User Manual for STMicroelectronics models including: EVSPIN948 Dual Brushed DC Motor Driver Evaluation Board, Dual Brushed DC Motor Driver Evaluation Board, Brushed DC Motor Driver Evaluation Board, Motor Driver Evaluation Board, Driver Evaluation Board, Evaluation Board, Board
Jul 7, 2023 · The. EVSPIN948 is compatible with the Arduino UNO R3 connector and most STM32 Nucleo boards. Figure 1. EVSPIN948 evaluation board. Getting ...
File Info : application/pdf, 18 Pages, 7.25MB
DocumentDocumentUM3206 User manual Getting started with the EVSPIN948 dual brushed DC motor driver evaluation board based on the STSPIN948 Introduction The EVSPIN948 dual brushed DC motor driver evaluation board is based on the STSPIN948. It provides an affordable and easy-to-use solution for the implementation of brushed DC motor driving applications. Thanks to the parallel operation, it can be easily converted to a single brushed DC motor driver with double current capability. In addition to the internal current limiters, the integrated amplifiers allow it to be used in systems with external current control. The EVSPIN948 is compatible with the Arduino UNO R3 connector and most STM32 Nucleo boards. Figure 1. EVSPIN948 evaluation board UM3206 - Rev 2 - October 2023 For further information contact your local STMicroelectronics sales office. www.st.com UM3206 Safety precautions 1 Safety precautions Warning: Some of the components mounted on the board could reach hazardous temperatures during operation. While using the board, please follow the following precautions: · Do not touch the components or the heatsink. · Do not cover the board. · Do not put the board in contact with flammable materials or with materials releasing smoke when heated. · After operation, allow the board to cool down before touching it. UM3206 - Rev 2 page 2/18 UM3206 Getting started 2 Getting started The main features of the EVSPIN948 evaluation board are: · Voltage range from 5 V to 58 V · Phase current up to 4.5 A r.m.s for each motor · Adjustable output slew rate · Five different driving modes · Two independent current limiters with adjustable OFF time · Two integrated amplifiers with fixed gain · Full protection set including: overcurrent, undervoltage lock out and thermal shutdown · Compatibility with Arduino UNO R3 connector and STM32 Nucleo boards The EVSPIN948 board is ready to be used in few steps. Follow this procedure to start your evaluation: 1. Check the setting of the jumpers based on your configuration as described in Section 3 Hardware description and configuration 2. Connect the board with the STM32 Nucleo board through the Arduino UNO R3 3. Supply the board through the input 2 (VS) and 1 (ground) of the connector CN1 Further support material is available on the STSPIN948 product page www.st.com UM3206 - Rev 2 page 3/18 UM3206 Hardware description and configuration 3 Hardware description and configuration Figure 2. EVSPIN948 overview The following tables provide the detailed pinout of the Arduino UNO R3 and ST Morpho connectors. Connector CN5 CN9 CN6 CN8 Pin(1) 2 3 4 5 6 7 3 5 6 7 2 6 7 1 2 Table 1. Arduino UNO R3 connector table Signal Offset enable (operational amplifier A) Standby (active low) Offset enable (operational amplifier B) Enable bridge B Operational amplifier A output Ground Voltage reference current limiter A PWM1A input PHA input Enable bridge A VDD Ground Ground PHB input PWM1B input 3 TOFFA signal Remarks Digital output in PWM trimming mode UM3206 - Rev 2 page 4/18 3.1 UM3206 Driving