Injection Mortar System
Hilti HIT-HY 170 330 ml foil pack (also available as 500 ml foil pack)
Suitable for Rebar diameters (φ8 - φ32)
Benefits
- Suitable for concrete C12/15 to C50/60
- Suitable for dry and water saturated concrete
- High loading capacity and fast cure
- High corrosion resistant
- For rebar diameters up to 32 mm
- Automatic borehole cleaning using Hilti hollow drill bit for hammer drilling and accurate dosing with HDE
- Manual cleaning for drill hole sizes ≤ 20 mm and embedment depth hef ≤ 10d
- Suitable for embedment depth up to 1250 mm depending on the rebar diameter
Base Material
Concrete
Load Conditions
- Static/Quasi-static
- Seismic
- Fire resistance
Installation Conditions
- Hammer drilled holes
- Hollow drill-bit drilling (Note: only for diameter range 8 mm – 25 mm)
Other Information
- PROFIS Engineering Design Software
- Concrete-to-Concrete connections Handbook
Approvals, Certificates, and Instructions for Use
Approvals/Certificates: ETA-15/0297 (Static and quasi-static / Seismic / Fire)
Authority/Laboratory: DIBt, Berlin
Date of Issue: 25-07-2025
Instructions for use can be viewed via links or QR codes on the Hilti webpage.
Instructions for Use (IFU)
Material | Injection mortar | Dispenser |
---|---|---|
IFU | IFU HIT-HY 170 | IFU HDM, IFU HDE 500-A12, IFU HDE-500 22 |
Link to Hilti Webpage
Injection mortars / Dispenser: Hilti HIT-HY 170, HDE 500-22, HDE 500-A12, HDM 500
Mechanical Properties and Dimensions of Rebar
Mechanical properties and dimensions of the rebars can be taken from the ETA.
Material Quality
Part | Material |
---|---|
Rebar (EN 1992-1-1) | Bars and de-coiled rods class B or C according to NDP or NCL of EN 1992-1-1 |
Static and Quasi-Static Loading
Based on ETA 15/0297. Design according to EN 1992-1-1.
Data Applicability:
- According to EN 1992-1-1 for good bond conditions. For all other bond conditions, multiply the values by 0.7.
- Applies to Hammer drilling, Hammer drilling with Hilti hollow drill bit (TE-CD, TE-YD), and Compressed air drilling.
- Design values of the bond strength for a working life of 50 Years.
Design Bond Strength (fbd,PIR)
Values in N/mm² for above methods of drilling techniques according to mortar IFU & ETA-15/0297.
Rebar - size [mm] | Concrete class | ||||||||
---|---|---|---|---|---|---|---|---|---|
C12/15 | C16/20 | C20/25 | C25/30 | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 | |
φ 8 - φ 12 | 1.6 | 2.0 | 2.3 | 2.7 | 3.0 | 3.4 | 3.7 | 3.7 | 3.7 |
φ 14 - φ 25 | 1.6 | 2.0 | 2.3 | 2.7 | 3.0 | 3.4 | 3.4 | 3.4 | 3.4 |
φ 26 - φ 32 | 1.6 | 2.0 | 2.3 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 |
Minimum Anchorage Length and Minimum Lap Length
Post-installed rebar applications as per EN 1992-1-1.
Typical Examples
The minimum anchorage length (lb,min) and the minimum lap length (l0,min) for applications designed as per EN 1992-1-1 shall be multiplied by the relevant Amplification factor (αlb) in the table below.
Amplification Factor (αlb)
For minimum anchorage length and minimum lap length according to mortar IFU & ETA-15/0297.
Rebar - size [mm] | Concrete class | ||||||||
---|---|---|---|---|---|---|---|---|---|
C12/15 | C16/20 | C20/25 | C25/30 | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 | |
φ 8 - φ 32 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Refer to dispenser tables for data on dispensers and corresponding maximum embedment depth (lv,max) due to mortar installation limitations.
Anchorage and Lap Length Data
For characteristic steel strength fyk = 500 N/mm² for good bond conditions.
