ẹgbẹ alawọ ewe ti a gbekalẹ boṣewa Awọn iyapa wọnyi ṣee ṣe ni nkan ṣe pẹlu var-iable

awọn ipo oju aye ti ipo kọọkan, eyiti o pọ si ni awọn ẹgbẹ buluu ati alawọ ewe

ati ni awọn ipa ọna oju aye giga.

Sens latọna jijin 2022, 14, 3503

13 ti 23

Nọmba 10. Pipin Spectral ti awọn iwọn si-gn-al-si-ariwo ti a ṣe iṣiro fun ẹyọkan (SNRSING) (-a) ati

awọn akiyesi akojọpọ (SNRAGG) (b), ati akojọpọ bi awọn iyapa boṣewa ti SNR laarin ẹgbẹ kọọkan ti

fun s.

mẹta

awọn sakani

of

s.

Asise

ifi

iṣiro

TgcorhemegpaSTtNuehtdReedASoGNbfGsoRerrvAvaaGallGluti,seoitsnnhsgceolwLemtioytphpbiicslaeesldr,=vaiann4t5diToaLn±bnsol e1iwse2iawtwhnderersaec=saosob4m5copiuaitlt±eetddw1ipinceweTrcaeebsrnelhetiai2ngg.chelLunaikdsoeeitswdheeifs(oc%eor, NtrchrooeeimssSpepN)oaf–nRordiSrsIiNaonngGg-. SNRSING, ayafi ninu ẹgbẹ pupa. Bibẹẹkọ, awọn ipele ariwo nla ni pupa (~ 3%) ati ni tshigenNalIRdebsapnidtest(h~e5%eff)oinrtdsiicnataevtohiadtinthgeeSnNviRroAnGmG emnataylbceonmdoistitolynsafifnecitmedagbeystehleecattimonoIR awọn pataki bandeji. omi nlọ radiances ti wa ni kà aifiyesi ni ko o ìmọ òkun omi.

Tabili 2. Himawari ti o han ati isunmọ infurarẹẹdi-8 Ltypical ati Lnoise W m-2sr-1µm-1 ati ti o ni ibatan

ogoruntage ariwo (% Ariwo) fun SNGG ni s = 45 ± 1. Iṣiro SNRSING ni s = 45 ± 1 iye

won fi kun fun lafiwe.

Ẹgbẹ 470 510 640 865

Ltypical 59.5 38.3 13.8 3.4

L ariwo 0.26 0.29 0.41 0.18

% Ariwo
0.44 0.76 3.02 5.26

SNGG 223 130 33 19

SNRSING 100 74 28 8

dalegpoerTnithdhemenopturptechosoemntoetsns ronefaorsiesotenriaiesbvililenlurgestTtrrSiaeStve(ad0l.0pin1erttfhooer1m0g0raamnpcgheisLcfs-o1or)fTwFSiSigthautrsoepre1ac1tb.roaI-vnlleyb0ofl.t1ahtmasgcnedL-n-sap1r,-ieoe-csxtr,catehlplyet

nigbati 50% ti ariwo photon alapin ti a fi kun Nibayi, awọn aṣiṣe nla (> 300%) ni a gba

si awọn Himawari-8 fun TSS retriev-als

awọn ẹgbẹ ni isalẹ

(Figur-e 0.1 mg

11a). L-1,

laibikita iru ariwo ati ipele. Lori oju iṣẹlẹ ojulowo m-ore kan, nigba ti o jinlẹ ni iwọn

ariwo photon (ie,% Ariwo lati Tabili 2) - ti wa ni afikun si awọn ẹgbẹ Himawari-8, awọn aṣiṣe jẹ

pupọ julọ ni isalẹ 100% - fun TSS> ~ 0.25 mg L-1 (Figure 11 (panel ọtun)). Nitorina, fun gbigba

awọn igbapada ti o gbẹkẹle lati Himawari-8 pẹlu Curr-ent TSS algorithm, wiwa li-mit ti 0.25 mg L-1 ni a yan. Fun lafiwe, t-o awọn opin wiwa ti awọn atunpada TSS ṣe iṣiro

lati oju-aye atunse Himawari-8, bi ninu Dorji ati awọn ibẹru [17], jẹ aṣoju bi a

ila inaro ni 0.15 mg L-1.

Sens latọna jijin 2022, 14, 3503

14 ti 23

Ṣe nọmba 11. Awọn aṣiṣe RMSE atunṣe (ni mg-L-1) fun alapin spectrally (panel osi) ati spectrally ti o gbẹkẹle (panel ọtun) awọn ipele ariwo photon. Gbigbe Radia-tive (RT) TSS ati RMSE val-ues ti o nii ṣe afihan ni iwọn logarithmic. Laini daaṣi inaro ni 0.15 m-g L-1 jẹ opin wiwa adapte-d lati Dorji ati Awọn ibẹru [17], 2018. Laini dashed inaro ni 0.25 m- -g L – 1 jẹ opin wiwa ti ọna lọwọlọwọ.
Ayewo wiwo ti awọn ipele ariwo ṣe afihan granulation ti o lagbara ati awọn ila petele iogttitnnruhbraeraHstnbhneTsiierumdeSvlcCSaaactAtostwoiiGroaooaaGnsnfrl-tiTsaSw-(-h8lSeTaoaSaTSswSrS(SIesmNSSeeaIGdNvaspgeGra(iroenT)nendcSdlatruySnaeTscrad Sdei~r(nAdouF1GwicomgmeGpsu-da,egtrsaFnei-knLki1goie-an2ucn1g)ger,)geba.parne1raIetno2rgwwt)uaiaeacantd-eeutrdeenddlarciis1T-rtllill5oS(oyu1Sd

Nọmba 12. Ipo ti awọn transects (awọn ọfà magenta) ti a fa jade fun TSSSING (a) ati TSSAGG (b). Akiyesi awọn

Iboju awọsanma akopọ ni TSSAGG.Himawari-8 awọn akiyesi ti a ṣe ni Oṣu Kẹsan Ọjọ 9 Oṣu Kẹsan 2017 laarin-n

10:00 ati 10:50 agbegbe akoko (AEST).

Awọn transect sampmu laarin 19S ati 20Sin the Coral Sea (Figure 13a) ti firanṣẹ tẹlẹ

Awọn iye TSSSING ati TSSAGG pupọ julọ ni isalẹ awọn opin wiwa ti ọna (0.25 mg L-1), eyiti o le ṣafihan awọn aṣiṣe igbapada lori 100%. TSSSING ṣe afihan awọn spikes tabi iyatọ-ent o-rder ti awọn iye titobi ti o waye ni itẹlera lori iwọn piksẹli (orw ithin 1 km). Bi

abajade, awọn iyatọ ti o to 0.3 miligiramu L-1 ni a ṣe akiyesi laarin awọn piksẹli adugbo,

bi itọkasi nipa sented smoother

pplioxtela-tnon-potixaetilovnasriiantiFonigsu (r~e0.1036am. gMLe-an1) w. ShuilbetltehdeifafsesroencicaetsedweTrSeSoAbGsGerpvered-

Sens latọna jijin 2022, 14, 3503

15 ti 23

-

between TSSSING and T-SSAGG in the transects taken in the coastal GBR (Figure 13b), particularly for TSS -> 1 mg L-1. However, with increasing distance from the coast, TSS dropped below 1 mg L-1 and differences between TSSSING and TSSAGG were enhance-d. Although- most TSSSING pixels of Figure 13b were abo-ve-detection limits (0.25 mg L-1), they presented- poor spatial coherency in the coast-to-ocean transition area (151.4 to 152-.0E). Because TSSSING and TSSAGG provide comparable results for TSS > ~1 mg L-1, both may be appropriate for monitoring the coastal GBR. However, TSSAGG presents overall better spatia-l coherency and may be preferred over TSSSING, depending on the area of application.

Nọmba 13. Awọn iyipada ti Himawari-8-ti ari TSS (mg L-1) ti a mu ni Okun Coral (a) ati laarin awọn
omi GBR eti okun (b) lati TSSSING (aami buluu) ati TSSAGG (aami pupa). Awọn ela data jẹ aṣoju awọn piksẹli ti o boju-boju fun awọsanma, ilẹ, glint oorun, tabi awọn asia ANN, nibiti o yẹ. TSS ti a ṣe alaye (ni awọn ọfa dudu) tọkasi awọn iye piksẹli-oke-ixel ati laini petele alawọ ewe jẹ ami opin wiwa ti
ọna.

4. Ifọrọwọrọ
Abojuto Synoptic ti didara omi ni titobi ati eka opitiki GBR jẹ pataki kan, ṣafihan ipenija fun awọn alakoso ayika ati awọn oniwadi [2,83] -. Botilẹjẹpe oye jijin awọ okun ni redio to lagbara ati awọn ibeere iwoye, Himawari – 8 nfunni ni nọmba awọn akiyesi ti a ko ri tẹlẹ fun ibojuwo didara omi ilọsiwaju ti GBR. Iwe yii ṣe afihan imọ-ọna jijin akọkọ to ti ni ilọsiwaju-algoridimu aifwy ni agbegbe ati ifọwọsi fun ibojuwo synoptic ti didara omi ni awọn iwọn ọjọ-ọjọ ni GBR.