mode selection Connector Pin(1) 4 Signal Voltage reference current limiter B CN8 5 TOFFB signal 6 Operational amplifier B output 1. All non-listed pins are not connected. Remarks Digital output in PWM trimming mode Driving mode selection The EVSPIN948 can drive up to 2 DC motors at the same time. The driving mode selection is done setting J5 and J6 jumpers (connected to MODE1 and MODE2 pins of the device) on the top of the boards. The table below briefly summarizes the possible configurations: J5 J6 Driving mode Typical application Max output current (each motor) Output RDS(ON) Minimum OCD threshold 1-2 1-2 Reserved 1-2 2-3 Dual full bridge 2 x bidirectional brushed DC (Figure 3) 4.5 Arms 0.4 7 A 2-3 1-2 Dual half bridge 2 x high current unidirectional brushed DC(1) (Figure 4) 1 x high current bidirectional brushed DC (Figure 5) 9 Arms 0.2 0.4 14 A 2 x bidirectional brushed DC 2-3(2) 2-3(2) Dual full bridge with mixed decay or Bipolar stepper (Figure 3) 4.5 Arms 0.4 7 A 1. The motors can be connected between OUT and either VS (like in the figure) or GND. In the latter case, the current limiter must be disabled. Motors can also be connected between OUT and LSS (without the need of disabling the current limiter), soldering one of the motor cables directly to R12 or R13. 2. This configuration is only available with current limiter in Fixed OFF time mode (see Section 3.2) UM3206 - Rev 2 page 5/18 Figure 3. Two bidirectional DC motors UM3206 Driving mode selection M B+ B- M A- A+ + V VS GND UM3206 - Rev 2 page 6/18 UM3206 Driving mode selection Figure 4. Two unidirectional DC motors higher current B+ BAA+ MM + V VS GND UM3206 - Rev 2 page 7/18 Figure 5. One bidirectional DC motor - higher current UM3206 Current limiter mode B+ M B- A- A+ + V VS GND 3.2 Current limiter mode The behavior of the current limiter can be changed by setting the J7 jumper (connected to MODE3 of the device) as follows: Table 2. Current limiter mode settings J7 Current limiter mode J2 and J3 1-2 Fixed OFF time Closed 2-3 PWM trimming Open Decay time Depending on R6 and R7 resistors (Figure 6) Depending on PWM input signals In Fixed OFF time mode, the current limiter A and current limiter B can be disabled by setting R6 and R7 to their minimum value respectively. The current threshold can be set in two different ways: · Trimming R41 and R46 resistors, leaving CN9.3 and CN8.4 floating · Applying a square wave with variable duty cycle to CN9.3 and CN8.4, setting R41 and R46 to their minimum value UM3206 - Rev 2 page 8/18 Figure 6. tOFF versus ROFF UM3206 Output slew rate 3.3 Output slew rate The output slew rate can be increased moving the rotative switch SW1 clockwise. With the STSPIN948 device, the slew rate value can be chosen from four different values, as shown in Table 3. SW1 C-1 closed C-2 closed C-3 closed C-4 closed Table 3. Slew rate settings RSR 10 k 5.6 k 2.2 k 1 k Slew rate (typ. at VS = 58 V) 0.3 V/ns 0.6 V/ns 1.2 V/ns 2 V/ns UM3206 - Rev 2 page 9/18 UM3206 Thermal performance 4 Thermal performance An example of the thermal performances of the EVSPIN948 is provided in Figure 7 . The board is used in fullbridge and parallel half-bridge configuration in a typical application to drive an inductive load with different output currents ranging from 0.5 A to 3 A. Set-up conditions: · Planar orientation of the board and natural convection only · Tambient = 25 °C · PWM frequency = 20 KHz · VS = 30 V · Output slew rate setting = 2 V/ns Maximum temperature [°C] Figure 7. EVSPIN948 - thermal