MCXA156, A155, A154, A146, A145, A144 Data Sheet

MCXA156, A155, A154, A146, A145, A144 Data Sheet

MCX A13, A14x, MCX A15x Arm Cortex -M33-Based Microcontrollers | NXP Semiconductors

27 нояб. 2024 г. — Features. • Arm Cortex-M33 48MHz(A14x) or 96MHz(A15x) with 396 CoreMark. (4.12 CoreMark/MHz). • Up to 1MB Flash, 128KB SRAM, up to 8 KB SRAM with ECC.

PDF preview unavailable. Download the PDF instead.

MCXAP100M96FS6
MCXA156, A155, A154, A146, A145, A144 Data Sheet

Arm® Cortex®-M33 48MHz or 96MHz 32-bit MCU, up to 1MB Flash

Rev. 5 -- July 2024

Data Sheet: Technical Data

MCXA14x MCXA15x

Features
· Arm Cortex-M33 48MHz(A14x) or 96MHz(A15x) with 396 CoreMark (4.12 CoreMark/MHz)

· Up to 1MB Flash, 128KB SRAM, up to 8 KB SRAM with ECC · All RAM can be retained down to Deep Power Down mode · -40 °C to 125 °C temperature range · Down to 64 A/MHz Active current, 32.26 A Deep Sleep current, 8.2
A Power Down current, 412 nA Deep Power Down current

LQFP100
14 x 14 x 1.4 mm, 0.5mm

LFBGA64
5 x 5 x 1.2 mm,0.5mm

VFBGA112
7 x 7x 0.86mm, 0.5mm

Core · Arm 32-bit Cortex-M33 CPU, with FPU and DSP extension instruction set, no TrustZone, no MPU
Memories · Single-bank Flash: Up to 1024 KB Flash with ECC (support one bit correction and two bits detection) · Cache Engine with 4 KB RAM · Up to 128 KB RAM, configurable as up to 8KB RAM with ECC (support one bit correction and two bits detection) · All RAM can be retained down to Deep Power Down mode · 16 KB ROM
Security · 128-bit Universal Unique Identifier (UUID) per device in accordance with IETF's RFC4122 version5 specification · Device lifecycle management · Flash read/write/execute permission protect by MBC and lockable · Implicit-protected Flash Region (IFR) · Security Monitoring: -- Code Watchdog for code flow integrity checking -- GLIKEY enhances protection against attacks to gain unauthorized access to sensitive registers
Low-Power Performance · Active -- 64 A/MHz in Active Mode (executing while(1) from flash, 3.3 V@25 °C) · Deep Sleep -- 32.26 A, 7.1 s wake-up (3.3 V@25 °C) · Power Down -- 8.2 A, 16.6 s wake-up (RAM X0/X1 and RAM A0 retained, 3.3 V@25 °C)

NXP reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

NXP Semiconductors
Deep Power Down -- 412 nA, 1.44 ms wake-up (wake timer disabled, reset pin enabled, all SRAM off, 3.3 V@25 °C)
System and Clocks · 192 MHz free-running oscillator (FRO192M) · 12 MHz free-running oscillator (FRO12M) · 16 KHz free-running oscillator (FRO16K) · Up to 50 MHz crystal oscillator · Hardware and Software Watchdogs · Asynchronous DMA modules (8-channels)
Communication Interfaces for Connectivity · 4x LPI2C, 2x LPSPI, 5x LPUART · 1x I3C · USB Full-speed (Device) with on-chip FS PHY · 1x FlexCAN with FD · FlexIO
Advanced Motor Control · Up to 2x FlexPWM each with 3 sub-modules, providing 12 complementary outputs of PWM (no Nanoedge module) · Up to 2x Quadrature Decoder (eQDC) · 2x AOI (AND/OR/Invert) module support up to 4 output trigger
Analog · 2x 16-bit ADC -- Up to 3.2 Msps in 16-bit mode, and 4 Msps in 12-bit -- Up to 32 ADC Input channels (depending on the package) -- One integrated temperature sensor per ADC · 1x 12-bit DAC · Two Low power Comparators (LPCMP) with 8 input pins and 8-bit DAC as internal reference -- 1x LPCMP is functional down to Deep Power Down mode · 1x OpAmp with PGA
Timers · Five 32-bit standard general-purpose asynchronous timers/counters, which support up to four capture inputs and four compare outputs, PWM mode, and external count input. Specific timer events can be selected to generate DMA requests. · Low power timer · Frequency measurement timer · Windowed watchdog timer · Wake timer · Micro-tick timer (UTICK) · OS event timer
General-purpose input/output

