ESP32-C3 Family Datasheet

Ultra-Low-Power SoC with RISC-V Single-Core CPU

Supporting IEEE 802.11b/g/n (2.4 GHz Wi-Fi) and Bluetooth 5 (LE)

Including: ESP32-C3, ESP32-C3FN4, ESP32-C3FH4

Prerelease version 0.7 | Espressif Systems | Copyright © 2021

www.espressif.com

Product Overview

The ESP32-C3 family is an ultra-low-power and highly-integrated MCU-based SoC solution that supports 2.4 GHz Wi-Fi and Bluetooth® Low Energy (Bluetooth LE). It offers:

Block Diagram Description

The block diagram illustrates the ESPressif ESP32-C3 Wi-Fi + BLE SoC. It features a Main CPU (RISC-V 32-bit Microprocessor) connected to Memory blocks (ROM, Cache, SRAM, RTC Memory). Connectivity is handled by WLAN (Wi-Fi MAC, Wi-Fi baseband) and RF (RF receiver, Clock generator, RF transmitter) modules, alongside BLE 5.0 (Link Controller, Baseband). Peripherals and Sensors include Embedded Flash, I2C, SPI, GPIO, LED PWM, TWAI, RMT, USB Serial/JTAG, RTC, PMU, Switch, Balun, Temperature sensor, GDMA, UART, and ADC. A dedicated section highlights Cryptographic Hardware Acceleration capabilities such as SHA, RSA, AES, RNG, HMAC, Digital Signature, and XTS-AES-128 flash encryption.

Features

Wi-Fi

Bluetooth

CPU and Memory

External Flash Interface

Advanced Peripheral Interfaces

Low Power Management

Security

Applications (A Non-exhaustive List)

With ultra-low power consumption, the ESP32-C3 family is an ideal choice for IoT devices in the following areas:

1 Family Member Comparison

1.1 Family Nomenclature

The ESP32-C3 family nomenclature follows the pattern ESP32-C3-[F]-[H/N]-[X], where:

  • 'F' indicates the Flash size in MB.
  • 'H' or 'N' indicates the Flash temperature rating (High or Normal).
  • 'X' indicates the presence of embedded flash.

1.2 Comparison

Ordering Code Embedded Flash Ambient Temperature (°C) Package (mm)
ESP32-C3 -- -40 ~ 105 QFN32 (5*5)
ESP32-C3FN4 4 MB -40 ~ 85 QFN32 (5*5)
ESP32-C3FH4 4 MB -40 ~ 105 QFN32 (5*5)

2 Pin Definition

2.1 Pin Layout

The pin layout diagram shows the top view of the ESP32-C3 chip package with 33 pins. Pins are numbered 1 through 33 and labeled with their functions, including power domains (VDDA, VDD3P3, VDD3P3_RTC, VDD3P3_CPU, GND), crystal interfaces (XTAL_P, XTAL_N, XTAL_32K_P, XTAL_32K_N), general-purpose input/output (GPIO) pins, and peripheral-specific signals (LNA_IN, CHIP_EN, MTMS, MTDI, MTCK, MTDO, SPIQ, SPID, SPICLK, SPICS0, SPIWP, SPIHD, VDD_SPI, U0RXD, U0TXD).

2.2 Pin Description

Name No. Type Power Domain Function
LNA_IN 1 I/O -- RF input and output
VDD3P3 2 PA -- Analog power supply
VDD3P3 3 PA -- Analog power supply
XTAL_32K_P 4 I/O/T VDD3P3_RTC GPIO0, ADC1_CH0, XTAL_32K_P
XTAL_32K_N 5 I/O/T VDD3P3_RTC GPIO1, ADC1_CH1, XTAL_32K_N
GPIO2 6 I/O/T VDD3P3_RTC GPIO2, ADC1_CH2, FSPIQ
CHIP_EN 7 I VDD3P3_RTC High: enables the chip. Low: powers off the chip. Note: Do not leave floating.
GPIO3 8 I/O/T VDD3P3_RTC GPIO3, ADC1_CH3
MTMS 9 I/O/T VDD3P3_RTC GPIO4, ADC1_CH4, FSPIHD, MTMS
MTDI 10 I/O/T VDD3P3_RTC GPIO5, ADC2_CH0, FSPIWP, MTDI
VDD3P3_RTC 11 PD -- Input power supply for RTC
MTCK 12 I/O/T VDD3P3_CPU GPIO6, FSPICLK, MTCK
MTDO 13 I/O/T VDD3P3_CPU GPIO7, FSPID, MTDO
GPIO8 14 I/O/T VDD3P3_CPU GPIO8
GPIO9 15 I/O/T VDD3P3_CPU GPIO9
GPIO10 16 I/O/T VDD3P3_CPU GPIO10, FSPICS0
VDD3P3_CPU 17 PD -- Input power supply for CPU IO
VDD_SPI 18 I/O/T/PD VDD3P3_CPU GPIO11, output power supply for flash
SPIHD 19 I/O/T VDD3P3_CPU GPIO12, SPIHD
SPIWP 20 I/O/T VDD3P3_CPU GPIO13, SPIWP
SPICS0 21 I/O/T VDD3P3_CPU GPIO14, SPICS0
SPICLK 22 I/O/T VDD3P3_CPU GPIO15, SPICLK
SPID 23 I/O/T VDD3P3_CPU GPIO16, SPID
SPIQ 24 I/O/T VDD3P3_CPU GPIO17, SPIQ
GPIO18 25 I/O/T VDD3P3_CPU GPIO18, USB_D-
GPIO19 26 I/O/T VDD3P3_CPU GPIO19, USB_D+
U0RXD 27 I/O/T VDD3P3_CPU GPIO20, U0RXD
U0TXD 28 I/O/T VDD3P3_CPU GPIO21, U0TXD
XTAL_N 29 -- -- External crystal output
XTAL_P 30 -- -- External crystal input
VDDA 31 PA -- Analog power supply
VDDA 32 PA -- Analog power supply
GND 33 G -- Ground