4.1. Idagbasoke Algoridimu ati afọwọsi

Awọn pipọ oceanatmosphere radiative gbigbe iṣeṣiro pese kan ti o tobi ati

thoebuospttdicaatlavbaasrieaobfilRityTOoAf dthisetrGibBuRt.ioTnhienmthaechHinime alewaarrnii–n8gVANNIRNbaalngdosr,itphamramdeevteelroispeeddfoinr

A(ptart0hhenrN.flieo0saev1Nadcwittdtvmoraoeaenr1dontkcr0st-eic0paeasogvhm,lnleaeoifiglnrcwsidoLcwceem-ocndh1ompc)irtea,chprhrweieaencirdtttdehtihhodtieoroeneuwatcqt[crteu2acal7iudalnn,lri3wivteat6iexyico,tr3pynhos7laifi,otoc8latfin4hmrt]tgea.hoeetefttmtDrhaRofiooeiuTndnssOtppaespAlidhbut-eieatatnrsosliHvgecfeddroicrmoerosomirirtaniorhvwensmtecihamtisraeiso.iu-iwnsM8nluavpisobtdeprerjeoredeesccocritettoavedrtnnesaoutrgloi,renteltfh-ihg.moweeTfdiahaataTtaciletsgStcariSuops-olerrrneviateatssacsh,vyleamuitnnnheot’dgesss—–f

lagbara lati titẹ sii pade awọn kere

rnaodisioemweatsriecsrpeeqcuiairlelymaednvtsanotfaogceeoaunsccoolnosuirdseerninsgo-rHs iamnadweanrvii-r8odnomeesnntoatl

ariwo, ni pataki lati oju-aye, le ni ipa lori awọn igbapada. Awọn abajade wọnyi

Sens latọna jijin 2022, 14, 3503

16 ti 23
ṣe iwuri ohun elo siwaju ti awọn akiyesi Himawari-8 fun afọwọsi lodi si data didara omi ni ipo ni GBR.
Awọn aṣiṣe ibaramu Himawari-8 TSS ti a gba ni akawe daradara pẹlu awọn ibi-afẹde iṣẹ apinfunni ti a ṣalaye fun awọn sensọ awọ okun miiran, gẹgẹbi Sentinel-3 ni Case 2 omi [85], ni pataki fun TSS loke 0.1 mg L-1. Iṣe ti algorithm ti o wa lọwọlọwọ ṣe afiwe daradara pẹlu awọn ti nlo awọn akiyesi Himawari-8 ti a ṣe atunṣe oju aye [17,24], ti o nfihan ibaamu ti jijade TSS eti okun pẹlu awọn iyipada ti o da lori awoṣe. Awọn ilana atunṣe oju-aye ti o han gbangba le mu awọn atunṣe pada fun iwọn TSS isalẹ (<~ 1 mg L-1), eyiti o ṣee ṣe ni ipa nipasẹ didan oju-ọna oju-aye ti o jẹ gaba lori ati iṣẹ ṣiṣe radiometric kekere ti Himawari-8.
Awọn ilọsiwaju iṣẹ yoo nilo aaye data ti o tobi ati okeerẹ diẹ sii ti awọn wiwọn bio-optical ni aaye ti o bo awọn iwọn aye ti o yẹ ati awọn iwọn asiko ti iyipada. Pẹlupẹlu, awọn ilana wiwọn lile nilo lati tẹle fun idinku awọn aidaniloju ti o ni nkan ṣe pẹlu parameterisation algorithm ati afọwọsi ni awọn omi eti okun. Fun apẹẹrẹ, meteta samples ti wa ni iṣeduro fun ipinnu TSS pẹlu ọna gravimetric. Ni afikun, afọwọsi samples yẹ ki o mu ni oju-omi isokan [86], eyiti o nira paapaa ni awọn eto eti okun ti o ni agbara pupọ. Bibẹẹkọ, awọn wiwọn ipo ti jẹ ki o wa nipasẹ awọn ile-iṣẹ iwadii lọpọlọpọ pẹlu awọn pataki imọ-jinlẹ oniruuru ti nlo awọn iṣẹ iyasọtọampling ati awọn ọna onínọmbà. Ni afikun, awọn ilana ti ara ati ayika, gẹgẹbi irisi isalẹ, fluorescence, afihan bidirectional, polarisation, ati awọn ododo algal ipalara, ko ṣe iṣiro fun ṣugbọn o tun le ṣe alabapin si awọn aṣiṣe imupadabọ baramu.
4.2. Himawari-8 Lapapọ Awọn Idaduro Idaduro fun Okuta Idankan Nla
Himawari-8 gba laaye ibojuwo akoko-gidi-gidi ti iṣẹlẹ iṣan-omi apọju ni GBR, ti n ṣafihan agbara titobi TSS kan laarin ọjọ kan. A ṣe akiyesi iṣẹlẹ yii lakoko akoko tutu nibiti Burdekin ti jade laarin 0.5 ati 1.5 milionu ML / ọjọ fun awọn ọjọ 10 itẹlera (Odò Burdekin ni ibudo Clare [87]). Awọn iyipada TSS lati inu ṣiṣan iṣan omi Burdekin wa daradara loke iye ipilẹ itọnisọna didara omi ti 2 miligiramu L-1 fun ṣiṣi eti okun ati omi agbedemeji, ati 0.7 mg L-1 fun awọn omi ti ita ti GBR [82]. Ikun iṣan omi naa gbooro si 50 km sinu awọn okun ita, ati idagbasoke ọjọ-ọjọ rẹ ni a tẹle ni igbese-nipasẹ-igbesẹ pẹlu 10 min Himawari-8-ti ari TSS. Nitorina, Himawari-8 pese nọmba ti a ko tii ri tẹlẹ ti awọn akiyesi fun pipe pipe ati ibojuwo titobi ti awọn iṣẹlẹ iṣan omi ni GBR. Awọn piksẹli ti o boju-boju ni awọn iṣan omi tọkasi awọn iye ti o kọja 100 miligiramu L-1, ti o tumọ si pe iwọn kikopa yẹ ki o faagun fun awọn iye ti o ju opin yii lọ fun awọn atunpada lakoko awọn iṣan omi ni GBR.
Awọn ẹya TSS ni gusu reef matrix jẹ abajade lati igba kukuru-ipin mesoscale resuspension eddies (iwọn 110 km), nigbagbogbo tọka si bi awọn ọkọ ofurufu tidal. Ni gusu GBR, awọn sakani ṣiṣan nla (510 m) nfa awọn ṣiṣan ti o lagbara [88,89], titari omi nipasẹ awọn ikanni dín ati aijinile [90]. Awọn hydrodynamics eka wọnyi ṣe igbelaruge ifasilẹ ati abẹrẹ ti TSS lati isinmi selifu sinu matrix reef, ati awọn ifọkansi TSS ni awọn agbegbe wọnyi ṣee ṣe ominira ti awọn orisun ilẹ [91]. Awọn ọkọ oju-omi kekere ti a ti ni nkan ṣe pẹlu igbega agbegbe ati paṣipaarọ ounjẹ laarin Okun Coral ati lagoon GBR [92,93], jẹ ọna pataki ti gbigbe ati dapọ awọn gedegede, awọn ounjẹ, ati iṣelọpọ phytoplankton [94]. Bibẹẹkọ, ipo ati iṣẹlẹ ti awọn ọkọ oju-omi kekere ni a ko ṣapejuwe nitori aini aye ti o yẹ ati awọn akiyesi ipinnu akoko [95,96]. Himawari-8 gba idanimọ ati ipasẹ iru awọn ẹya laarin GBR, ni ipinnu igba diẹ ti o nilo fun ipinnu awọn ilana igba diẹ ti eti okun.
4.3. Awọn idiwọn
Himawari-8 n pese SNR ti o kere ju ni akawe si awọn sensọ awọ okun ti o kọja ati lọwọlọwọ [80], ati ifamọ rẹ wa ni isalẹ awọn ibeere ti o kere ju fun awọn ohun elo awọ okun, ni pataki lori awọn omi okun ṣiṣi [9,97]. Sibẹsibẹ, Himawari-