Definitions:
- lb,min: Minimum anchorage length for simply supported connections
- l0,min: Minimum anchorage length for overlap splice joint
- lbd: Anchorage length for simply supported connections
- l0,PIR: Anchorage length for overlap joint
- α2: Coefficient of concrete cover
For specific design cases, refer to PROFIS Engineering. For detailed technical information, refer to the Concrete-to-Concrete connections Handbook.
Detailed Anchorage and Lap Length Tables
(Note: Tables below provide detailed values for lb,min, l0,min, lbd, and l0,PIR across various rebar sizes, concrete classes, and steel utilization levels. Highlighted values exceed the maximum length given in ETA-15/0297 and IFU.)
Rebar Size [mm] | Concrete Class | Design Resistance [kN] | Steel utilization [%] | Anchorage/Lap Length [mm] | lbd / l0,PIR [mm] | ||||
---|---|---|---|---|---|---|---|---|---|
lb,min | l0,min | lbd (α2=1) | lbd (α2=0.7) | l0,PIR (α2=1) | l0,PIR (α2=0.7) | ||||
8 | C20/25 | 21.9 | 100 | 113 | 200 | 378 | 265 | 567 | 4.1 |
15.3 | 70 | 100 | 200 | 265 | 185 | 397 | 278 | ||
10.9 | 50 | 100 | 200 | 189 | 132 | 284 | 199 | ||
C50/60 | 21.9 | 100 | 100 | 200 | 235 | 165 | 353 | 247 | |
15.3 | 70 | 100 | 200 | 165 | 115 | 247 | 173 | ||
10.9 | 50 | 100 | 200 | 118 | 82 | 176 | 123 | ||
10 | C20/25 | 34.1 | 100 | 142 | 213 | 473 | 331 | 709 | 496 |
23.9 | 70 | 100 | 200 | 331 | 232 | 496 | 348 | ||
17.1 | 50 | 100 | 200 | 236 | 165 | 355 | 248 | ||
C50/60 | 34.1 | 100 | 100 | 200 | 294 | 206 | 441 | 309 | |
23.9 | 70 | 100 | 200 | 206 | 144 | 309 | 216 | ||
17.1 | 50 | 100 | 200 | 147 | 103 | 220 | 154 | ||
12 | C20/25 | 49.2 | 100 | 170 | 255 | 567 | 397 | 851 | 596 |
34.4 | 70 | 120 | 200 | 397 | 278 | 596 | 417 | ||
24.6 | 50 | 120 | 200 | 284 | 199 | 426 | 298 | ||
C50/60 | 49.2 | 100 | 120 | 200 | 353 | 247 | 529 | 370 | |
34.4 | 70 | 120 | 200 | 247 | 173 | 370 | 259 | ||
24.6 | 50 | 120 | 200 | 176 | 123 | 265 | 185 | ||
14 | C20/25 | 66.9 | 100 | 199 | 298 | 662 | 463 | 993 | 695 |
46.9 | 70 | 140 | 210 | 463 | 324 | 695 | 487 | ||
33.5 | 50 | 140 | 210 | 331 | 232 | 496 | 348 | ||
C50/60 | 66.9 | 100 | 140 | 210 | 448 | 313 | 672 | 470 | |
46.9 | 70 | 140 | 210 | 313 | 219 | 470 | 329 | ||
33.5 | 50 | 140 | 210 | 224 | 157 | 336 | 235 | ||
16 | C20/25 | 87.4 | 100 | 227 | 340 | 757 | 530 | 1135 | 794 |
61.2 | 70 | 160 | 240 | 530 | 371 | 794 | 556 | ||
43.7 | 50 | 160 | 240 | 378 | 265 | 567 | 397 | ||
C50/60 | 87.4 | 100 | 160 | 240 | 512 | 358 | 768 | 537 | |
61.2 | 70 | 160 | 240 | 358 | 251 | 537 | 376 | ||
43.7 | 50 | 160 | 240 | 256 | 179 | 384 | 269 | ||
18 | C20/25 | 110.6 | 100 | 255 | 383 | 851 | 596 | 1277 | 894 |
77.4 | 70 | 180 | 270 | 596 | 417 | 894 | 626 | ||