Notes:

2.3 Power Scheme

Digital pins are divided into four power domains: VDD3P3_CPU, VDD_SPI, VDD3P3_RTC. VDD3P3_CPU is the input power supply for the CPU. VDD_SPI can be an input or output power supply. VDD3P3_RTC is the input power supply for the RTC analog domain and CPU.

The power scheme diagram shows VDD3P3_RTC and VDD3P3_CPU powered by LDOs at 1.1V. VDD_SPI is a separate domain, capable of being powered by VDD3P3_CPU via RSPI (3.3V) and can operate as an output. It depicts RTC IO, RTC Domain, CPU Domain, and VDD_SPI Domain.

When VDD_SPI acts as an output, it can be powered by VDD3P3_CPU. VDD_SPI can be powered off via software to minimize current leakage in Deep-sleep mode.

2.4 Strapping Pins

The ESP32-C3 family has three strapping pins: GPIO2, GPIO8, GPIO9, and GPIO10. Their values are sampled during system reset to determine boot mode and other configurations. These pins function as normal pins after reset.

Types of system reset include: power-on-reset, RTC watchdog reset, brownout reset, analog super watchdog reset, and crystal clock glitch detection reset.

GPIO9 has internal pull-up resistors by default. If unconnected, internal pull-up/pull-down determines its input level.

Pin Default SPI Boot Download Boot
GPIO2 N/A 1 1
GPIO8 N/A Don't care 1
GPIO9 Pull-up 1 0
Pin Default Functionality
GPIO8 N/A Enabling/Disabling ROM Code Print During Booting: When EFUSE_UART_PRINT_CONTROL is 0 (default), print is enabled and not controlled by GPIO8.
1, if GPIO8 is 0, print is enabled; if GPIO8 is 1, it is disabled.
2, if GPIO8 is 0, print is disabled; if GPIO8 is 1, it is enabled.
3, print is disabled and not controlled by GPIO8.
GPIO10 N/A Controlling JTAG Signal Source During Booting: When EFUSE bit EFUSE_STRAP_JTAG_SEL is 0 (default), JTAG signals come from USB Serial/JTAG controller.
1, if GPIO10 is 0, JTAG signals come from chip pins; if GPIO10 is 1, JTAG signals come from USB Serial/JTAG controller.

The strapping combination of GPIO8 = 0 and GPIO9 = 0 is invalid and will trigger unexpected behavior.

The setup and hold times diagram shows the timing relationship between the CHIP_PU signal and a strapping pin during power-up and reset. It indicates setup time (t0) before CHIP_PU goes high and hold time (t1) after CHIP_PU goes high.

Parameter Description Min (ms)
t0 Setup time before CHIP_PU goes from low to high 0
t1 Hold time after CHIP_PU goes high 3

3 Functional Description

3.1 CPU and Memory

3.1.1 CPU

The ESP32-C3 family features a low-power 32-bit RISC-V single-core microprocessor with a four-stage pipeline, supporting clock frequencies up to 160 MHz. It includes RV32IMC ISA, 32-bit multiplier/divider, up to 32 vectored interrupts, 8 hardware breakpoints/watchpoints, up to 16 PMP regions, and JTAG for debugging.

3.1.2 Internal Memory

Internal memory includes:

3.1.3 External Flash

The ESP32-C3 family supports SPI, Dual SPI, Quad SPI, and QPI interfaces for connecting to external flash memory up to 16 MB. It features hardware encryption/decryption based on XTS-AES. High-speed caches support up to 8 MB of instruction memory space and 8 MB of data memory space, mappable from flash in 64 KB blocks with 8/16/32-bit reads.

After initialization, software can customize external flash mapping into the CPU address space.

3.1.4 Address Mapping Structure

The address mapping structure diagram illustrates memory organization. It shows address ranges for Cache (0x0000_0000 - 0x3BFF_FFFF), SRAM (0x3C00_0000 - 0x3C7F_FFFF), ROM (0x4000_0000 - 0x4005_FFFF), GDMA, RTC FAST Memory, and Peripherals. An MMU connects to External Memory. Memory spaces with gray background are unavailable.

3.1.5 Cache

The ESP32-C3 has an eight-way set associative, read-only cache with the following features: size of 16 KB, block size of 32 bytes, pre-load function, lock function, and critical word first and early restart.

3.2 System Clocks

3.2.1 CPU Clock

The CPU clock sources are: external main crystal clock, internal 20 MHz oscillator, and PLL clock. The application can select the clock source for the CPU clock.

3.2.2 RTC Clock

The RTC slow clock is used for RTC counter, watchdog, and low-power controller. Sources include: external low-speed (32 kHz) crystal, internal RC oscillator (~150 kHz), and internal 78.125 kHz clock. The RTC fast clock, used for RTC peripherals and sensor controllers, has two sources: external main crystal clock divided by 2, and internal 20 MHz oscillator.

3.3 Analog Peripherals

3.3.1 Analog-to-Digital Converter (ADC)

The ESP32-C3 integrates two 12-bit SAR ADCs supporting measurements on 6 channels. ADC characteristics are detailed in Table 14.