Sens latọna jijin 2022, 14, 3503

17 ti 23
Ipinnu redio iwọntunwọnsi 8 ti awọn bit 11 ko ṣeeṣe lati saturate lori awọn ibi-afẹde didan, gẹgẹ bi awọn awọsanma [80], ati lori awọn omi eti okun ti o ni turbid pupọ (TSS ~ 100 mg L-1), lakoko ti o nmu ifamọ to lati pese ipele oye ti oye lori awọn omi mimọ (> 0.25 mg L-1). Awọn ipele ariwo ti a ṣe iṣiro lati awọn akiyesi akojọpọ ni gbogbogbo kere ju awọn ti awọn akiyesi ẹyọkan ni gbogbo awọn ẹgbẹ, ti n jẹrisi ibamu ti ibajẹ ipinnu igba diẹ lati mu didara aworan dara si [7,16]. Bi o ti jẹ pe awọn iyipada SNR lojoojumọ ni iyipada pupọ nipasẹ awọn igun igbega oorun, igbẹkẹle iwoye tumọ si pe orisun akude ti ariwo igbewọle (35% ninu awọn ẹgbẹ pupa ati awọn ẹgbẹ NIR) ni awọn omi okun ṣiṣi le wa lati oju-aye [80]. Sibẹsibẹ, opin wiwa ti ọna lọwọlọwọ (0.25 miligiramu L-1) jẹ afiwera si awọn ti n gba atunṣe oju-aye ti o fojuhan si iyipada ti data oju ojo [17,98].
Iwọn wiwa ti 0.25 mg L-1 wa nitosi opin wiwa ti TSS ni ipo ti a ṣe iwọn pẹlu ọna gravimetric ti ~ 0.4 mg L-1, fun AIMS ati CSIRO. Awọn aidaniloju ibatan ti ọna gravimetric ni o ni nkan ṣe pẹlu ilana wiwọn ti o ṣiṣẹ nipasẹ awọn ile-iṣẹ oriṣiriṣi, eyiti o pẹlu awọn iyatọ ninu awọn iru àlẹmọ, abosi oniṣẹ, iyọ iyọ, ati bẹbẹ lọ [99,100]. Fun apẹẹrẹ, awọn kirisita iyọ ti o ni idẹkùn ninu awọn asẹ okun gilasi ni ipa pupọ lori awọn wiwọn TSS ati iyọ yẹ ki o yọkuro nipasẹ fifọ ohun elo isọ [101,102]. Sibẹsibẹ, awọn aṣiṣe ti o tobi bi 30% ni a ti gba ni lilo awọn ọna ṣiṣe iyọ-mimu oriṣiriṣi, idilọwọ ipinnu deede ti TSS ni isalẹ ju 1 mg [101]. Nitorinaa, awọn opin wiwa ati awọn aidaniloju ibatan ti awọn wiwọn ipo ati Himawari-8-ti ari TSS jẹ afiwera fun iwadii lọwọlọwọ. Abajade yii ni imọran pe Himawari-8 nfunni ni aye lati ṣe atẹle deede ni deede iyipada didara omi ni GBR eti okun, fun TSS laarin 0.25 ati 100 mg L-1.
Awọn ọja TSS ti o jẹri ti Himawari-8 ṣe afihan fifin ila petele kan, pẹlu iwọn gbogbogbo ti o baamu si awọn iwoye petele kọọkan (500 km), gẹgẹ bi a ti mọ tẹlẹ nipasẹ Murakami [22]. Yiyọ naa jẹ abajade lati awọn iyatọ ti aṣawari-si-oluwadi awọn oke isọdiwọn lati awọn akiyesi itọka oorun ti awọn ẹgbẹ ti o han [103,104]. Botilẹjẹpe awọn onisọdiwọn isọdiwọn ni a lo fun awọn akiyesi lẹhin-July 2017, awọn ilana itọsẹ petele tun wa ni awọn omi ti ita ati pẹlu TSS <1 mg L-1. Ni afikun, granulation ti o lagbara ni a ṣe akiyesi ni awọn ọja TSS ti o wa ni gbogbo iṣẹju 10, ti o ni nkan ṣe pẹlu iṣẹ ṣiṣe radiometric kekere ti sensọ Himawari-8 lori awọn ibi-afẹde omi [17,22]. Sibẹsibẹ, ariwo wiwo ti dinku pupọ nipasẹ iṣakojọpọ igba diẹ ti ọpọlọpọ awọn akiyesi olukuluku sinu hourly-ti ari TSS awọn ọja [16]. Ni oriire, ariwo granulated jẹ aifiyesi ni eti okun ati awọn omi turbid niwọntunwọnsi (TSS> 1 mg L-1), boya lati iṣẹju 10 tabi lati hourly TSS awọn ọja. Abajade yii le ni nkan ṣe pẹlu jijẹ ẹhin ti o pọ si ti awọn patikulu ti o daduro, eyiti o mu ki didan omi kuro ti o si bori ariwo photon [105]. Nitoribẹẹ, TSS ti o jẹri-himawari-8 ṣee ṣe diẹ sii lati gba pada ni deede lori awọn omi eti okun to niwọntunwọnsi ju lori okun ti o ṣii, ni ibamu pẹlu itupalẹ awọn opin wiwa.
Awọn iyatọ Pixel-to-pixel ni awọn agbegbe ita gbangba (TSS <0.25 mg L-1) jẹ eyiti o ni ibatan si awọn ilana granulated ti a ṣe akiyesi pẹlu ayewo wiwo, nitori ifamọ kekere ti sensọ Himawari-8 ni ipinnu 10 min. Ariwo radiometric fun TSS ti o wa ni isalẹ 0.25 mg L-1 ni a dinku pupọ ni apapọ TSS, ti n ṣe afihan ifamọ ati awọn itupalẹ ayewo wiwo. Ni idakeji, imudara isọdọmọ aaye ni a ṣe akiyesi ni gbigbe GBR eti okun fun TSS> 1 mg L-1. Bi abajade, Himawari-8 10 min-ti ari TSS le ṣee lo pẹlu igbẹkẹle pupọ bi TSS ti o wa lati hourly awọn akiyesi akojọpọ ni awọn agbegbe eti okun. Gbigba TSS ni gbogbo iṣẹju 10 ni GBR eti okun ṣe ilọsiwaju iyasoto ti awọn iyipada didara omi ni iyara laarin wakati kan. Sibẹsibẹ, isunmọ-gidi akoko igba akoko gidi nilo sisẹ nla ati awọn agbara ipamọ ti o le jẹ aiṣeṣe fun gbogbo GBR. Ṣiṣejade hourly TSS, bibẹẹkọ, kii ṣe ilọsiwaju awọn oṣuwọn iṣelọpọ ati awọn agbara ibi-itọju nikan ṣugbọn tun ṣe iranlọwọ lati mu imukuro kuro ati mu iṣedede awọn ọja TSS pọ si.