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

2 / 88

NXP Semiconductors

· Up to 82 GPIOs · Up to eight 20 mA IO · 50 MHz IO on P1, P3 and P4 · Up to 19-pin wake-up sources function down to Deep Power Down mode · Support 1.71 V~3.6 V IO supply range · Support 1.2V independent IO supply on P3 port Power Management · Integrated voltage regulator
-- Core LDO, other LDOs · Operating range: 1.71 V to 3.6 V · IOs: 1.71 V-3.6 V full-performance Target Applications Industrial · Energy Storage and Management System · Smart Metering · Factory Automation · Industrial HMI · Mobile Robotics Ecosystem · Motion Control and Robotics · Motor Drives · Brushless DC Motor (BLDC) Control · Permanent Magnet Synchronous Motor (PMSM) Smart Home · Home Control Panel · Major Home Appliances · Robotic Appliance · Smart Speaker · Soundbar · Gaming Accessories · Smart Lighting · Smart Power Socket and Light Switch

Table 1. Ordering Information

Part Number

Marking

Core Flash (KB) Speed (MHz)

SRAM (KB)

GPIOs

MCXA144VLL

MCXA144VLL

48

256

MCXA144VMP

MCXA144VMP

48

256

64

81

64

50

Table continues on the next page...

Pin Count Package

100

LQFP

64

LFBGA

Packing
Tray Tray

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

3 / 88

NXP Semiconductors

Table 1. Ordering Information (continued)

Part Number

Marking

MCXA144VPJ MCXA145VLL MCXA145VMP MCXA145VPJ MCXA146VLL MCXA146VMP MCXA146VPJ MCXA154VLL MCXA154VMP MCXA154VPJ MCXA155VLL MCXA155VMP MCXA155VPJ MCXA156VLL MCXA156VMP MCXA156VPJ

MCXA144VPJ MCXA145VLL MCXA145VMP MCXA145VPJ MCXA146VLL MCXA146VMP MCXA146VPJ MCXA154VLL MCXA154VMP MCXA154VPJ MCXA155VLL MCXA155VMP MCXA155VPJ MCXA156VLL MCXA156VMP MCXA156VPJ

Core Flash (KB) Speed (MHz)

48

256

48

512

48

512

48

512

48

1024

48

1024

48

1024

96

256

96

256

96

256

96

512

96

512

96

512

96

1024

96

1024

96

1024

SRAM (KB)
64 96 96 96 128 128 128 64 64 64 96 96 96 128 128 128

GPIOs Pin Count Package Packing

82

112

VFBGA

Tray

81

100

LQFP

Tray

50

64

LFBGA

Tray

82

112

VFBGA

Tray

81

100

LQFP

Tray

50

64

LFBGA

Tray

82

112

VFBGA

Tray

81

100

LQFP

Tray

50

64

LFBGA

Tray

82

112

VFBGA

Tray

81

100

LQFP

Tray

50

64

LFBGA

Tray

82

112

VFBGA

Tray

81

100

LQFP

Tray

50

64

LFBGA

Tray

82

112

VFBGA

Tray

Table 2. Device Revision Number Device Mask Set Number 0P29K

DIE_ID 0x0059DAA0

JTAG ID Register[PRN] 0x0726702B

Table 3. Related Resources

Type

Description

Resource

Fact Sheet

The Fact Sheet gives overview of the product key features and its MCXA1xxFS uses.

Reference Manual

The Reference Manual contains a comprehensive description of the MCXAP100M96FS6RM structure and function (operation) of a device.

Data Sheet

The Data Sheet includes electrical characteristics and signal connections.

This document

Chip Errata

The chip mask set Errata provides additional or corrective information for a particular device mask set.

MCXA156_P29K

Package drawing

Package dimensions are provided in package drawings.

· LQFP100: 98ASS23308W · LFBGA64: 98ASA02085D

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

4 / 88

NXP Semiconductors

Table 3. Related Resources (continued) Type

Description

Software development kit

MCUXpresso SDK. An open source software development kit (SDK) built specifically for your processor and evaluation board selections.