3.3.2 Temperature Sensor

A temperature sensor generates a voltage proportional to temperature, converted to a digital value by an ADC. It operates in the range of -40 °C to 125 °C and primarily senses internal chip temperature changes, which may be higher than ambient temperature.

3.4 Digital Peripherals

3.4.1 General Purpose Input / Output Interface (GPIO)

The ESP32-C3 has 22 GPIO pins, configurable for digital or analog functions (like ADC). GPIOs support selectable internal pull-up/pull-down resistors or high impedance. They can trigger CPU interrupts and are bi-directional with tristate control. Pins can be multiplexed with other functions (UART, SPI, etc.) and can be set to a holding state for low-power operations.

Interface Signal Pin Function
ADC ADC1_CH0 XTAL_32K_P Two 12-bit SAR ADCs
ADC1_CH1 XTAL_32K_N
ADC1_CH2 GPIO2
ADC1_CH3 GPIO3
ADC1_CH4 MTMS
ADC2_CH0 MTDI
JTAG MTDI MTDI JTAG for software debugging
MTCK MTCK
MTMS MTMS
MTDO MTDO
UART U0RXD_in Any GPIO pins Two UART channels with hardware flow control and GDMA
U0CTS_in
U0DSR_in
U0TXD_out
U0RTS_out
U0DTR_out
U1RXD_in
U1CTS_in
U1DSR_in
U1TXD_out
U1RTS_out
U1DTR_out
I2C I2CEXT0_SCL_in
I2CEXT0_SDA_in
I2CEXT1_SCL_in
I2CEXT1_SDA_in One I2C channel in slave or master mode
I2CEXT0_SCL_out
I2CEXT0_SDA_out
I2CEXT1_SCL_out
I2CEXT1_SDA_out
LED PWM ledc_ls_sig_out0~5 Any GPIO pins Six independent PWM channels
I2S I2S0O_BCK_in Any GPIO pins Stereo input and output from/to the audiocodec
I2S_MCLK_in
I2SO_WS_in
I2SI_SD_in
I2SI_BCK_in
I2SI_WS_in
I2SO_BCK_out
I2S_MCLK_out
I2SO_WS_out
I2SO_SD_out
I2SI_BCK_out
I2SI_WS_out
I2SO_SD1_out
Remote Control Peripheral RMT_SIG_IN0~1 Any GPIO pins Two channels for an IR transceiver of various waveforms
RMT_SIG_OUT0~1
SPI0/1 SPICLK_out_mux SPICLK Support Standard SPI, Dual SPI, Quad SPI, and QPI that allow connection to external flash
SPICS0_out SPICS0
SPICS1_out Any GPIO pins
SPID_in/_out SPID
SPIQ_in/_out SPIQ
SPIWP_in/_out SPIWP
SPIHD_in/_out SPIHD
SPI2 FSPICLK_in/_out_mux Any GPIO pins Master mode and slave mode of SPI, Dual SPI, Quad SPI, and QPI; Connection to external flash, RAM, and other SPI devices; Four modes of SPI transfer format; Configurable SPI frequency; 64-byte FIFO or GDMA buffer
FSPICS0_in/_out
FSPICS1~5_out
FSPID_in/_out
FSPIQ_in/_out
FSPIWP_in/_out
FSPIHD_in/_out
USB Serial/JTAG USB_D+ GPIO19 USB-to-serial converter, and USB-to-JTAG converter
USB_D- GPIO18
TWAI twai_rx Any GPIO pins Compatible with ISO 11898-1 protocol
twai_tx
twai_bus_off_on
twai_clkout

3.4.2 Serial Peripheral Interface (SPI)

The ESP32-C3 family features three SPI interfaces (SPI0, SPI1, and SPI2). SPI0 and SPI1 are for SPI memory mode, while SPI2 supports both SPI memory and general-purpose SPI modes (master/slave). SPI memory mode supports up to 120 MHz clock frequency in STR mode. General-purpose SPI2 supports two-line full-duplex and single-/two-/four-line half-duplex communication, with configurable clock polarity and phase. It can connect to GDMA.

Chip Pin External Flash Data Port
SPI Single-Line Mode SPI Two-Line Mode SPI Four-Line Mode
SPID (SPID) DI IO0 IO0
SPIQ (SPIQ) DO IO1 IO1
SPIWP (SPIWP) WP# -- IO2
SPIHD (SPIHD) HOLD# -- IO3

3.4.3 Universal Asynchronous Receiver Transmitter (UART)

Two UART interfaces (UART0, UART1) support IrDA and asynchronous communication (RS232, RS485) up to 5 Mbps. They provide hardware flow control (CTS/RTS) and software flow control (XON/XOFF), connecting to GDMA via UHCI0.

3.4.4 I2C Interface

The I2C interface supports master or slave mode, with standard mode (100 Kbit/s), fast mode (400 Kbit/s), and up to 800 Kbit/s. It supports 7-bit and 10-bit addressing, double addressing, and 7-bit broadcast address.

3.4.5 I2S Interface

A standard I2S interface operates as master or slave in full-duplex or half-duplex mode, configurable for 8/16/24/32-bit serial communication. BCK clock frequency ranges from 10 kHz to 40 MHz. It supports TDM PCM, TDM MSB alignment, TDM standard, and PDM TX, connecting to GDMA.

3.4.6 Remote Control Peripheral

The RMT supports two channels for infrared remote transmission and two for reception, using pulse waveform control. It shares a 192 × 32-bit memory block for waveform storage.