Sens latọna jijin 2022, 14, 3503

18 ti 23
5. Awọn ipari ati Awọn Iwoye iwaju
Abojuto inu-ile ati data satẹlaiti LEO ti pese pupọ ti imọ wa lori awọn iṣan omi ti nwọle GBR [4,106108]. Bibẹẹkọ, awọn akiyesi loorekoore ati awọn akiyesi iwọn-aye ṣe idiwọ oye kikun ti idagbasoke plume ati itankalẹ lori awọn iwọn akoko kukuru. Iwadi yii ṣe afihan ibamu ti Himawari-8 fun awọn atunṣe TSS ti o gbẹkẹle ni GBR eti okun ati fun awọn aworan agbaye ti iṣan omi, ipasẹ, ati ibojuwo. Fun igba akọkọ, awọn ẹya TSS eti okun ni a ṣe iwọn ni igbẹkẹle fun gbogbo GBR, ni awọn oṣuwọn ṣee ṣe nikan pẹlu biogeochemical ati awọn awoṣe hydrodynamic [109]. Awọn ọja Himawari-8 TSS n mu agbara jade lati ṣe apejuwe ati yanju igbakọọkan ati awọn iyalẹnu igba kukuru ni awọn ipinnu aye aye airotẹlẹ. Awọn ọja wọnyi yoo jẹ iwulo fun awọn oniwadi, awọn apẹẹrẹ, ati awọn ti o nii ṣe ayẹwo ipa ti didara omi ni awọn ilolupo ilolupo GBR lọwọlọwọ nikan ni lilo awọn ọja awọ awọ oju okun LEO orbit [109]. Awọn iyipada ojoojumọ ati awọn awakọ ti awọn iyipada didara omi yẹ ki o ṣe iwadi siwaju sii ni GBR nipa lilo awọn ọja Himawari-8 TSS ati awọn data ti awọn ilana ti eti okun gẹgẹbi awọn ṣiṣan, awọn afẹfẹ, ati ṣiṣan omi. Pẹlupẹlu, algorithm ti a gbekalẹ ninu iwadi yii le wa ni iṣẹ taara si aami kanna ti Himawari-9 AHI, eyiti a ṣe ipinnu lati ṣaṣeyọri Himawari-8 nipasẹ 2029. Iṣẹ-ṣiṣe Himawari ti o tẹle-iran (Himawari-10) wa ni ipele iṣeto ati awọn afikun awọn ikanni ni ibiti o han, bakanna bi ifamọ ilọsiwaju ati ipinnu aaye, jẹ o ṣeeṣe. Awọn abuda wọnyi yoo ṣe ilosiwaju awọn agbara ti awọn algoridimu awọ okun fun awọn sensọ geostationary, gbigba awọn gbigbapada deede diẹ sii ni awọn omi eti okun ni awọn iwọn ojoojumọ. Bakanna, Onitẹsiwaju Meteorological Imager (AMI) lori ọkọ GEOKOMPSAT-2A, ati GOCI-II (GEOKOMPSAT-2B), n ṣe akiyesi Australia ati Ila-oorun Asia lọwọlọwọ, ati pe iru algorithm ikẹkọ ẹrọ kan le ni idagbasoke fun mimu awọn data nla ati lọpọlọpọ lọpọlọpọ ni akoko gidi. Ni aaye yii, iwadii lọwọlọwọ n pese algorithm ilọsiwaju ati ireti ti awọn ohun elo ti o pọju lati ṣe idagbasoke nigbati awọn sensọ awọ okun lori awọn iru ẹrọ geostationary di otitọ fun Australia.
Awọn ohun elo afikun: Awọn atẹle wa lori ayelujara ni https://www.mdpi.com/article/ 10.3390/rs14143503/s1, Nọmba S1: Iyipada Diurnal ti Lapapọ Idaduro Solids lori ẹnu Odò Burdekin ni Kínní 2019 lati 10 min 10 min Himawari-8 Awọn akiyesi Dipendal Solids. lori Okuta Idena Nla Gusu nitosi Heralds Reef ni Oṣu kọkanla ọdun 2016 lati awọn akiyesi 2 min Himawari-8.
Awọn ipinfunni onkọwe: Conceptualization, LP-V. ati TS; ilana, LP-V. ati TS; software, LP-V., TS ati YQ; afọwọsi, LP-V .; iṣiro deede, LP-V .; wiwa data, LP-V., TS ati YQ; kikọ-atilẹba igbaradi osere, LP-V.; kikọ – tunview ati ṣiṣatunkọ, TS, MJD, SS ati YQ; abojuto, TS, MJD ati SS; igbeowo akomora, LP-V. Gbogbo awọn onkọwe ti ka ati gba si ẹya ti a tẹjade ti iwe afọwọkọ naa.
Ifowopamọ: Iwadi yii jẹ agbateru nipasẹ Igbimọ Orilẹ-ede fun Imọ-jinlẹ ati Idagbasoke Imọ-ẹrọ (CNPq) Foundation ti Ijọba Apapo Ilu Brazil nipasẹ Awọn Imọ-jinlẹ laisi Eto Aala, nọmba ẹbun 206339/2014-3.
Gbólóhùn Wiwa Data: Awọn data ti a gbekalẹ ninu iwadi yii wa lori ibeere lati ọdọ onkọwe ti o baamu.
Awọn iyin: A jẹwọ Juergen Fischer ati Michael Schaale (Ile-ẹkọ ti Awọn Imọ-jinlẹ Space, Sakaani ti Awọn Imọ-jinlẹ Aye, Freie Universität Berlin) fun ipese wiwọle si koodu gbigbe radiative MOMO ati fun ohun elo awoṣe onidakeji. Britta Schaffelke, Michele Skuza, ati Renee Gruber (AIMS) jẹ itẹwọgba fun ipese data ti o niyelori ni ipo ti a gba gẹgẹbi apakan ti Eto Abojuto Omi fun Didara Omi Inshore, ifowosowopo laarin Alaṣẹ Barrier Reef Marine Park, Ile-ẹkọ Imọ-jinlẹ ti Ilu Ọstrelia, James Cook University, ati Ajọṣepọ Abojuto Omi Cape York. Ile-ibẹwẹ Oju-ọjọ Japan jẹ itẹwọgba fun iṣẹ ti Himawari-8 ati pinpin data nipasẹ Ajọ ti Ilu Ọstrelia ti Meteorology. Ajọ ti Ọstrelia ti Meteorology jẹ itẹwọgba fun ipese data asọtẹlẹ ṣiṣan. Awọn data ti o wa ni ipo jẹ orisun lati Eto Iṣeduro Omi Omi Isepo ti Ọstrelia (IMOS)–IMOS jẹ ṣiṣe nipasẹ Ilana Imudaniloju Awọn Amayederun Ajọṣepọ ti Orilẹ-ede (NCRIS). NCRIS (IMOS) ati CSIRO

Sens latọna jijin 2022, 14, 3503

19 ti 23

jẹwọ fun igbeowosile Lucinda Jetty Coastal Observatory. Iwadi yii ni a ṣe pẹlu iranlọwọ ti awọn orisun lati Awọn amayederun Iṣiro ti Orilẹ-ede (NCI Australia), agbara-agbara NCRIS ti o ṣe atilẹyin nipasẹ Ijọba Ọstrelia.
Awọn ijiyan ti iwulo: Awọn onkọwe sọ pe ko si ariyanjiyan ti iwulo.
Awọn itọkasi
1. Schroeder, T.; Devlin, MJ; Brando, VE; Dekker, AG; Brodie, JE; Clementson, LA; McKinna, L. Iyipada ti kariaye-lododun ti akoko tutu omi tutu ni iye sinu adagun nla Barrier Reef ti o da lori awọn akiyesi awọ okun eti okun satẹlaiti. Oṣu Kẹta. akọmalu. 2012, 65, 210223. [CrossRef] 2. Devlin, M.; Petus, C.; da Silva, ET; Tracey, D.; Wolff, N.; Ile olomi, J.; Brodie, J. Didara Omi ati Abojuto Odò Plume ni Okun Idankan Nla: An Pariview ti Awọn ọna Da lori Ocean Awọ Satellite Data. Sens latọna jijin 2015, 7, 1290912941. [CrossRef] 3. Blondeau-Patissier, D.; Brando, VE; Lønborg, C.; Leahy, SM; Dekker, AG Phenology of Trichodesmium spp. blooms ni Nla Barrier Reef lagoon, Australia, lati ESA-MERIS 10-odun ise. PLoS ỌKAN 2018, 13, e0208010. [CrossRef] [PubMed] 4. Petus, C.; Ile olomi, J.; Lewis, S.; Vacher, M.; Tracey, D.; Devlin, M. A ikun omi ti alaye: Lilo Sentinel-3 awọn ọja awọ omi lati ṣe idaniloju ilosiwaju ninu ibojuwo awọn aṣa didara omi ni Okun Okun Okun nla (Australia). J. Ayika. Ṣakoso awọn. 2019, 248, 109255. [CrossRef] 5. Brodie, J.; Schroeder, T.; Rohde, K.; Olododo, J.; Awọn oluwa, B.; Dekker, A.; Brando, V.; Maughan.ampling. Mar. Freshw. Res. 2010, 61, 651664. [CrossRef] 6. Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Lacroix, G.; Park, Y.; Nékádì, B.; Ruddick, K.; Beckers, J.-M. Awọsanma nkun ti awọ okun ati iwọn otutu oju iwọn otutu awọn ọja ti o ni oye latọna jijin lori Okun Ariwa Gusu nipasẹ Ilana Awọn iṣẹ Iṣeṣe Orthogonal Data Interpolating Empirical. J. Òkun Res. 2011, 65, 114130. [CrossRef] 7. Ruddick, K.; Neukermans, G.; Vanhellemont, Q.; Jolivet, D. Awọn italaya ati awọn anfani fun awọ oju omi oju omi jijin ti awọn okun agbegbe: A tunview ti to šẹšẹ esi. Latọna Sens Ayika. 2014, 146, 6376. [CrossRef] 8. Ruddick, K.; Vanhellemont, Q.; Yan, J.; Neukermans, G.; Wei, G.; Shang, S. Iyatọ ti awọn nkan ti o daduro fun igbaduro ni Okun Bohai lati inu Aworan Awọ Okun geostationary (GOCI). Òkun. Sci. J. 2012, 47, 331345. [CrossRef] 9. IOCCG. Awọn akiyesi Awọ Okun-Okun lati Yiyi Geostationary; Awọn ijabọ ti Ẹgbẹ Iṣakojọpọ Awọ Okun Kariaye (IOCCG) Nọmba Iroyin 12; Antoine, D., Ed.; IOCCG: Dartmouth, NS, Canada, 2012. Wa lori ayelujara: http://ioccg.org/wpcontent/uploads/2015/10/ioccg-report-12.pdf (wiwọle lori 18 Kẹrin 2016).
10. Gruber, R.; Ile olomi, J.; Logan, M.; Petus, C.; Howley, C.; Lewis, S.; Tracey, D.; Langlois, L.; Tonin, H.; Skuza, M.; et al. Eto Abojuto Omi-omi: Ijabọ Ọdọọdun fun Abojuto Didara Omi Inshore 20182019; Iroyin fun Alaṣẹ Idena Reef Marine Park 22084096; Nla Barrier Reef Marine Park Authority: Townsville, Australia, 2020. Wa lori ayelujara: https://elibrary.gbrmpa.gov.au/jspui/handle/11017/3665 (wiwọle ni 14 May 2022).
11. Ile olomi, J.; Schaffelke, B.; Bartley, R.; Eberhard, R.; Brodie, J.; Thorburn, P.; Rolfe, J.; Ronan, M.; Taylor, B.; Irawọ, M.; et al. Gbólóhùn Ìfohùnṣọkan Imọ-jinlẹ Lakotan: Awọn Ipa Lilo Ilẹ lori Didara Omi Omi Idankan duro Nla ati Ipo ilolupo; Ipinle ti Queensland: Townsville, Australia, 2017. Wa lori ayelujara: https://www.reefplan.qld.gov.au/science-and-research/thescientific-consensus-statement (wiwọle lori 25 Kọkànlá Oṣù 2017).
12. Feng, J.; Chen, H.; Zhang, H.; Li, Z.; Yuu, Y.; Zhang, Y.; Bilal, M.; Qiu, Z. Ifoju Turbidity lati GOCI satẹlaiti data ninu awọn turbid estuaries ti China ká ni etikun. Sens latọna jijin 2020, 12, 3770. [CrossRef] 13. Lou, X.; Hu, C. Awọn iyipada ọjọ-ọjọ ti ododo algal ipalara ni Okun Ila-oorun China: Awọn akiyesi lati GOCI. Latọna Sens Ayika. 2014, 140, 562572. [CrossRef] 14. ọkọ iyawo, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.-K .; Chuprin, A.; et al. Awọ Okun Satẹlaiti: Ipo lọwọlọwọ ati Iwoye Ọjọ iwaju. Iwaju. Oṣu Kẹta Sci. 2019, 6, 485. [CrossRef] 15. Park, J.-E.; Park, K.-A .; Kang, C.-K .; Park, Y.-J. Idahun Igba Kukuru ti Chlorophyll-Idapọ si Yipada ni aaye Afẹfẹ Ilẹ Okun lori Mesoscale Eddy. Estuaries Coasts 2019, 43, 646660. [CrossRef] 16. Lavigne, H.; Ruddick. Int. J. Sens latọna jijin 2018, 39, 23992420. [CrossRef] 17. Dorji, P.; Awọn ibẹru, P. Atunse oju aye ti data satẹlaiti geostationary Himawari-8 fun Lapapọ Idaduro Sediment aworan agbaye: Iwadi ọran ni Omi Etikun ti Western Australia. ISRS J. Photogramm. Sens latọna jijin 2018, 144, 8193. [CrossRef] 18. Miller, SD; Schmit, TL; Seaman, CJ; Lindsey, DT; Gunshor, MM; Kohrs, RA; Sumida, Y.; Hillger, D. Iwo fun Awọn oju Ọgbẹ: Ipadabọ ti Awọ Otitọ si Awọn Satẹlaiti Geostationary. akọmalu. Am. Meteorol. Soc. 2016, 97, 18031816. [CrossRef] 19. Doxaran, D.; Lamquin, N.; Park, Y.-J.; Mazeran, C.; Ryu, J.-H.; Wang, M.; Poteau, A. Imupadabọ ifarabalẹ ti omi okun fun ibojuwo awọn ipilẹ ti o daduro ni Okun Ila-oorun China nipa lilo MODIS, MERIS ati data satẹlaiti GOCI. Latọna Sens Ayika. 2014, 146, 3648. [CrossRef] 20. Doxaran, D.; Cherukuru, RCN; Lafenda, SJ Lilo awọn ipin iye iwọn ifojusọna lati ṣe iṣiro idaduro ati awọn ifọkansi ọrọ tituka ni awọn omi estuarine. Int. J. Sens latọna jijin 2005, 26, 17631769. [CrossRef]