55.3 | 50 | 180 | 270 | 426 | 298 | 638 | 447 | ||
C50/60 | 110.6 | 100 | 180 | 270 | 576 | 403 | 864 | 605 | |
77.4 | 70 | 180 | 270 | 403 | 282 | 605 | 423 | ||
55.3 | 50 | 180 | 270 | 288 | 202 | 432 | 302 |
Rebar Size [mm] | Concrete Class | Design Resistance [kN] | Steel utilization [%] | Anchorage/Lap Length [mm] | lbd / l0,PIR [mm] | |||||
---|---|---|---|---|---|---|---|---|---|---|
lb,min | l0,min | lbd (α2=1) | lbd (α2=0.7) | l0,PIR (α2=1) | l0,PIR (α2=0.7) | |||||
20 | C20/25 | 136.6 | 100 | 284 | 426 | 946 | 662 | 1418 | 993 | |
95.6 | 70 | 200 | 300 | 662 | 463 | 993 | 695 | |||
68.3 | 50 | 200 | 300 | 473 | 331 | 709 | 496 | |||
C50/60 | 136.6 | 100 | 200 | 300 | 640 | 448 | 960 | 672 | ||
95.6 | 70 | 200 | 300 | 448 | 313 | 672 | 470 | |||
68.3 | 50 | 200 | 300 | 320 | 224 | 480 | 336 | |||
22 | C20/25 | 165.3 | 100 | 312 | 468 | 1040 | 728 | 1560 | 1092 | |
115.7 | 70 | 220 | 330 | 728 | 510 | 1092 | 765 | |||
82.6 | 50 | 220 | 330 | 520 | 364 | 780 | 546 | |||
C50/60 | 165.3 | 100 | 220 | 330 | 704 | 493 | 1056 | 739 | ||
115.7 | 70 | 220 | 330 | 493 | 345 | 739 | 517 | |||
82.6 | 50 | 220 | 330 | 352 | 246 | 528 | 369 | |||
24 | C20/25 | 196.7 | 100 | 340 | 511 | 1135 | 794 | 1702 | 1192 | |
137.7 | 70 | 240 | 360 | 794 | 556 | 1192 | 834 | |||
98.3 | 50 | 240 | 360 | 567 | 397 | 851 | 596 | |||
C50/60 | 196.7 | 100 | 240 | 360 | 768 | 537 | 1151 | 806 | ||
137.7 | 70 | 240 | 360 | 537 | 376 | 806 | 564 | |||
98.3 | 50 | 240 | 360 | 384 | 269 | 576 | 403 | |||
25 | C20/25 | 213.4 | 100 | 355 | 532 | 1182 | 827 | 1773 | 1241 | |
149.4 | 70 | 250 | 375 | 827 | 579 | 1241 | 869 | |||
106.7 | 50 | 250 | 375 | 591 | 414 | 887 | 621 | |||
C50/60 | 213.4 | 100 | 250 | 375 | 800 | 560 | 1199 | 840 | ||
149.4 | 70 | 250 | 375 | 560 | 392 | 840 | 588 | |||
106.7 | 50 | 250 | 375 | 400 | 280 | 600 | 420 | |||
26 | C20/25 | 230.8 | 100 | 369 | 553 | 1229 | 861 | 1844 | 1291 | |
161.6 | 70 | 260 | 390 | 861 | 602 | 1291 | 904 | |||
115.4 | 50 | 260 | 390 | 615 | 430 | 922 | 645 | |||
C50/60 | 230.8 | 100 | 314 | 471 | 1047 | 733 | 1571 | 1100 | ||
161.6 | 70 | 260 | 390 | 733 | 513 | 1100 | 770 | |||
115.4 | 50 | 260 | 390 | 524 | 367 | 785 | 550 | |||
28 | C20/25 | 267.7 | 1 | 100 | 397 | 596 | 1324 | 927 | 1986 | 1390 |
187.4 | 70 | 280 | 420 | 927 | 649 | 1390 | 973 | |||
133.9 | 50 | 280 | 420 | 662 | 463 | 993 | 695 | |||
C50/60 | 267.7 | 100 | 338 | 508 | 1128 | 789 | 1692 | 1184 | ||
187.4 | 70 | 280 | 420 | 789 | 553 | 1184 | 829 | |||
133.9 | 50 | 280 | 420 | 564 | 395 | 846 | 592 |
Rebar Size [mm] | Concrete Class | Design Resistance [kN] | Steel utilization [%] | Anchorage/Lap Length [mm] | lbd / l0,PIR [mm] | ||||
---|---|---|---|---|---|---|---|---|---|