3.4.7 LED PWM Controller

The LED PWM controller generates independent digital waveforms on six channels with configurable periods and duty cycles (up to 18 bits). It uses multiple clock sources and can operate in Light-sleep mode, supporting gradual duty cycle changes for effects like RGB color gradients.

3.4.8 General DMA Controller

A general DMA controller (GDMA) has six independent channels (3 transmit, 3 receive), shared by peripherals with DMA features. It implements a fixed-priority scheme and uses linked lists for high-speed peripheral-to-memory and memory-to-memory data transfers. Peripherals with DMA include SPI2, UHCI0, I2S, AES, SHA, and ADC.

3.4.9 USB Serial/JTAG Controller

The integrated USB Serial/JTAG controller is USB 2.0 full speed compliant (12 Mbit/s), offering CDC-ACM virtual serial port, JTAG adapter functionality, flash programming, and CPU debugging. It includes a full-speed USB PHY.

3.4.10 TWAI® Controller

The TWAI® controller is compatible with ISO 11898-1, supporting standard (11-bit ID) and extended (29-bit ID) frames. Bit rates range from 1 Kbit/s to 1 Mbit/s. It operates in Normal, Listen Only, and Self-Test modes, features a 64-byte receive FIFO, acceptance filters, and error detection/handling.

3.5 Radio and Wi-Fi

The ESP32-C3 radio consists of a 2.4 GHz receiver, 2.4 GHz transmitter, bias and regulators, balun, transmit-receive switch, and clock generator.

3.5.1 2.4 GHz Receiver

The receiver demodulates 2.4 GHz RF signals to quadrature baseband signals using high-resolution ADCs. It integrates RF filters, Automatic Gain Control (AGC), DC offset cancelation, and baseband filters.

3.5.2 2.4 GHz Transmitter

The transmitter modulates baseband signals to 2.4 GHz RF, driving an antenna with a high-powered CMOS amplifier. Digital calibration improves linearity and cancels imperfections like carrier leakage, I/Q amplitude/phase mismatch, baseband/RF nonlinearities, and antenna matching.

3.5.3 Clock Generator

The clock generator produces quadrature clock signals for the receiver and transmitter. It integrates inductors, varactors, filters, regulators, and dividers. Built-in calibration and self-test circuits optimize quadrature clock phases and phase noise.

3.5.4 Wi-Fi Radio and Baseband

Supports 802.11b/g/n, 20/40 MHz bandwidth, MCS0-7, MCS32, 0.4 µs guard interval, data rates up to 150 Mbps, RX STBC, adjustable transmit power, and antenna diversity via an external RF switch controlled by GPIOs.

3.5.5 Wi-Fi MAC

Implements the 802.11 b/g/n MAC protocol, supporting BSS STA and SoftAP operations. Features include 4 virtual Wi-Fi interfaces, infrastructure BSS modes, RTS/CTS protection, Block ACK, fragmentation, TX/RX A-MPDU/A-MSDU, TXOP, WMM, various security protocols (GCMP, CCMP, WPA2/3), hardware TSF, and 802.11mc FTM.

3.5.6 Networking Features

Espressif provides libraries for TCP/IP networking, ESP-WIFI-MESH, and other Wi-Fi protocols. TLS 1.0, 1.1, and 1.2 are supported.

3.6 Bluetooth LE

The Bluetooth Low Energy subsystem integrates a hardware link layer controller, RF/modem block, and software protocol stack, supporting Bluetooth 5 and mesh features.

3.6.1 Bluetooth LE Radio and PHY

Supports 1 Mbps PHY, 2 Mbps PHY for high throughput, and coded PHY (125/500 Kbps) for sensitivity and range. Includes Listen Before Talk (LBT) and antenna diversity.

3.6.2 Bluetooth LE Link Layer Controller

Supports LE advertising extensions, multiple advertisement sets, simultaneous advertising/scanning, multiple connections, adaptive frequency hopping, LE channel selection algorithm #2, connection parameter update, high duty cycle non-connectable advertising, LE privacy 1.2, LE data packet length extension, link layer extended scanner filter policies, low duty cycle directed advertising, link layer encryption, and LE Ping.

3.7 Low Power Management

The ESP32-C3 family supports multiple power modes:

For power consumption details in different modes, refer to Table 16.

3.8 Timers

3.8.1 General Purpose Timers

Two 54-bit general-purpose timers are embedded, based on 16-bit prescalers and 54-bit auto-reload up/down timers. Features include a 16-bit clock prescaler (1 to 65536), a 54-bit time-base counter (programmable increment/decrement), real-time value reading, halting/resuming, programmable alarm generation, and level interrupt generation.

3.8.2 System Timer

A 52-bit system timer integrates two 52-bit counters and three comparators. It operates with a fixed 16 MHz clock and supports three types of interrupts. Alarm modes include target and period modes, with 52-bit target alarm and 26-bit periodic alarm values. Counters auto-reload and can stall if the CPU stalls or is in OCD mode.

3.8.3 Watchdog Timers

Three watchdog timers exist: two Main System Watchdog Timers (MWDT) in timer groups and one RTC Watchdog Timer (RWDT). They are enabled during flash boot to detect and recover from errors. Watchdog timers have four stages, each configurable for timeout, enabled/disabled status, and interrupt/reset actions. They feature a 32-bit expiry counter, write protection, and flash boot protection.