Sens latọna jijin 2022, 14, 3503

20 ti 23

21. Kwiatkowska, EJ; Ruddick, K.; Ramon, D.; Vanhellemont, Q.; Brockmann, C.; Lebreton, C.; Egungunamp, Awọn ọja awọ awọ HG Okun lati awọn iru ẹrọ geostationary, awọn aye pẹlu Meteosat Keji ati Ẹgbẹ Kẹta. Òkun. Sci. Jíròrò. 2015, 12, 31433167. [CrossRef] 22. Murakami, H. Ocean awọ ifoju nipa Himawari-8 / AHI. Ni Awọn ilana ti Imọ-ọna jijin ti Awọn Okun ati Awọn Omi Ilẹ: Awọn ilana, Awọn ohun elo, ati Awọn italaya, New Delhi, India, 7 May 2016. [CrossRef] 23. Chen, X .; Ṣang, S.; Lee, Z.; Qi, L.; Yan, J.; Li, Y. Ṣiṣayẹwo giga-igbohunsafẹfẹ ti awọn ewe lilefoofo lati AHI lori Himawari-8. Latọna Sens Ayika. 2019, 227, 151161. [CrossRef] 24. Hafeez, S.; Wong, MS; Abbas, S.; Jiang, G. Ṣiṣayẹwo O pọju ti Geostationary Himawari-8 fun Iyaworan Ilẹ Apapọ Apapọ Idaduro Solids ati Awọn Iyipada Ọjọ-ọjọ Rẹ. Sens latọna jijin 2021, 13, 336. [CrossRef] 25. Japan Meteorological Agency. Wọle Iṣẹlẹ: Awọn abajade Idanwo Iṣẹ iṣe Himawari-8; Ile-iṣẹ Satẹlaiti Oju-ọjọ: Kiyose, Japan, 2015. Wa lori ayelujara: https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/fig/AHI8_performance_test_en.pdf (wiwọle ni 20 Kẹsán 2021).
26. IOCCG. Imọye Latọna jijin ti Awọ Okun ni Etikun ati Awọn Omi Ipilẹ-Idipo miiran; Awọn ijabọ ti Ẹgbẹ Iṣakojọpọ Awọ Okun Kariaye (IOCCG) Nọmba Iroyin 3; Sathyendrath, S., Ed.; IOCCG: Dartmouth, NS, Canada, 2000. Wa lori ayelujara: http://ioccg.org/wp-content/uploads/2015/10/ioccg-report-03.pdf (wiwọle lori 20 Kẹsán 2015).
27. Schroeder, T.; Schaale, M.; Lovell, J.; Blondeau-Patissier, D. Atunse oju aye nẹtiwọọki nkankikan fun Sentinel-3 OLCI lori awọn omi eti okun ti n pese iṣiro aidaniloju awoṣe atorunwa ati itankale ariwo sensọ. Latọna Sens Ayika. 2022, 270, 112848. [CrossRef] 28. Fan, Y.; Li, W.; Chen, N.; Ahn, J.-H.; Park, Y.-J.; Kratzer, S.; Schroeder, T.; Ishizaka, J.; Chang, R.; Stamnes, K. OC-SMART: Ẹkọ ẹrọ ti o da lori ipilẹ data itupalẹ fun awọn sensọ awọ okun satẹlaiti. Latọna Sens Ayika. 2021, 253, 112236. [CrossRef] 29. Brockmann, C.; Oluṣeto, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Itankalẹ ti nẹtiwọọki nkankikan C2RCC fun Sentinel 2 ati 3 fun imupadabọ awọn ọja awọ okun ni deede ati awọn omi idiju optically. Ni awọn ilana ti European Space Agency, Prague, Czech Republic, 913 May 2016.
30. Schroeder, T.; Fischer, J.; Schaale, M.; Ṣubu, F. Oríkĕ-neural-nẹtiwọki-orisun atmospheric atunse algorithm: Ohun elo to MERIS data. Ni Awọn ilana ti SPIE 4892, Imọye Latọna jijin Okun ati Awọn ohun elo, Hangzhou, China, 8 May 2003; pp. 124132. [CrossRef] 31. Jamet, C.; Thira, S.; Moulin, C.; Crepon, M. Lilo Iyipada Neurovariational fun Gbigbapada Oceanic ati Awọn agbegbe Afẹfẹ lati Aworan Awọ Okun: Iwadi Iṣeṣe. J. Atmos. Òkun. Imọ-ẹrọ. 2005, 22, 460475. [CrossRef] 32. Brajard, J.; Jamet, C.; Moulin, C.; Thiria, S. Lilo ti a neuro-variational inversion fun mimu-pada sipo okun ati ti oyi eroja lati satẹlaiti okun sensọ: Ohun elo lati fa aerosols. Nẹtiwọki nkankikan. Paa. J. Int. Nẹtiwọki nkankikan. Soc. 2006, 19, 178185. [CrossRef] 33. Doerffer, R. Algorithm Theoretical Basis Document (ATBD) MERIS Regional Coastal and Lake Case 2 Water Project Atmospheric Atunse ATBD; Omi Version 1; Ile-iṣẹ Iwadi GKSS: Geesthacht, Jẹmánì, 2008; oju-iwe 142.
34. Pahlevan, N.; Smith, B.; Schelles, J.; Asopọmọra, C.; Kao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlninu, D.; Àá, N.; et al. Awọn ipadasẹhin ailopin ti chlorophyll-a lati Sentinel-2 (MSI) ati Sentinel-3 (OLCI) ni inu ilẹ ati awọn omi eti okun: Ọna ikẹkọ ẹrọ. Latọna Sens Ayika. 2020, 240, 111604. [CrossRef] 35. Gross, L.; Thiria, S.; Frouin, R.; Mitchell, BG Awọn nẹtiwọọki nkankikan Oríkĕ fun awoṣe iṣẹ gbigbe laarin irisi oju omi ati ifọkansi pigmenti phytoplankton. J. Geophys. Res. Òkun. 2000, 105, 34833495. [CrossRef] 36. Schroeder, T.; Behnert, I.; Schaale, M.; Fischer, J.; Doerffer, R. Atmospheric atunse algorithm fun MERIS loke irú-2 omi. Int. J. Sens latọna jijin 2007, 28, 14691486. ​​[CrossRef] 37. Schroeder, T.; Schaale, M.; Fischer, J. Igbapada ti oju-aye ati awọn ohun-ini okun lati awọn wiwọn MERIS: Ẹrọ omi Case-2 tuntun fun BEAM. Int. J. Latọna Sens. 2007, 28, 56275632. [CrossRef] 38. Schroeder, T. Fernerkundung von Wasserinhaltsstoffen in Küstengewässern mit MERIS unter Anwendung expliziter und impliziter Atmosphärenkorrek Omi Omi on Omi Atmosphärenkorrek. Ipilẹ Awọn alugoridimu Atunse Oju-aye ti o fojuhan ati Ipilẹ). Ph.D. Thesis, Freie Universität, Berlin, Jẹmánì, 2005. [CrossRef] 39. Patricio-Valerio, L. Ṣiṣawari awọn akiyesi Himawari-8 fun Ilọsiwaju Ilọsiwaju Abojuto Ilẹ-okun ti Okun Idanwo Nla. Ph.D. Iwe-ẹkọ, James Cook University, Townsville, Australia, 2021. [CrossRef] 40. Fell, F.; Fischer, J. Ifitonileti nọmba ti aaye ina ni eto afẹfẹ-okun nipa lilo ọna matrix-operator. J. Quant. Spectrosc. Radiat. Gbigbe. 2001, 69, 351388. [CrossRef] 41. Fischer, J.; Grassl, H. Gbigbe Radiative ninu eto oju-aye oju-aye: Ọna ẹrọ matrix ti o gbẹkẹle azimuthally. App. Jáde. 1984, 23, 10321039. [CrossRef] 42. Santer, R.; Zagolski, F.; Dilligeard, E. Ifiwera koodu Gbigbe Radiative fun MERIS Vicarious Calibration. Ninu Awọn ilana ti Idanileko Afọwọsi ENVISAT, ESRIN, Frascati, Italy, 913 Oṣu kejila ọdun 2002.
43. igbimo lori Itẹsiwaju si awọn Standard Atmosphere. US Standard Atmosphere; NASA: Washington, DC, USA, 1976. 44. Holben, BN; Eki, TF; Slutsker, I.; Tanré, D.; Buis, JP; Setzer, A.; Vermote, E.; Reagan, JA; Kaufman, YJ; Nakajima, T.; et al.
AERONET – Nẹtiwọọki Ohun elo Aṣepọ ati Ibi ipamọ data fun Iwa Aerosol. Latọna Sens Ayika. 1998, 66, 116. [CrossRef] 45. AERONET. Aerosol Robotic Network. Wa lori ayelujara: https://aeronet.gsfc.nasa.gov/cgi-bin/data_display_aod_v3?site= Lucinda&nachal=2&level=3&place_code=10 (wiwọle ni 3 Oṣu Kẹwa Ọdun 2017).