Resource · VFBGA112: 98ASA02081D http://www.nxp.com/mcuxpresso

Analog 2x 16 bit ADC

1x OpAmp w/ PGA
1x 12-bit DAC

2x LPCMP Temp sensor

Advanced motor control

2x FlexPWM

2x eQDC (Quadrature
decoder)

2x AOI (AND/OR
invert)

Security Security monitoring (intrusion detection)
Lifecycle management
Access control (memory and debug)

Core Arm® Cortex® - M33
48/96 MHz with FPU, SIMD
Memories Up to 1 MB flash w/4 KB cache
Up to 128 KB SRAM (8 KB w/ECC)
16 KB ROM w/boot loader
System Power management (POR/LVD/HVD, LDO)
Clock generation Low-power internal clock (16 KHz, 12 MHz, 192 MHz) External XTAL (8-50 MHz)
DMA Peripheral input multiplexing
(INPUTMUX)

Connectivity

4x LPI2C

5x LPUART

2x LPSPI
Full-speed USB w/PHY

1x I3C 1x CAN-FD

HMI FlexIO

Timers 5x 32-bit timers

Wake timer

Frequency measurement timer

Windowed watchdog timer

Low-power timer

Micro-tick timer

OS event timer

Figure 1. Block Diagram

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

5 / 88

NXP Semiconductors

ARM Cortex M33 without TZ, MPU, w/ FPU SIMD 48 MHz 1.0 V 96 MHz 1.1 V

DMA0

USB - FS

Code System

SRAMX 1 LPCAC

M0 M1

M2

M3 P0

Multilayer AHB matrix
P1

P3
P0 P2

ROM 16 KB

MBC FMC

FMU

Flash 1 MB

SRAM X 0 8 KB
SRAM X 1 4 KB

SRAM X0 Alias LPCAC

SRAM A0 8 KB w/ ECC
SRAM A1 16 KB
SRAM A2 8 KB
SRAM A3 32 KB

SRAM B0 32 KB
SRAM B1 16 KB
SRAM B2 8 KB

SRAM X0 Alias

SRAM X0

Clocks, Power control, LDOs, System functions

PoR LVD/HVD
FRO SOSC

CRC DMA3 0 CH0~7
FMC(NPX) LPI2C0~3 LPUART0~4 USB FS PHY
FlexIO ERM

FlexPWM 0~1

1:x wraper

eQDC0/1 OpAmp 0

AIPS bridge 0

APB bridge 0

Debug mailbox

Code WDG

DMA3 0 MBC FMU
SCG-lite LPS PI 0 ~1
USB FS CAN0 EIM
AOI0 0~1
ADC 0 ADC 1 Po r t0 ~4 12 bit DAC 0

CMC SPC WUU Wake Timer LPTMR 0 VBAT OS_Event_Timer LPCMP0 LPCMP1 SYSCON

Windowed WDG0
CTIMER 0~4
Micro-Tick timer
Frequency measurement
Peripheral input mux
I3C0

GPIO 0~4

VSYS domain

VDD_CORE domain

Figure 2. Bus Architecture

Can be accessed when remap is enabled

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

6 / 88

Contents

1 2 2.1 2.2 2.3 2.4 2.5
3 3.1 3.2 3.2.1 3.2.2
3.2.2.1
3.2.3 3.2.4 3.2.4.1 3.2.5 3.2.6 3.2.7
3.2.8 3.2.9 3.3 3.3.1 3.3.2 3.3.2.1 3.4 3.4.1 3.4.2 4
4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.2 4.2.3 4.2.4 4.3 4.3.1 4.3.1.1 4.3.1.2