3.9 Cryptographic Hardware Accelerators

The ESP32-C3 is equipped with hardware accelerators for AES-128/256, SHA1/224/256, RSA3072, and ECC. It supports Big Integer Multiplication and Big Integer Modular Multiplication (up to 3072 bits).

3.10 Physical Security Features

4 Electrical Characteristics

4.1 Absolute Maximum Ratings

Stresses beyond these ratings may cause permanent damage. These are stress ratings only.

Symbol Parameter Min Max Unit
VDDA, VDD3P3, VDD3P3_RTC, VDD3P3_CPU, VDD_SPI Voltage applied to power supply pins per power domain -0.3 3.6 V
TSTORE Storage temperature -40 150 °C

4.2 Recommended Operating Conditions

Symbol Parameter Min Typ Max Unit
VDDA, VDD3P3, VDD3P3_RTC Voltage applied to power supply pins per power domain 3.0 3.3 3.6 V
VDD_SPI (working as input power supply)¹ 3.0 3.3 3.6 V
VDD3P3_CPU² Voltage applied to power supply pin 3.0 3.3 3.6 V
IVDD3 Current delivered by external power supply -- 0.5 -- A
TA Ambient temperature -40 -- 105 °C

¹ For more information, refer to Section 2.3 Power Scheme. ² When VDD_SPI drives peripherals, VDD3P3_CPU must comply with peripheral specifications. ³ If using a single power supply, recommended output current is 500 mA or more.

4.3 VDD_SPI Output Characteristics

Symbol Parameter Typ Unit
RSPI On-resistance in 3.3 V mode 7.5 Ω

In 3.3 V output mode, VDD3P3_CPU may be affected by RSPI. Specification: VDD3P3_CPU > VDD_flash_min + I_flash_max*RSPI. For more information, refer to Section 2.3 Power Scheme.

4.4 DC Characteristics (3.3 V, 25 °C)

Symbol Parameter Min Typ Max Unit
CIN Pin capacitance -- 2 -- pF
VIH High-level input voltage 0.75 x VDD¹ -- VDD¹+ 0.3 V
VIL Low-level input voltage -0.3 -- 0.25 x VDD¹ V
IIH High-level input current -- -- 50 nA
IIL Low-level input current -- -- 50 nA
VOH² High-level output voltage 0.8 x VDD¹ -- -- V
VOL² Low-level output voltage -- -- 0.1 x VDD¹ V
IOH High-level source current (VDD¹= 3.3 V, VOH >= 2.64 V, PAD_DRIVER = 3) -- 40 -- mA
IOL Low-level sink current (VDD¹= 3.3 V, VOL = 0.495 V, PAD_DRIVER = 3) -- 28 -- mA
RPU Pull-up resistor -- 45 --
RPD Pull-down resistor -- 45 --
VIH_nRST Chip reset release voltage 0.75 x VDD¹ -- VDD¹+ 0.3 V
VIL_nRST Chip reset voltage -0.3 -- 0.25 x VDD¹ V

¹ VDD is the I/O voltage for a particular power domain. ² VOH and VOL are measured using high-impedance load.

4.5 ADC Characteristics

Symbol Parameter Min Max Unit
DNL (Differential nonlinearity)¹ ADC connected to an external 100 nF capacitor; DC signal input; ambient temperature at 25 °C; Wi-Fi off -7 7 LSB
INL (Integral nonlinearity) -12 12 LSB
Sampling rate -- 2 Msps
Effective Range ATTEN0 0 750 mV
ATTEN1 0 1050 mV
ATTEN2 0 1300 mV
ATTEN3 0 2500 mV

¹ To get better DNL results, sample multiple times and apply a filter, or calculate the average value.

4.6 Current Consumption

Current consumption is measured with a 3.3 V supply at 25 °C ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.

Work mode Description Peak (mA)
Active (RF working) TX 802.11b, 1 Mbps, @21 dBm 325
802.11g, 54 Mbps, @19 dBm 272
802.11n, HT20, MCS 7, @18.5 dBm 260
802.11n, HT40, MCS 7, @18.5 dBm 262
RX 802.11b/g/n, HT20 84
802.11n, HT40 87
Work mode Description Typ Unit
Modem-sleep¹, ² The CPU is powered on³ 160 MHz: 20 mA
Normal speed: 80 MHz: 15 mA
mA
Light-sleep -- 130 µA
Deep-sleep RTC timer + RTC memory 5 µA
Power off CHIP_PU is set to low level, the chip is powered off 1 µA

¹ Current consumption in Modem-sleep mode assumes CPU is powered on and cache is idle. ² When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. ³ In Modem-sleep mode, CPU frequency changes based on load and peripherals used.

4.7 Reliability

Test Item Test Conditions Test Standard
HTOL (High Temperature Operating Life) 125 °C, 1000 hours JESD22-A108
ESD (Electro-Static Discharge Sensitivity) HBM (Human Body Mode)¹ ± 2000 V
CDM (Charge Device Mode)² ± 500 V
JESD22-A114
JESD22-C101F
Latch up Current trigger ± 200 mA
Voltage trigger 1.5 × VDDmax
JESD78
Preconditioning Bake 24 hours @125 °C
Moisture soak (level 3: 192 hours @30 °C, 60% RH)
IR reflow solder: 260 + 0 °C, 20 seconds, three times
J-STD-020, JESD47, JESD22-A113
TCT (Temperature Cycling Test) -65 °C / 150 °C, 500 cycles JESD22-A104
Autoclave Test 121 °C, 100% RH, 96 hours JESD22-A102
uHAST (Highly Accelerated Stress Test, unbiased) 130 °C, 85% RH, 96 hours JESD22-A118
HTSL (High Temperature Storage Life) 150 °C, 1000 hours JESD22-A103