performances 140 120 Parallel half bridge 100 Full bridge 80 60 40 20 0 0 1 2 3 Output current [ARMS] Figure 8. Thermal images (IOUT = 2ARMS) Full-bridge configuration Parallel half-bridge configuration UM3206 - Rev 2 page 10/18 UM3206 Bills of material 5 Bills of material Table 4. EVSPIN948 bill of material Item Qty. Ref. 1 1 CN1 2 1 CN2 3 1 CN5 4 2 CN6,CN9 5 2 CN7,CN10 6 1 CN8 7 3 C1,C15,C16 8 1 C2 9 2 C3,C4 10 1 11 3 12 2 13 2 14 2 15 1 16 4 17 2 18 1 19 2 20 3 21 2 22 1 23 3 24 1 25 1 26 3 C5 C6,C7,C8 C9,C10 C11,C12 C17,C18 C19 D1,D2,D3,D4 D5,D6 SW1 J2,J3 J5,J6,J7 Q1,Q2,Q3,Q4 R1 R2,R24,R31 R3 R4 R5,R44,R49 27 2 R6,R7 28 4 R8,R9 29 4 R12,R13,R14, R15 30 4 R16,R17,R18, R19 31 2 R20,R22 32 4 R21,R23,R42, R47 R25,R26,R27, R28,R29,R30, 33 14 R32,R33,R34, R35,R36,R37, R38,R39 34 2 R40,R45 35 2 R41,R46 Description Connector 5.08 mm close vertical Connector 5.08 mm close vertical Connector through-hole-pitch 2.54 Connector through-hole-pitch 2.54 Connector through-hole-pitch 2.54 Connector through-hole-pitch 2.54 SMT ceramic capacitor SMT ceramic capacitor Through-hole aluminum elect. capacitor SMT ceramic capacitor SMT ceramic capacitor SMT ceramic capacitor SMT ceramic capacitor SMT ceramic capacitor SMT ceramic capacitor Yellow LED Red LED Rotative switch x4 Header connector 1x2 pins Header connector 1x3 pins P MOSFET SMT resistor SMT resistor SMT resistor SMT resistor SMT resistor 1/4" square trimpot trimming potentiometer, top adjust SMT resistor SMT resistor SMT resistor SMT resistor SMT resistor SMT resistor SMT resistor 1/4" square trimpot trimming potentiometer, top adjust Part/Value MORSV-508-2P_screw MORSV-508-4P_screw CON-1x10 CON-1x8 N.M. CON-1x6 100 n 15 V 1 u 15 V 220 u 100 V 220 n 15 V 1 n 15 V 100 p 15 V 10 n 15 V 470 n 100 V 100 n 100 V Yellow Red ROT-SWITCH Closed Closed 1-2 MOSFET P 22 k 1/10 W 1 k 1/10 W 2.2 k 1/10 W 5.6 k 1/10 W 10 k 1/10 W 500 k 4.7 k 1/10 W 0.05 1% 3 W 10 k 1/2 W 39 k 1/10 W 330 R 1/10 W 0 R 1/10 W 47 k 1/10 W 1 k Manufact. Wurth Elektronic Wurth Elektronic Samtec Samtec Samtec Samtec Order code 691312510002 or equivalent 691312510004 or equivalent SSQ-110-04-F-S SSQ-108-04-F-S ESQ-119-24-G-D SSQ-106-04-F-S Panasonic EEUFS2A221B Nidec NXP CS-4-14-NTB or equivalent NX3008PBKW Bourns Bourns 3266W-1-504 LF CRA2512-FZ-R050ELF Bourns 3266W-1-102 LF UM3206 - Rev 2 page 11/18 Item Qty. Ref. 36 2 R43,R48 TP1,TP2,TP3, TP4,TP5,TP6, 37 10 TP7,TP8,TP9, TP10 38 1 U1 Description SMT resistor Test point STSPIN948 UM3206 Bills of material Part/Value 3.3 k 1/10 W Manufact. Order code TP-SMD-S1751-46R Harwin S1751-46R STSPIN948 UM3206 - Rev 2 page 12/18 6 UM3206 Schematic diagrams Schematic diagrams CN7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 C O N-2 x1 9 CN10 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 C O N-2 x1 9 ST NUCLEO & LOGO FOR EVALUATION PURPOSE ONLY ROHS COMPLIANT 2002/95/IEC & LOGO CN6 VDD TP 8 VDD 1 2 3 R33 0R 4 5 6 7 8 C O N-1 x8 S TRIP 254P -F-8 CN8 1 2 3 4 5 6 R34 0R R35 0R R37 0R R36 0R R38 0R R39 0R C O N-1 x6 S TRIP 254P -F-6 P HB P W M1B PHB PWM1B TOFFA TOFFA REFB_MCU REFB TOFFB TOFFB VB VB CN9 1 2 3 4 5 6 7 8 R27 0R R25 0R R26 0R R24 1k REFA_MCU REFA P W M1A P HA E NA_ MC U PWM1A PHA ENA C O N-1 x8 CN5 1 2 3 4 5 6 7 R28 0R R29 0R R30 0R R31 1k R32 0R OFFS ETA nS TDBY OFFS ETB E NB_ MC U VA OSETA STBY OSETB VEANB 8 9 10 C O N-1 x1 0 Figure 9. EVSPIN948 schematic diagram J5 VDD 3 2 MO DE 1 1 CON3 M1 J6 VDD 3 2 MO DE 2 1 CON3 M2 J7 VDD 3 2 MO DE 3 1 CON3 M3 VDD C5 220n C2 1u C1 100n GND TP 6 CP2 8 CP1 