Feature Comparison ..........................................9 Ratings............................................................. 11
Thermal handling ratings.............................. 11 Moisture handling ratings..............................11 ESD handling ratings.................................... 11 Voltage and current maximum ratings.......... 12 Required Power-On-Reset (POR) Sequencing ...................................................................... 12 General.............................................................12 AC electrical characteristics.......................... 12 Nonswitching electrical specifications........... 13 Voltage and current operating requirement.. 13 HVD, LVD, and POR operating requirements ...................................................................... 14 VDD supply HVD, LVD, and POR Operating Requirements................................................14 Voltage and current operating behaviors...... 15 On-chip regulator electrical specifications.... 16 LDO_CORE electrical specifications.............16 Power mode transition operating behaviors..16 Power consumption operating behaviors......17 EMC radiated emissions operating behaviors ...................................................................... 20 Designing with radiated emissions in mind... 20 Capacitance attributes.................................. 20 Switching specifications................................ 21 Device clock specs....................................... 21 General switching specifications...................21 General switching specifications...................21 Thermal specifications ................................. 24 Thermal operating requirements...................24 Thermal attributes......................................... 24 Peripheral operating requirements and behaviors ......................................................................... 24 Core modules ...............................................24 Debug trace operating behaviors..................24 JTAG Debug Interface Timing...................... 25 Serial Wire Debug (SWD) Timing................. 27 Clock modules ............................................. 29 Reference Oscillator Specification................ 29 System Crystal Oscillator Specification........ 29 System Oscillator Crystal Specifications.......30 System Oscillator Crystal Specifications ......30 FRO-192M specifications..............................31 FRO-12M specifications................................32 FRO16K specifications................................. 32 Memories and memory interfaces ................32 Flash electrical specifications ...................... 32 Timing specifications ....................................32 Flash high voltage current behavior..............34

4.3.1.3 4.4 4.4.1 4.4.1.1 4.4.1.2 4.4.1.3 4.4.2 4.4.2.1 4.4.2.2 4.4.3
4.4.4 4.4.5 4.5 4.6 4.6.1 4.6.2 4.6.2.1 4.6.2.2 4.6.3 4.6.4 4.6.5 4.6.6
4.6.7
4.6.8 4.6.9
4.7 4.7.1 5 5.1 6 6.1
6.2
6.3
7 7.1 8 8.1 8.2 8.3 8.4 8.4.1 9 9.1

Flash reliability specifications........................34 Analog ..........................................................35 ADC electrical specifications.........................35 ADC operating conditions............................. 35 I/O mux resistance table............................... 36 ADC electrical characteristics....................... 37 12-bit DAC electrical characteristics............. 41 12-bit DAC operating requirements.............. 41 12-bit DAC operating behaviors....................41 Comparator and 8-bit DAC electrical specifications................................................ 44 OpAmp electrical specifications.................... 47 PGA electrical specifications.........................48 Timers........................................................... 49 Communication Interfaces ........................... 49 LPUART........................................................ 49 LPSPI switching specifications .................... 49 LPSPI master mode timing........................... 49 LPSPI slave mode timing..............................51 LPI2C timing................................................. 54 I2C 1 Mbps timing......................................... 56 I2C HS mode timing......................................57 I3C Push-Pull Timing Parameters for SDR Mode............................................................. 57 USB Full-speed device electrical specifications ...................................................................... 60 FlexCAN........................................................61 Flexible I/O controller (FLEXIO) electrical specifications................................................ 61 Human Machine Interface (HMI) modules ... 61 General Purpose Input/Output (GPIO)..........61 Package dimensions ....................................... 61 Obtaining package dimensions.....................61 Pinout .............................................................. 61 MCXA156, A155, A154, A146, A145, A144 Signal Multiplexing and Pin Assignments..... 61 MCXA156, A155, A154, A146, A145, A144 Pinout diagram..............................................78 Recommended connection for unused analog and digital pins.............................................. 78 Ordering parts.................................................. 79 Determining valid orderable parts................. 79 Part identification..............................................79 Description.................................................... 80 Part number format....................................... 80 Example........................................................ 80 Small package marking.................................81 Package marking information....................... 81 Terminology and guidelines............................. 81 Definitions..................................................... 81

9.2

Examples...................................................... 82

9.6

Specification Test Methods...........................83

9.3

Typical-value conditions................................82

10

Revision History............................................... 84

9.4

Relationship between ratings and operating

Chapter Legal information..............................................85

requirements................................................. 83

9.5

Guidelines for ratings and operating

requirements................................................. 83

NXP Semiconductors
1 Feature Comparison

Feature Comparison

Table 4. Feature Comparison

MCXA146 MCXA145 MCXA144 MCXA156 MCXA155 MCXA154

Core Platform

Core Cortex-M33 Cache

48 MHz

48 MHz

48 MHz

96 MHz

4 kB

96 MHz

96 MHz

DMA

8 Channels

Wakeup unit (WUU)

Yes

Peripheral input

Yes

multiplexing (INPUTMUX)