¹ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. ² JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

4.8 Wi-Fi Radio

Parameter Min (MHz) Typ (MHz) Max (MHz)
Center frequency of operating channel 2412 -- 2484

4.8.1 Wi-Fi RF Transmitter (TX) Specifications

Rate Min (dBm) Typ (dBm) Max (dBm)
802.11b, 1 Mbps -- 21.0 --
802.11b, 11 Mbps -- 21.0 --
802.11g, 6 Mbps -- 21.0 --
802.11g, 54 Mbps -- 19.0 --
802.11n, HT20, MCS 0 -- 20.0 --
802.11n, HT20, MCS 7 -- 18.5 --
802.11n, HT40, MCS 0 -- 20.0 --
802.11n, HT40, MCS 7 -- 18.5 --
Rate Min (dB) Typ (dB) SL¹ (dB)
802.11b, 1 Mbps, @21 dBm -- -24.8 -10
802.11b, 11 Mbps, @21 dBm -- -24.7 -10
802.11g, 6 Mbps, @21 dBm -- -22.1 -5
802.11g, 54 Mbps, @19 dBm -- -28.0 -25
802.11n, HT20, MCS 0, @20 dBm -- -26.4 -5
802.11n, HT20, MCS 7, @18.5 dBm -- -29.4 -27
802.11n, HT40, MCS 0, @20 dBm -- -27.8 -5
802.11n, HT40, MCS 7, @18.5 dBm -- -29.3 -27

¹ SL stands for standard limit value.

4.8.2 Wi-Fi RF Receiver (RX) Specifications

Rate Min (dBm) Typ (dBm) Max (dBm)
802.11b, 1 Mbps -- -98.4 --
802.11b, 2 Mbps -- -96.0 --
802.11b, 5.5 Mbps -- -93.0 --
802.11b, 11 Mbps -- -88.6 --
802.11g, 6 Mbps -- -93.8 --
802.11g, 9 Mbps -- -92.2 --
802.11g, 12 Mbps -- -91.0 --
802.11g, 18 Mbps -- -88.4 --
802.11g, 24 Mbps -- -85.8 --
802.11g, 36 Mbps -- -82.0 --
802.11g, 48 Mbps -- -78.0 --
802.11g, 54 Mbps -- -76.6 --
802.11n, HT20, MCS 0 -- -93.6 --
802.11n, HT20, MCS 1 -- -90.8 --
802.11n, HT20, MCS 2 -- -88.4 --
802.11n, HT20, MCS 3 -- -85.0 --
802.11n, HT20, MCS 4 -- -81.8 --
802.11n, HT20, MCS 5 -- -77.8 --
802.11n, HT20, MCS 6 -- -76.0 --
802.11n, HT20, MCS 7 -- -74.8 --
802.11n, HT40, MCS 0 -- -90.0 --
802.11n, HT40, MCS 1 -- -88.0 --
802.11n, HT40, MCS 2 -- -85.2 --
802.11n, HT40, MCS 3 -- -82.0 --
802.11n, HT40, MCS 4 -- -78.8 --
802.11n, HT40, MCS 5 -- -74.6 --
802.11n, HT40, MCS 6 -- -73.0 --
802.11n, HT40, MCS 7 -- -71.4 --
Rate Min (dBm) Typ (dBm) Max (dBm)
802.11b, 1 Mbps -- 5 --
802.11b, 11 Mbps -- 5 --
802.11g, 6 Mbps -- 5 --
802.11g, 54 Mbps -- 0 --
802.11n, HT20, MCS 0 -- 5 --
802.11n, HT20, MCS 7 -- 0 --
802.11n, HT40, MCS 0 -- 5 --
802.11n, HT40, MCS 7 -- 0 --
Rate Min (dB) Typ (dB) Max (dB)
802.11b, 1 Mbps -- 35 --
802.11b, 11 Mbps -- 35 --
802.11g, 6 Mbps -- 31 --
802.11g, 54 Mbps -- 14 --
802.11n, HT20, MCS 0 -- 31 --
802.11n, HT20, MCS 7 -- 13 --
802.11n, HT40, MCS 0 -- 19 --
802.11n, HT40, MCS 7 -- 8 --