7 VBOOT 9 VDD 18 nS TDBY C6 1n R1 22k 13 nSTDBY EN_nFAULTA 19 EN/nFAULTA EN_nFAULTB 20 EN/nFAULTB P W M1A P HA P W M1B P HB 1k R2 4 2.2k R3 3 5.6kR4 2 1 0 kR 5 MO DE 1 MO DE 2 MO DE 3 NC C SR 1 REFA SW1 REFB R6 500k C7 1n TOFFA 1 2 TOFFA J3 14 15 16 17 P WM1A P HA P WM1B P HB 30 29 28 MODE1 MODE2 MODE3 31 SR 21 REFA 22 REFB 23 TOFFA 24 TOFFB OFFS ETA OFFS ETB S TS P IN948 11 VA 26 VB OFFS ETA 12 OFFS ETB 25 R7 C8 500k 1n TOFFB 1 2 TOFFB J2 R8 VA 4.7k C9 100p R9 4.7k VB C10 100p 5 32 49 GND GND EP AD VS P UMP 6 GND TP 7 44 43 42 41 VS VS VS VS VS C17 U1 470n C18 470n OUT2A OUT2A 48 47 LS S 2A LS S 2A S ENS EA 4 3 10 OUT1A OUT1A 46 45 LS S 1A LS S 1A 2 1 OUT2A OUT1A OUT2B OUT2B 38 37 LS S 2B LS S 2B S ENS EB 34 33 27 OUT1B OUT1B 40 39 LS S 1B LS S 1B 36 35 OUT2B OUT1B 0.05R 3W R12 0.05R 3W R13 C19 100n C3 220u 80V VS TP 5 VS 0 - 58V 2 VS C4 220u 80V 1 GND CN1 TP 1 CN2 OUT2A TP 2 1 2A OUT1A TP 3 2 1A OUT1B TP 4 3 1B OUT2B 4 2B YE LLO W D1 2 YE LLO W D2 2 2 1 R16 10K R17 10K 1 1 YE LLO W D3 2 YE LLO W D4 R18 10K 1 R19 10K VDD R40 47k 2 R E F A_ MC U 1 MOS FET P Q3 3 VDD REFA R41 1k R42 330R TP 9 R43 R44 REFA REFA 3.3k 10k C15 100n VDD R45 47k R E F B_ MC U 1 2 MOS FET P Q4 3 VDD REFB R46 1k R47 330R TP 10 R48 R49 REFB REFB 3.3k 10k C16 100n 1 VDD VDD R20 39k E NA_ MC U 1 C11 10n E N_ n F AULTA 3 2 MOS FET P Q1 R21 330R R22 39k E NB_ MC U 1 C12 10n E N_ n F AULTB 3 2 MOS FET P Q2 R23 330R 2 2 D5 D6 Red Red 1 UM3206 - Rev 2 page 13/18 Revision history Date 07-Jul-2023 19-Oct-2023 Table 5. Document revision history Version 1 2 Initial release. Updated board current rating Changes UM3206 UM3206 - Rev 2 page 14/18 UM3206 Contents Contents 1 Safety precautions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 3 Hardware description and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1 Driving mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Current limiter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Output slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Thermal performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 5 Bills of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 6 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 UM3206 - Rev 2 page 15/18 UM3206 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Arduino UNO R3 connector table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Current limiter mode settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Slew rate settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EVSPIN948 bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 UM3206 - Rev 2 page 16/18 UM3206 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. EVSPIN948 evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 EVSPIN948 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Two bidirectional DC motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Two unidirectional DC motors higher current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 One bidirectional DC motor - higher current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 tOFF versus ROFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EVSPIN948 - thermal performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal images (IOUT = 2ARMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 EVSPIN948 schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 UM3206 - Rev 2 page 17/18 UM3206 IMPORTANT NOTICE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2023 STMicroelectronics All rights reserved UM3206 - Rev 2 page 18/18