Sens latọna jijin 2022, 14, 3503

21 ti 23

46. ​​Ångström, A. Awọn paramita ti oju aye turbidity. Tellus 1964, 16, 6475. [CrossRef] 47. Rothman, LS; Barbe, A.; Chris Benner, D.; Brown, LR; Camy-Peyret, C.; Carleer, MR; Anfani, K.; Clerbaux, C.; Dana, V.; Devi,
VM; et al. Ipilẹ data spectroscopic molikula HITRAN: Ẹya ti 2000 pẹlu awọn imudojuiwọn nipasẹ 2001. J. Quant. Spectrosc. Radiat. Gbigbe. 2003, 82, 544. [CrossRef] 48. Bennartz, R.; Fischer, J. A títúnṣe k-pinpin ona loo si dín band oru omi ati awọn iṣiro gbigba atẹgun ni infurarẹẹdi ti o sunmọ. J. Quant. Spectrosc. Radiat. Gbigbe. 2000, 66, 539553. [CrossRef] 49. Zhang, T.; ṣubu, F.; Liu, ZS; Preusker, R.; Fischer, J.; Oun, MX Ṣiṣayẹwo iṣẹ ṣiṣe ti awọn ilana nẹtiwọọki nkankikan atọwọda fun igbapada pigment lati awọ okun ni Case I omi. J. Geophys. Res. Òkun. 2003, 108, 3286. [CrossRef] 50. Pope, RM; Fry, ES Absorption spectrum (380700 nm) ti omi mimọ. II. Ṣiṣepọ awọn wiwọn iho. App. Jáde. 1997, 36, 87108723. [CrossRef] 51. Hale, GM; Ìbéèrè, MR Optical ibakan ti omi ni 200-nm si 200-µm agbegbe igbi. App. Jáde. 1973, 12, 555563. [CrossRef] 52. Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Awọn iyatọ ti gbigba ina nipasẹ awọn patikulu ti daduro pẹlu chlorophyllaconcentration ni omi okun (ọran 1) omi: Onínọmbà ati awọn ifarabalẹ fun awọn awoṣe bio-optical. J. Geophys. Res. Òkun. 1998, 103, 3103331044. [CrossRef] 53. Babin, M.; Stramski, D.; Ferrari, GM; Claustre, H.; Bricaud, A.; Obolensky, G.; Hoepffner, N. Awọn iyatọ ninu awọn iyeida gbigba ina ti phytoplankton, awọn patikulu nonnalgal, ati tituka Organic ọrọ ni awọn omi etikun ni ayika Yuroopu. J. Geophys. Res. Òkun. 2003, 108, 3211. [CrossRef] 54. Morel, A. Optical Properties of pure water and pure waterwater. Ni Awọn Abala Opiti ti Oceanography; Nielsen, JS, Ed.; Academic Press: Cambridge, MA, USA, 1974; pp 124. 55. Babin, M.; Morel, A.; Fournier-Sicre, V.; ṣubu, F.; Stramski, D. Awọn ohun-ini itọka ina ti awọn patikulu oju omi ni eti okun ati ṣiṣi omi okun bi o ti ni ibatan si ifọkansi ibi-patiku. Limnol. Oceanogr. 2003, 48, 843859. [CrossRef] 56. Zhang, T.; ṣubu, F.; Fischer, J. Awoṣe awọn backscattering ratio ti tona patikulu ni Case-2 omi. Ni awọn ilana ti Ocean Optics XVI, Santa Fe, MN, USA, 1822 Kọkànlá Oṣù 2002. 57. Minsky, M.; Iwe, SA Perceptrons: Ifihan si Geometry Iṣiro; MIT Press: Cambridge, MA, USA, 1969. 58. Malthouse, EC Idiwọn ti PCA ti kii ṣe lainidi gẹgẹbi a ṣe pẹlu awọn nẹtiwọki ti iṣan jeneriki. IEEE Trans. Nẹtiwọki nkankikan. 1998, 9, 165173. [CrossRef] [PubMed] 59. Liu, DC; Nocedal, J. Lori awọn lopin iranti BFGS ọna fun o tobi asekale ti o dara ju. Iṣiro. Eto. 1989, 45, 503528. [CrossRef] 60. Japan Meteorological Agency. Wọle Iṣẹlẹ: Imudojuiwọn Alaye Iṣatunṣe Ti a lo lati Ṣe Atunse Aṣa Awujọ Himawari-8 AHI; Ile-iṣẹ Satẹlaiti Oju-ọjọ: Kiyose, Japan, 2019. Wa lori ayelujara: https://www.data.jma.go.jp/mscweb/en/oper/eventlog/ Update_of_Calibration_Information_2019.pdf (wiwọle ni 20 Kẹsán 2021). 61. Kurucz, R. The oorun julọ.Oniranran: Atlases ati ila identifications. Ninu Awọn ilana ti yàrá ati Astronomical High Resolution Spectra, Brussels, Belgium, 29 August2 Kẹsán 1995; p. 17. 62. Meteorological Satellite Center. GSICS Himawari-8 Ti o han ati Itọsọna Iṣatunṣe Vicarious Infurarẹẹdi Nitosi. Wa lori ayelujara: https://www.data.jma.go.jp/mscweb/data/monitoring/gsics/vis/techinfo_visvical.html (wiwọle si ni 10 May 2022). 63. Japan Meteorological Agency. Wọle Iṣẹlẹ: Ilọsiwaju ti Didara data akiyesi Himawari-8; Akọsilẹ iṣẹlẹ Meteorological Satellite Center: Kiyose, Japan, 2017. Wa lori ayelujara: https://www.data.jma.go.jp/mscweb/en/oper/eventlog/Imudara_of_ Himawari-8_data_quality.pdf (wiwọle ni 20 Oṣu Kẹsan 2021). 64. Qin, Y.; Steven, ADL; Schroeder, T.; McVicar, TR; Huang, J.; Koju, M.; Zhou, S. Ideri Awọsanma ni Agbegbe Ilu Ọstrelia: Idagbasoke ati Ifọwọsi ti Iboju Awọsanma, Isọri ati Algorithm Imupadabọ Ijinlẹ Opitika fun Aworan Himawari To ti ni ilọsiwaju. Iwaju. Ayika. Sci. 2019, 7, 20. [CrossRef] 65. Great Barrier Reef Marine Park Authority. Nla Idankan duro okun (GBR) Awọn ẹya ara ẹrọ (Awọn aala okun, QLD Mainland, Islands, Cays, Rocks and Dry Reefs) (GBRMPA) (Ẹya 1.4) [Dataset] 2164DB88-FD79-449E-920F-61C37ADE634B. 1998. Wa lori ayelujara: http://www.gbrmpa.gov.au/geoportal/catalog/search/resource/details.page?uuid=%7B41AB3629-B41B-4746-9B753822667E5AF3%7D (wiwọle lori 12 May). 66. Emecen, E.; Kara, G.; Erdogmus, F.; Gardashov, R. Ipinnu awọn ipo sunglint lori oju omi okun nipasẹ akiyesi lati awọn satẹlaiti geostationary. TAO Terr. Atmos. Òkun. Sci. 2006, 17, 253. [CrossRef] 67. National Oceanic ati Atmospheric Administration. Apapọ Onínọmbà Osonu nipa lilo SBUV/2 ati TOVS (TOAST). Wa lori ayelujara: https://www.ospo.noaa.gov/Products/atmosphere/toast/index.html (wiwọle ni ọjọ 1 Oṣu kejila ọdun 2020). 68. Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; funfun, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V. Atunyẹwo ọdun 50 NCEPNCAR: Oṣooṣu tumọ si CD-ROM ati iwe. akọmalu. Am. Meteorol. Soc. 2001, 82, 247268. [CrossRef] 69. Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K .; Hnilo, JJ; Fiorino, M.; Potter, GL NCEPDOE AMIP-II Atunyẹwo (R-2). akọmalu. Am. Meteorol. Soc. 2002, 83, 16311644. [CrossRef] 70. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; funfun, G.; Woollen, J. Iṣẹ akanṣe atunṣe 40 ọdun NCEP/NCAR. akọmalu. Am. Meteorol. Soc. 1996, 77, 437472. [CrossRef] 71. National Oceanic ati Atmospheric Administration. NCEP Reanalysis 2 Meteorological Data. Wa lori ayelujara: https://psl.noaa. gov/data/gridded/data.ncep.reanalysis2.html (wiwọle ni ọjọ 1 Oṣu kejila ọdun 2020).