4.9 Bluetooth LE Radio

4.9.1 Bluetooth LE RF Transmitter (TX) Specifications

Parameter Min Typ Max Unit
RF transmit power -- 0 -- dBm
Gain control step -- 3 -- dB
RF power control range -27 -- 18 dBm
Parameter Description Min Typ Max Unit
In-band emissions F = F0 ± 2 MHz -- -37.62 -- dBm
F = F0 ± 3 MHz -- -41.95 -- dBm
F = F0 ± > 3 MHz -- -44.48 -- dBm
Modulation characteristics Δ f1avg -- 245.00 -- kHz
Δ f2max -- 208.00 -- kHz
Δ f2avg/ Δ f1avg -- 0.93 -- --
Carrier frequency offset -- -9.00 -- kHz
Carrier frequency drift |f0 - fn|n=2, 3, 4, ..k -- 1.17 -- kHz
|f1 - f0| -- 0.30 -- kHz
|fn - fn-5|n=6, 7, 8, ..k -- 4.90 -- kHz
Parameter Description Min Typ Max Unit
In-band emissions F = F0 ± 4 MHz -- -43.55 -- dBm
F = F0 ± 5 MHz -- -45.26 -- dBm
F = F0 ± > 5 MHz -- -47.00 -- dBm
Modulation characteristics Δ f1avg -- 497.00 -- kHz
Δ f2max -- 398.00 -- kHz
Δ f2avg/ Δ f1avg -- 0.95 -- --
Carrier frequency offset -- -9.00 -- kHz
Carrier frequency drift |f0 - fn|n=2, 3, 4, ..k -- 0.46 -- kHz
|f1 - f0| -- 0.70 -- kHz
|fn - fn-5|n=6, 7, 8, ..k -- 6.80 -- kHz
Parameter Description Min Typ Max Unit
In-band emissions F = F0 ± 2 MHz -- -37.90 -- dBm
F = F0 ± 3 MHz -- -41.00 -- dBm
F = F0 ± > 3 MHz -- -42.50 -- dBm
Modulation characteristics Δ f1avg -- 252.00 -- kHz
Δ f1max -- 200.00 -- kHz
Carrier frequency offset -- -13.70 -- kHz
Carrier frequency drift |f0 - fn|n=1, 2, 3, ..k -- 1.52 -- kHz
|f0 - f3| -- 0.65 -- kHz
|fn - fn-3|n=7, 8, 9, ..k -- 0.70 -- kHz
Parameter Description Min Typ Max Unit
In-band emissions F = F0 ± 2 MHz -- -37.90 -- dBm
F = F0 ± 3 MHz -- -41.30 -- dBm
F = F0 ± > 3 MHz -- -42.80 -- dBm
Modulation characteristics Δ f2avg -- 220.00 -- kHz
Δ f2max -- 205.00 -- kHz
Carrier frequency offset -- -11.90 -- kHz
Carrier frequency drift |f0 - fn|n=1, 2, 3, ..k -- 1.37 -- kHz
|f0 - f3| -- 1.09 -- kHz
|fn - fn-3|n=7, 8, 9, ..k -- 0.51 -- kHz

4.9.2 Bluetooth LE RF Receiver (RX) Specifications

Parameter Description Min Typ Max Unit
Sensitivity @30.8% PER -- -- -97 dBm
Maximum received signal @30.8% PER -- -- 10 dBm
Co-channel C/I -- -- 8 dB
F = F0 + 1 MHz -- -4 -- dB
F = F0 - 1 MHz -- -3 -- dB
F = F0 + 2 MHz -- -32 -- dB
F = F0 - 2 MHz -- -36 -- dB
Adjacent channel selectivity C/I F > F0 + 3 MHz¹ -- -- -- dB
F ≤ F0 - 3 MHz -- -39 -- dB
Image frequency -- -29 -- dB
Adjacent channel to image frequency F = Fimage + 1 MHz -- -38 -- dB
F = Fimage - 1 MHz -- -34 -- dB
Out-of-band blocking performance 30 MHz ~ 2000 MHz -- -9 -- dBm
2003 MHz ~ 2399 MHz -- -18 -- dBm
2484 MHz ~ 2997 MHz -- -16 -- dBm
3000 MHz ~ 12.75 GHz -- -6 -- dBm
Intermodulation -- -44 -- dBm

¹ Refer to the value of Adjacent channel to image frequency when F = Fimage – 1 MHz.

Parameter Description Min Typ Max Unit
Sensitivity @30.8% PER -- -- -94 dBm
Maximum received signal @30.8% PER -- -- -1 dBm
Co-channel C/I -- -- 10 dB
F = F0 + 2 MHz -- -7 -- dB
F = F0 - 2 MHz -- -7 -- dB
F = F0 + 4 MHz¹ -- -34 -- dB
Adjacent channel selectivity C/I F = F0 - 4 MHz -- -34 -- dB
F ≥ F0 + 6 MHz -- -39 -- dB
F < F0 – 6 MHz -- -39 -- dB
Image frequency -- -27 -- dB
Adjacent channel to image frequency F = Fimage + 2 MHz -- -39 -- dB
F = Fimage - 2 MHz² -- -- -- dB
Out-of-band blocking performance 30 MHz ~ 2000 MHz -- -17 -- dBm
2003 MHz ~ 2399 MHz -- -19 -- dBm
2484 MHz ~ 2997 MHz -- -16 -- dBm
3000 MHz ~ 12.75 GHz -- -22 -- dBm
Intermodulation -- -40 -- dBm

¹ Refer to the value of Image frequency. ² Refer to the value of Adjacent channel selectivity C/I when F = F0 + 2 MHz.

Parameter Description Min Typ Max Unit
Sensitivity @30.8% PER -- -- -105 dBm
Maximum received signal @30.8% PER -- -- 10 dBm
Co-channel C/I -- -- 2 dB
F = F0 + 1 MHz -- -6 -- dB
F = F0 - 1 MHz -- -5 -- dB
F = F0 + 2 MHz -- -40 -- dB
F = F0 - 2 MHz -- -42 -- dB
Adjacent channel selectivity C/I F > F0 + 3 MHz¹ -- -- -- dB
F ≤ F0 - 3 MHz -- -46 -- dB
Image frequency -- -34 -- dB
Adjacent channel to image frequency F = Fimage + 1 MHz -- -44 -- dB
F = Fimage - 1 MHz -- -37 -- dB
Parameter Description Min Typ Max Unit
Sensitivity @30.8% PER -- -- -100 dBm
Maximum received signal @30.8% PER -- -- 10 dBm
Co-channel C/I -- -- 3 dB
F = F0 + 1 MHz -- -5 -- dB
F = F0 - 1 MHz -- -7 -- dB
F = F0 + 2 MHz -- -39 -- dB
F = F0 - 2 MHz -- -40 -- dB
Adjacent channel selectivity C/I F ≥ F0 + 3 MHz¹ -- -- -- dB
F ≤ F0 - 3 MHz -- -40 -- dB
Image frequency -- -34 -- dB
Adjacent channel to image frequency F = Fimage + 1 MHz -- -43 -- dB
F = Fimage - 1 MHz -- -38 -- dB

¹ Refer to the value of Adjacent channel to image frequency when F = Fimage – 1 MHz.