Clock

Fast internal reference clock FRO192M

48 MHz

48 MHz

48 MHz

192 MHz 192 MHz 192 MHz

Slow internal reference clock FRO12M

12 MHz

Low power internal reference clock FRO16K

16.384 KHz

System oscillator with external crystal (SOSC)

8-50 MHz

Memory Flash

1024 kB

512 kB

256 kB

1024 kB

512 kB

256 kB

SRAM

128 kB including 8 kB with ECC

96 kB including 8 kB with ECC

64 kB including 8 kB with ECC

128 kB including 8 kB with ECC

96 kB including 8 kB with ECC

64 kB including 8 kB with ECC

Error injection module

Yes

(EIM)

Error recording module

Yes

(ERM)

Security Lifecycle management

Yes

(LC)

Read out protection

Yes

(ROP)

Memory block checker

Yes

(MBC)

GLIKEY

Yes

UUID

128-bit

Code watchdog (CDOG)

1

Cyclic redundancy check

1

(CRC)

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

9 / 88

NXP Semiconductors

Feature Comparison

Table 4. Feature Comparison (continued)

MCXA146 MCXA145 MCXA144 MCXA156 MCXA155 MCXA154

Communic LPUART

5

ation Interfaces

LPSPI

2

LPI2C

4

I3C

1

USB FS Device

1

FlexCAN1

1

1

1

1x CAN FD 1x CAN FD 1x CAN FD

Flexible I/O (FlexIO)

1

Analog Low power comparator

2

(LPCMP)

ADC

2

DAC

0

0

0

1

1

1

OPAMP

0

0

0

1

1

1

Motor

FlexPWM 2

1

1

1

2

2

2

Control

AND/OR INVERT (AOI)

2

Quadrature decoder

1

1

1

2

2

2

(eQDC)3

Timer

32-bit timer (CTimer)

5

Low power timer (LPTMR)

1

Micro-tick timer (UTICK)

1

OS event timer

1

Windowed watchdog timer

1

(WWDT)

Frequency measurement

1

(FREQME)

Wake timer

IO

Independent IO supply 4

5V tolerant IO 5

High drive IO (20 mA) 6

50 MHz IO 7

1 VDD_P3
2 Up to 8 Up to 21

Packages VFBGA112 (PJ)

82

8

LQFP100 (LL)

81

LFBGA64 (MP)

50

Temperature Range

-40 °C to 125 °C

1. Flexible data rate (CAN FD) is available on MCXA156/A155/A154 2. FlexPWM0 is available on MCXA146/A145/A144. There`re 3 sub-modules for each FlexPWM module. 3. eQDC0 is available on MCXA146/A145/A144.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

10 / 88

NXP Semiconductors
4. Support 1.2V IO power supply. 5. P3_27, P3_28 are 5V tolerant IOs. 6. P1_8,P1_9,P1_30,P1_31,P3_1,P3_0,P0_16,P0_17 are High Drive IOs. 7. 50 MHz IOs are located on P1, P3, P4 ports. 8. Show the package types and GPIO numbers
2 Ratings

Ratings

2.1 Thermal handling ratings

Table 5. Thermal handling ratings

Symbol TSTG TSDR

Description

Min

Typ

Max

Unit

Condition

Storage temperature 1

­55

--

150

°C

--

Solder temperature, lead-free 2 --

--

260

°C

--

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.

2.2 Moisture handling ratings

Table 6. Moisture handling ratings

Symbol MSL

Description Moisture sensitivity level 1

Min

Typ

Max

Unit

Condition

--

--

3

--

--

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

2.3 ESD handling ratings

Table 7. ESD handling ratings

Description
Electrostatic discharge voltage, human body model
Electrostatic discharge voltage, charged-device model
Electrostatic discharge voltage, charged device model (corner pins)

Rating +/-2000 +/-500 +/-750

Unit V V V

Notes
1
2
2

Latch-up immunity level (Class II at 125 °C

Immunity Level A

--

3

junction temperature)

1. Determined according to ANSI/ESDA/JEDEC Standard JS-001-2023, For Electrostatic Discharge Sensitivity Testing, Human Body Model (HBM) - Device Level.
2. Determined according to ANSI/ESDA/JEDEC Standard JS-002-2022, For Electrostatic Discharge Sensitivity Testing, Charged Device Model (CDM) - Device Level.
3. Determined according JEDEC Standard JESD78F, IC Latch-Up Test.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