Sens latọna jijin 2022, 14, 3503

22 ti 23

72. Ese Marine akiyesi System. IMOS Ocean Color Bio Optical Database of Australian Waters (SRS-OC-BODBAW). 2011. Wa lori ayelujara: https://researchdata.edu.au/imos-srs-ocean-australian-waters (wiwọle lori 20 Kínní 2017).
73. Nla Idankan duro okun Marine Park Authority. Eto Imudaniloju Didara ti Omi-omi ati Itọsọna Iṣakoso didara 20172018; Nla Barrier Reef Marine Park Authority: Townsville, Australia, 2019. Wa lori ayelujara: http://elibrary.gbrmpa.gov.au/jspui/ handle/11017/3487 (wiwọle lori 15 May 2018).
74. Soja-Woz'niak, M.; Baird, M.; Schroeder, T.; Qyin, Y.; Clementson, L.; Baker, B.; Boadle, D.; Brando, V.; Steven, ADL Particulate Backscattering Ratio gẹgẹbi Atọka ti Yiyipada Iṣọkan Patiku ni Awọn Omi Etikun: Awọn akiyesi Lati Awọn Omi Idena Nla nla. J. Geophys. Res. Òkun. 2019, 124, 54855502. [CrossRef] 75. Bulgarelli, B.; Zibordi, G. Lori wiwa awọn ipa adjacency ni akiyesi jijinna awọ okun ti awọn agbegbe eti okun aarin-latitude nipasẹ SeaWiFS, MODIS-A, MERIS, OLCI, OLI ati MSI. Latọna Sens Ayika. 2018, 209, 423438. [CrossRef] 76. Schroeder, T.; Lovell, J.; Ọba, E.; Clementson, L.; Scott, R. IMOS Ijabọ Afọwọsi Awọ Okun 2017-18, Ijabọ si Eto Iṣeduro Omi Isepọ (IMOS); Awọn Okun CSIRO ati Afẹfẹ: Brisbane, Australia, 2018; p. 22.
77. Ọba, E.; Schroeder, T.; Brando, V.; Suber, K. Eto Iṣaju-tẹlẹ fun Abojuto Satẹlaiti ti Didara Omi Omi Omi Idankan duro Nla. Ni Oro lati Iroyin Flagship Oceans; CSIRO Oro lati Oceans Flagship: Hobart, Australia, 2014. [CrossRef] 78. Japan Meteorological Agency. Wọle iṣẹlẹ: Imudara Didara ti Himawari-8 Alaye akiyesi; Ile-iṣẹ Satẹlaiti Oju-ọjọ: Kiyose, Japan, 2016. Wa lori ayelujara: https://www.data.jma.go.jp/mscweb/en/oper/eventlog/20161117_Quality_ improve_of_Himawari-8_observation_data.pdf (wiwọle ni 20 Kẹsán 2021).
79. Japan Aerospace Exploration Agency. JAXA Himawari Monitor P-Tree System. Wa lori ayelujara: https://www.eorc.jaxa.jp/ ptree/index.html (wiwọle lori 14 May 2022).
80. Hú, C.; Feng, L.; Lee, Z.; Davis, CO; Mannino, A.; McClain, CR; Franz, BA Yiyi iwọn ati awọn ibeere ifamọ ti awọn sensọ awọ okun satẹlaiti: Ẹkọ lati igba atijọ. App. Jáde. 2012, 51, 60456062. [CrossRef] 81. Tang, W.; Llort, J.; Weis, J.; Perron, MMG; Basart, S.; Li, Z.; Sathyendranath, S.; Jackson, T.; Sanz Rodriguez, E.; Proemse, BC; et al. Awọn ododo phytoplankton ti o gbooro ti o fa nipasẹ 20192020 awọn ina nla ilu Ọstrelia. Iseda 2021, 597, 370375. [CrossRef] [PubMed] 82. Great Barrier Reef Marine Park Authority. Awọn Itọsọna Didara Omi fun Ile-iṣẹ Omi Omi Omi Idena nla; Ọdun 1921682299; Nla Barrier Reef Marine Park Authority: Townsville, Australia, 2010. Wa lori ayelujara: https://elibrary.gbrmpa.gov.au/jspui/handle/11017/ 432 (wiwọle lori 20 August 2019).
83. Brodie, J.; Grech, A.; Pressey, B.; Ojo, J.; Dale, A.; Morrison, T.; Wenger, A. Ojo iwaju ti Okuta Idena Nla: Didara omi dandan. Ni etikun ati Estuaries; Wolanski, E., Ọjọ, JW, Elliott, M., Ramachandran, R., Eds .; Elsevier: Amsterdam, Fiorino, Ọdun 2019; pp. 477499. [CrossRef] 84. Hieronymi, M.; Müller, D.; Doerffer, R. The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm fun Ṣii Òkun ati Etikun Omi. Iwaju. Oṣu Kẹta Sci. 2017, 4, 140. [CrossRef] 85. Donlon, C. Sentinel-3 Mission Requirements Traceability Document (MRTD); European Space Agency (ESA)–ESTEC: Noordwijk, Fiorino, 2011; p. 234. Wa lori ayelujara: https://sentinels.copernicus.eu/documents/247904/1848151/Sentinel-3-MissionRequirements-Traceability (wiwọle lori 11 October 2018).
86. Doerffer, R. Awọn Ilana fun Imudaniloju Awọn ọja Omi MERIS; ESA Atẹjade PO-TN-MEL-GS-0043 GKSS; Forschungszentrum: Geesthacht, Jẹmánì, Ọdun 2002; oju-iwe 142.
87. Queensland ijoba. Ibudo Alaye Abojuto Omi (WMIP). Wa lori ayelujara: https://water-monitoring.information. qld.gov.au/ (Wiwọle ni Ọjọ 30 Oṣu Kẹta 2021).
88. Wolanski, E.; Spagnol, S. Alalepo Omi ni Nla Idankan duro Reef. Estuar. Etikun. Selifu Sci. 2000, 50, 2732. [CrossRef] 89. Pickard, GL; Donguy, J.-R .; Hénin, C.; Rougerie, F. A Review ti Okun-ara ti ara ti Okun Idankan duro Nla ati Coral Oorun
Okun; Australian Government Publishing Service: Canberra, Australia, 1977. 90. Feng, D.; Hodges, BR; Socolofsky, SA; Thyng, KM Tidal eddies ni agbawọle ikanni dín ni awọn awoṣe idapada epo iṣẹ. Mar.
Idoti. akọmalu. 2019, 140, 374387. [CrossRef] [PubMed] 91. De'ath, GA; Fabricius, Didara Omi KK ti Okuta Idena Nla: Awọn ipinpinpin, Awọn ipa lori Reef Biota ati Awọn idiyele Nfa fun
Idaabobo ti Ilera ilolupo; Nla Barrier Reef Marine Park Authority Commonwealth of Australia ati Australian Institute of Marine Science: Townsville, Australia, 2008; p. 104. 92. Thomson, RE; Wolanski, EJ Tidal akoko igbega laarin ẹnu-ọna erekusu Raine nla idena nla. J. Mar. Res. 1984, 42, 787808. [CrossRef] 93. Wolanski, E.; Drew, E.; Abel, KM; O'Brien, J. Awọn ọkọ ofurufu Tidal, igbega ounjẹ ati ipa wọn lori iṣelọpọ ti alga Halimeda ni Ribbon Reefs, Reef Barrier Great. Estuar. Etikun. Selifu Sci. 1988, 26, 169201. [CrossRef] 94. Marmorino, GO; Smith, GB; Miller, awọn abuda Turbulence WD ti o ni imọran lati awọn aworan satẹlaiti ti o ni akoko ti awọn ewe dada ni okun ti o ni aijinile. Tesiwaju. Selifu Res. 2017, 148, 178184. [CrossRef] 95. Delandmeter, P.; Lambrechts, J.; Marmorino, Lọ; Legat, V.; Wolanski, E.; Remacle, J.-F.; Chen, W.; Deleersnijder, E. Submesoscale tidal eddies ni ji ti iyun erekusu ati reefs: Satellite data ati nomba modeli. Òkun. Dyn. 2017, 67, 897913. [CrossRef] 96. Li, G.; Oun, Y.; Liu, G.; Zhang, Y.; Hú, C.; Perrie, W. Awọn akiyesi Sensọ-pupọ ti Awọn Eddies Submesoscale ni Awọn ẹkun Ikun. Sens. Latọna jijin 2020, 12, 711. [CrossRef]