5 Package Information

The QFN32 (5x5 mm) package diagram shows the physical dimensions and pin layout of the chip. It includes top, bottom, and side views, with detailed dimensional references (A, A1, A3, D, E, E2, b, e, bbb, ddd, eee) and notes regarding all dimensions being in millimeters and conforming to JEDEC MO-220 standards.

For information about tape, reel, and product marking, please refer to Espressif Chip-Packing Information.

Revision History

Date Version Release Notes
2021-04-07 V0.7 Updated information about USB Serial/JTAG Controller; Added GPIO2 to Section 2.4 Strapping Pins; Updated Figure Address Mapping Structure; Added Table General Purpose Input / Output Interface (GPIO) and Table General Purpose Input / Output Interface (GPIO) in Section 3.4.1 General Purpose Input / Output Interface (GPIO); Updated information about SPI2 in Section 3.4.2 Serial Peripheral Interface (SPI); Updated fixed-priority channel scheme in Section 3.4.8 General DMA Controller; Updated Table Reliability.
2021-01-18 V0.6 Clarified that of the 400 KB SRAM, 16 KB is configured as cache; Updated maximum value to standard limit value in Table Wi-Fi RF Transmitter (TX) Specifications in Section 4.8.1 Wi-Fi RF Transmitter (TX) Specifications.
2021-01-13 V0.5 Updated information about Wi-Fi; Added connection between embedded flash ports and chip pins to table notes in Section 2.2 Pin Description; Updated Figure ESP32-C3 Family Power Scheme, added Figure ESP32-C3 Family Power-up and Reset Timing and Table Power Scheme in Section 2.3 Power Scheme; Added Figure Setup and Hold Times for the Strapping Pin and Table Strapping Pins in Section 2.4 Strapping Pins; Updated Table Peripheral Pin Configurations in Section 3.11 Peripheral Pin Configurations; Added Chapter 4 Electrical Characteristics; Added Chapter 5 Package Information.
2020-11-27 V0.4 Preliminary version.

Solutions, Documentation and Legal Information

Must-Read Documents

Sales and Technical Support

Developer Zone

Resources

Products

Must-Have Resources

PDF preview unavailable. Download the PDF instead.

esp32-c3 datasheet en LaTeX with hyperref xdvipdfmx (20200315)

Related Documents

Preview ESP32-C61 Series Datasheet: RISC-V SoC with Wi-Fi 6 and Bluetooth LE
Datasheet for the Espressif ESP32-C61 Series, a low-power MCU-based System on Chip (SoC) featuring a 32-bit RISC-V processor, 2.4 GHz Wi-Fi 6, and Bluetooth Low Energy. Details technical specifications, features, and applications for IoT devices.
Preview ESP32-C5 Series Datasheet: Ultra-Low-Power RISC-V Wireless SoC
Datasheet for the Espressif ESP32-C5 Series, an ultra-low-power System on Chip (SoC) featuring a 32-bit RISC-V processor, Wi-Fi 6, Bluetooth 5 LE, Zigbee, and Thread, designed for IoT applications.
Preview ESP32-C5 系列芯片技术规格书 | Espressif
Espressif ESP32-C5是一款高性能RISC-V SoC,支持Wi-Fi 6、Bluetooth LE 5、Zigbee和Thread。本技术规格书详细介绍了其功能、特性和应用。
Preview ESP32-C3-DevKitM-1 Development Board User Guide | Espressif
Comprehensive user guide for the Espressif ESP32-C3-DevKitM-1 development board, covering hardware setup, component descriptions, pinouts, and related documentation for Wi-Fi and Bluetooth LE projects.
Preview ESP32-C61 系列芯片技术规格书 - Espressif
ESP32-C61 系列芯片技术规格书,详细介绍 Espressif 的 ESP32-C61 低功耗 MCU SoC,集成 RISC-V 32 位处理器、Wi-Fi 6 和蓝牙 5 (LE)。包含详细的技术参数、功能框图和应用指南。
Preview Espressif Systems 2023 Q1 Financial Results and Business Overview
Explore Espressif Systems' Q1 2023 financial performance, business highlights, core technologies, product portfolio including ESP32 series, and market strategy in the AloT sector. Learn about their commitment to innovation and the developer community.
Preview ESP32-C3-WROOM-02 & ESP32-C3-WROOM-02U Datasheet
Datasheet for Espressif's ESP32-C3-WROOM-02 and ESP32-C3-WROOM-02U modules, featuring 2.4 GHz Wi-Fi, Bluetooth 5, RISC-V processor, and various peripherals for IoT applications.
Preview ESP32-C3 SuperMini IoT Development Board: Features, Setup, and Applications
Comprehensive guide to the Espressif ESP32-C3 SuperMini, a high-performance, low-power IoT development board. Covers product parameters, hardware setup, software configuration with Arduino IDE, WiFi and Bluetooth functionalities, and pin usage.