11 / 88

NXP Semiconductors

General

2.4 Voltage and current maximum ratings

Table 8. Voltage and current maximum ratings

Symbol VDD

Description

Min

Typ

Max

Unit

Supply voltage for Port 0, Port -0.3

--

3.63

V

--

1, Port 2

VDD_P3 VDD_ANA VDD_USB VUSB0_Dx
VDIO

Supply Voltage for Port 3

-0.3

--

Supply voltage for ADC

-0.3

--

Supply voltage for USB analog -0.3

--

USB0_DP and USB0_DM input -0.3

--

voltage

Digital input voltage

-0.3

--

VDIO_5VTOL

Digital input voltage for 5V

-0.3

--

tolerant I/O pins

VAIO
IDD ID

Analog input voltageAnalog pins -0.3

--

are defined as pins that do

not have an associated general-

purpose I/O port function. 1

Digital supply current 2

--

--

Maximum current single pin limit -25

--

(digital output pins)

3.63

V

--

3.63

V

--

3.63

V

--

3.63

V

--

VDD + 0. V

--

3

min(VDD V

--

+ 3.6V,

5.5V)

VDD_ V

--

ANA + 0.

3

100

mA

--

25

mA

--

1. Analog pins are defined as pins that do not have an associated general-purpose I/O port function. 2. This limit is per supply pin. It includes all power pins, including VDD, VDD_P3, VDD_ANA, VDD_USB.

Condition

2.5 Required Power-On-Reset (POR) Sequencing
· VDD and VDD_ANA must be same voltage

3 General

3.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

12 / 88

NXP Semiconductors

General

Low VIH

Input Signal Midpoint1

Fall Time

VIL

High Rise Time

The midpoint is VIL + (VIH - VIL) / 2
Figure 3. Input signal measurement reference

80%
50% 20%

3.2 Nonswitching electrical specifications

3.2.1 Voltage and current operating requirement

Table 9. Voltage and current operating requirement

Symbol

Description

Min

Typ

VDD

Supply Voltage for IO, LDO,

1.71

--

Flash, and LPCMP

VDD_P3

Supply voltage for Port 3

1.14

--

VDD_P3

Supply Voltage for Port 3

1.71

--

VDD_ANA

Supply voltage for ADC

VDD - 0. -- 1

VSS - VSS_ANA VSS-to-VSS_ANA differential -0.1

--

voltage

VDD_USB

Supply voltage for USB analog 3.0

--

VIH

Input high voltage

0.7 ×

--

VDD

VIH_5VTOL

Input high voltage of 5V tolerant 0.7 ×

--

IO

VDD

VIL

Input low voltage

--

--

VIL_5VTOL VHYS VHYS_5VTOL IICIO

Input low voltage of 5 V tolerant --

--

IO

Input hysteresis

0.1 ×

--

VDD

Input hysteresis of 5 V tolerant 0.1 ×

--

IO

VDD

IO pin DC injection current -- -3

--

per pin 1

Max 3.6

Unit V

1.32

V

3.6

V

VDD + 0. V 1

0.1

V

3.6

V

--

V

--

V

0.3 ×

V

VDD

0.3 ×

V

VDD

--

V

--

V

--

mA

Table continues on the next page...

Condition --
1.2V Normal condition --
--
-- 1.71 V  VDD  3.6 V
1.71 V  VDD  3.6 V
1.71 V  VDD  3.6 V
1.71 V  VDD  3.6 V
--
--
VIN < VSS-0.3 V (negative current injection)

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

13 / 88

NXP Semiconductors

General

Table 9. Voltage and current operating requirement (continued)

Symbol IICIO IICcont
IICcont
VODPU

Description
IO pin DC injection current -- per pin 1

Min --

Contiguous pin DC injection

-25

current --regional limit, includes

sum of negative injection

currents of 16 contiguous pins

Contiguous pin DC injection

--

current --regional limit, includes

sum of negative injection

currents of 16 contiguous pins

Open drain pullup voltage level 2

VDD

Typ -- --
--
--

Max 3 --
25
VDD

Unit mA mA
mA
V

Condition VIN > VDD+0.3 V (positive current injection) Negative current injection
Positive current injection
--

1. All I/O pins are internally clamped to VSS and VDD through an ESD protection diode. If VIN is greater than VDD_MIN(=VSS-0.3 V) or is less than VDD_MAX(=VDD+ 0.3 V), then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (-0.3 - VIN)/(-IICIOmin). The positive injection current limiting resistor is calculated as R=(VIN-VDD_MAX)/IICIOmax. The actual resistor should be an order of magnitude higher to tolerate transient voltages
2. Open drain outputs must be pulled to whichever supply voltage corresponds to that IO, VDD as appropriate.