lb,min | l0,min | lbd (α2=1) | lbd (α2=0.7) | l0,PIR (α2=1) | l0,PIR (α2=0.7) | ||||
30 | C20/25 | 307.3 | 100 | 426 | 638 | 1418 | 993 | 2128 | 1489 |
215.1 | 70 | 300 | 450 | 993 | 695 | 1489 | 1043 | ||
153.7 | 50 | 300 | 450 | 709 | 496 | 1064 | 745 | ||
C50/60 | 307.3 | 100 | 363 | 544 | 1208 | 846 | 1813 | 1269 | |
215.1 | 70 | 300 | 450 | 846 | 592 | 1269 | 888 | ||
153.7 | 50 | 300 | 450 | 604 | 423 | 906 | 634 | ||
32 | C20/25 | 349.7 | 100 | 454 | 681 | 1513 | 1059 | 2270 | 1589 |
244.8 | 70 | 320 | 480 | 1059 | 741 | 1589 | 1112 | ||
174.8 | 50 | 320 | 480 | 757 | 530 | 1135 | 794 | ||
C50/60 | 349.7 | 100 | 387 | 580 | 1289 | 902 | 1933 | 1353 | |
244.8 | 70 | 320 | 480 | 902 | 632 | 1353 | 947 | ||
174.8 | 50 | 320 | 480 | 644 | 451 | 967 | 677 |
Seismic Loading
Based on ETA-15/0297. Seismic design according to EN 1998-1.
Data Applicability:
- According to EN 1992-1-1 for good bond conditions. For all other bond conditions, multiply the values by 0.7.
- Applies to Hammer drilling, Hammer drilling with Hilti hollow drill bit (TE-CD, TE-YD), and Compressed air drilling.
- Design values of the bond strength for a working life of 50 Years.
For detailed technical information, refer to the Concrete-to-Concrete connections Handbook. For specific design cases, refer to PROFIS Engineering.
Design Bond Strength (fbd,PIR,seis) for Seismic Conditions
Values in N/mm² for good bond conditions for above methods of drilling techniques according to mortar IFU & ETA-15/0297.
Rebar Size [mm] | Concrete class | |||||||
---|---|---|---|---|---|---|---|---|
C16/20 | C20/25 | C25/30 | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 | |
φ 10 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
φ 12 to φ 16 | 2.0 | 2.3 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 |
φ 18 to φ 30 | 2.0 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 |
φ 32 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Fire Resistance
Based on ETA-17/0297 for working life of 50 years.
For evidence under fire exposure, the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent bond resistance (fbd,fi).
Temperature Reduction Factor (kfi(θ))
For concrete class C20/25 for good bond conditions.
The design value of the bond strength (fbd,fi) under fire exposure is calculated by the following equation:
fbd,fi = kfi(θ) * fbd,PIR / γc * 1/γM,fi
Where:
- fbd,fi: Design value of the bond resistance in case of fire in N/mm².
- θ: Temperature in °C in the mortar layer.
- kfi(θ): Reduction factor under fire exposure.
- fbd,PIR: Design value of the bond resistance in N/mm² in cold condition considering concrete classes, rebar diameter, drilling method, and bond conditions according to EN 1992-1-1.