Sens latọna jijin 2022, 14, 3503

23 ti 23

97. IOCCG. Awọn ibeere Ipinfunni fun Awọn sensọ Awọ Okun iwaju; Awọn ijabọ ti Ẹgbẹ Iṣakojọpọ Awọ Okun Kariaye (IOCCG) Nọmba Iroyin 13; McClain, C., Meister, G., Eds .; IOCCG: Dartmouth, NS, Canada, 2012. Wa lori ayelujara: http: //ioccg.org/wp-content/uploads/2015/10/ioccg-report-13.pdf (wiwọle lori 30 Kẹsán 2017).
98. Neukermans, G.; Ruddick, K.; Bernard, E.; Ramon, D.; Nékádì, B.; Deschamps, P.-Y. Iyaworan lapapọ ọrọ ti daduro lati awọn satẹlaiti geostationary: Iwadi iṣeeṣe pẹlu SEVIRI ni Okun Gusu Ariwa. Jáde. Express 2009, 17, 1402914052. [CrossRef] 99. Neukermans, G.; Ruddick, K.; Loisel, H.; Roose, P. Ti o dara ju ati iṣakoso didara ti wiwọn ifọkansi ohun elo ti o daduro nipa lilo awọn wiwọn turbidity. Limnol. Oceanogr. Awọn ọna 2012, 10, 10111023. [CrossRef] 100. Röttgers, R.; Heymann, K.; Krasemann, H. Awọn ifọkansi ọrọ ti daduro ni awọn omi eti okun: Awọn ilọsiwaju ilana lati ṣe iwọn aidaniloju wiwọn ẹni kọọkan. Estuar. Etikun. Selifu Sci. 2014, 151, 148155. [CrossRef] 101. Tilstone, G.; Moore, G.; Sørensen, K.; Oluṣeto, R.; Røttgers, R.; Ruddick, K.; Pasterkamp, R.; Jørgensen, P. Afọwọsi agbegbe ti MERIS chlorophyll awọn ọja ni North Sea etikun omi. Ni Awọn ilana ti ipade Ṣiṣẹ lori MERIS ati AATSR Calibration ati Geophysical Validation (ENVISAT MAVT-2003), Frascati, Italy, 2024 Oṣu Kẹwa 2002.
102. Stavn, RH; Rick, HJ; Falster, AV Atunse awọn aṣiṣe lati iyipada iyọ iyọ omi okun ati omi ti hydration ni pipadanu lori itupalẹ igition: Awọn ipa fun awọn iwadi ti estuarine ati awọn omi eti okun. Estuar. Etikun. Selifu Sci. 2009, 81, 575582. [CrossRef] 103. Okuyama, A.; Takahashi, M.; Ọjọ, K.; Hosaka, K.; Murata, H.; Tabata, T.; Yoshino, R. Afọwọsi ti Himawari-8/AHI radiometric calibration ti o da lori ọdun meji ti data in-orbit. J. Meteorol. Soc. Japan. Ser. II 2018, 96, 91109. [CrossRef] 104. Japan Meteorological Agency. Akọsilẹ iṣẹlẹ: Awọn ipa ti Awọn iṣẹlẹ Ọkọ ofurufu ati Iṣatunṣe lori Awọn aworan Himawari-8: Rin; Ile-iṣẹ Satẹlaiti Oju-ọjọ: Kiyose, Japan, 2020. Wa lori ayelujara: http://www.data.jma.go.jp/mscweb/en/oper/image_info.html#005 (wiwọle ni 20 Oṣu Kẹsan 2021).
105. Mose, WJ; Bowles, JH; Oriire, RL; Corson, Ipa MR ti ifihan-si-ariwo ni sensọ hyperspectral kan lori išedede ti iṣiro paramita biophysical ni irú omi II. Jáde. Express 2012, 20, 43094330. [CrossRef] 106. Alvarez-Romero, JG; Devlin, M.; Teixeira da Silva, E.; Petus, C.; Ban, NC; Tẹtẹ, RL; Kool, J.; Roberts, JJ; Cerdeira-Estrada, S.; Wenger, AS; et al. Ọna aramada si Ifihan Awoṣe ti Awọn ilolupo Omi Omi Ekun si Awọn Ikun-omi Omi Omi ti o da lori Awọn ilana Imọran jijin. J. Ayika. Ṣakoso awọn. 2013, 119, 194207. [CrossRef] 107. Petus, C.; Devlin, M.; Thompson, A.; McKenzie, L.; Teixeira da Silva, E.; Collier, C.; Tracey, D.; Martin, K. Iṣiro Ifihan ti Awọn Okuta Coral ati Awọn Ogbin Seagrass si Awọn Kokoro Orisun Ilẹ ni Awọn Ikun-omi Odò ti Okun Idena Nla: Ṣiṣeduro Ilana Ewu Satẹlaiti Rọrun pẹlu Data Ayika. Sens latọna jijin 2016, 8, 210. [CrossRef] 108. Devlin, M.; Schroeder, T.; McKinna, L.; Brodie, J.; Brando, V.; Dekker, A. Abojuto ati aworan agbaye ti Awọn ṣiṣan omi ni Okuta Idena Nla ti o da lori Ni ipo ati Awọn akiyesi Imọye jijin. Ni Awọn Ilọsiwaju ni Imọye Latọna Ayika lati Atẹle Awọn Iyipada Agbaye; Chang, N.-B., Ed.; Ayika Latọna jijin Ayika ati Awọn itupalẹ Awọn ọna ṣiṣe; CRC Tẹ: Boca Raton, FL, USA, 2012; pp. 147191. [CrossRef] 109. Steven, AD; Baird, ME; Brinkman, R.; Ọkọ ayọkẹlẹ, NJ; Cox, SJ; Herzfeld, M.; Hodge, J.; Jones, E.; Ọba, E.; Margvelashvili, N.; et al. eReefs: Eto alaye iṣiṣẹ kan fun ṣiṣakoso Okun Idankan duro Nla. J. Oṣiṣẹ. Oceanogr. Ọdun 2019, 12, S12S28. [CrossRef]

Awọn iwe aṣẹ / Awọn orisun

MDPI Machine Learning alugoridimu [pdf] Itọsọna olumulo
Alugoridimu Ẹkọ ẹrọ, Algorithm ẹkọ, alugoridimu

Awọn itọkasi

Fi ọrọìwòye

Adirẹsi imeeli rẹ kii yoo ṣe atẹjade. Awọn aaye ti a beere ti wa ni samisi *