- γc: Partial safety factor according to EN 1992-1-1.
- γM,fi: Partial safety factor according to EN 1992-1-2.
Bond Strength (fbd,fi) for Fire Design
Values in N/mm² for fire design for concrete classes C12/15 to C50/60.
Rebar Temperature | Concrete class | fbd,fi [N/mm²] | |
---|---|---|---|
C12/15 | C20/25 | C50/60 | |
50 °C | 2.40 | 2.61 | - |
100 °C | - | 1.1 | - |
150 °C | - | 0.47 | - |
200 °C | - | 0.20 | - |
216,2°C (max) | - | 0.15 | - |
Setting Information
Installation Temperature Range
-5°C to +40°C
Service Temperature Range
Hilti HIT-HY 170 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.
Temperature range | Base material temperature | Maximum long term base material temperature | Maximum short term base material temperature |
---|---|---|---|
Temperature range I | -40 °C to +80 °C | +50 °C | +80 °C |
Maximum short term base material temperature: Short-term elevated base material temperatures occur over brief intervals, e.g., as a result of diurnal cycling.
Maximum long term base material temperature: Long-term elevated base material temperatures are roughly constant over significant periods of time.
Curing and Working Time
Temperature of the base material T | Maximum working time (twork) | Minimum curing time (tcure) |
---|---|---|
-5 °C to 0 °C | 10 min | 12 h |
> 0 °C to 5 °C | 10 min | 5 h |
>5 °C to 10 °C | 8 min | 2.5 h |
>10 °C to 20 °C | 5 min | 1.5 h |
>20 °C to 30 °C | 3 min | 45 min |
>30 °C to 40 °C | 2 min | 30 min |
a) The curing time data are valid for dry base material only. In wet base material, the curing times must be doubled.
b) The minimum temperature of the injection mortar Hilti HIT-HY 170 during installation is + 5 °C.
Dispensers and Corresponding Maximum Embedment Depth (lv,max)
Rebar | Dispenser (HDM 330, HDM 500, HDE 500) | |
---|---|---|
T°C -5 °C to 40 °C | T°C 5 °C to 25 °C | |
φ8 to φ16 | 1000 mm | 1250 mm |
φ18 to φ25 | 700 mm | 1000 mm |
φ26 to φ32 | 600 mm | 750 mm |
Drilling and Installation Equipment
For detailed setting information on installation, see instructions for use provided with the product.
Equipment Type | Details |
---|---|
Rotary Hammers (Corded and Cordless) | TE 2 - TE 70 |
Dispenser | HDE, HDM |
Other Tools |
|
Minimum Concrete Cover (Cmin)
Minimum concrete cover Cmin of the post-installed rebar.
Drilling method | Bar diameter [mm] | Minimum concrete cover Cmin [mm] | |
---|---|---|---|
Without drilling aid | With drilling aid | ||
Hammer drilling (HD) and (HDB) | φ < 25 | 30 + 0.06 * lv ≥ 2 | 30 + 0.02 * lv ≥ 2 |
φ ≥ 25 | 40 + 0.06 * lv ≥ 2 | 40 + 0.02 * lv ≥ 2 | |
Compressed air drilling (CA) | φ < 25 | 50 + 0.08 * lv | 50 + 0.02 * lv |
φ ≥ 25 | 60 + 0.08 * lv ≥ 2 | 60 + 0.02 * lv ≥ 2 |
The minimum concrete cover is according to EN 1992-1-1. The same minimum concrete covers apply for rebar elements in the case of seismic loading, i.e. Cmin,seis = 2 * Φ.
Definitions:
- c: Concrete cover of post-installed rebar
- c1: Concrete cover at end-face of existing rebar
- Cmin: Minimum concrete cover
- Φ: Diameter of reinforcement bar
- l0: Lap length according to EN 1992-1-1 for static loading and according to EN 1998-1, section 5.6.3 for seismic action
- lv: Effective embedment depth ≥ l0 + c1
- do: Nominal drill bit diameter, see IFU section for more details