3.2.2 HVD, LVD, and POR operating requirements
The device includes low-voltage detection (LVD) and high-voltage detection (HVD) power supervisor circuits for following power supplies:
· VDD

3.2.2.1 VDD supply HVD, LVD, and POR Operating Requirements

Table 10. VDD supply HVD, LVD, and POR Operating Requirements

Symbol

Description

Min

Typ

Max

Unit

Condition

VHVDH_VDD

VDD Rising high-voltage detect 3.730

3.810

3.890

V

--

threshold (HVD assertion)

VHVDH_HYS_VDD VDD High-voltage inhibit reset/ --

38

--

mV

--

recover hysteresis

VLVDH_VDD

VDD Falling low-voltage detect 2.567

2.619

2.673

V

--

threshold (LVD assertion) - high

range

VLVDH_HYS_VDD VDD Low-voltage inhibit reset/ --

27

--

mV

--

recover hysteresis - high range

VLVDL_VDD

VDD Falling low-voltage detect 1.618

1.651

1.684

V

--

threshold (LVD assertion) - low

range

VLVDL_HYS_VDD VDD Low-voltage inhibit reset/ --

16

--

mV

--

recover hysteresis - low range

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

14 / 88

NXP Semiconductors

3.2.3 Voltage and current operating behaviors

Table 11. Voltage and current operating behaviors

Symbol

Description

Min

Typ

Max

VOH

Output high voltage -- Normal VDD ­ 0. --

--

drive strength 1

5

VOH

Output high voltage -- Normal VDD ­ 0. --

--

drive strength 1

5

VOH

Output high voltage -- Normal VDD - --

--

drive strength 1

0.5

VOH

Output high voltage -- High

VDD ­ 0. --

--

drive strength 1,2

5

VOH

Output high voltage -- High

VDD ­ 0. --

--

drive strength 1,2

5

VOH

Output high voltage -- High

VDD - --

--

drive strength 1,2

0.5

IOHT

Output high current total for all --

--

100

ports

VOL

Output low voltage -- Normal --

--

0.5

drive strength 1,3

VOL

Output low voltage -- Normal --

--

0.5

drive strength 1,3

VOL

Output low voltage -- Normal --

--

0.5

drive strength 1,3

VOL

Output low voltage -- High drive --

--

0.5

strength 1,2,3

VOL

Output low voltage -- High drive --

--

0.5

strength 1,2,3

VOL

Output low voltage -- High drive --

--

0.5

strength 1,2,3

IOLT

Output low current total for all --

--

100

ports

IIN

Input leakage current (per pin) --

0.02

1

for full temperature range 4

IIN

Input leakage current (per pin) --

0.001

0.025

at 25 °C 4

IIN

Input leakage current (total all --

0.025

41

pins) for full temperature range 4

IOZ

Hi-Z (off-state) leakage current --

0.02

1

(per pin)

RPU

Internal pullup resistors

33

50

75

Table continues on the next page...

Unit V V V V V V mA V V V V V V mA A A A A k

General
Condition 2.7 V  VDD  3.6 V, IOH = 4 mA 1.71 V  VDD < 2.7 V, IOH = 2.5 mA 1.14 V  VDD < 1.32 V, IOH = 0.5 mA 2.7 V  VDD  3.6 V, IOH = 6 mA 1.71 V  VDD < 2.7 V, IOH = 3.75 mA 1.14 V  VDD < 1.32 V, IOH = 0.75 mA --
2.7 V  VDD  3.6 V, IOL = 4 mA 1.71 V  VDD < 2.7 V, IOL = 2.5 mA 1.14 V  VDD < 1.32 V, IOL = 0.5 mA 2.7 V  VDD  3.6 V, IOL = 6 mA 1.71 V  VDD < 2.7 V, IOL = 3.75 mA 1.14 V  VDD < 1.32 V, IOL = 0.75 mA --
--
--
--
--
--

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

15 / 88

NXP Semiconductors

General

Table 11. Voltage and current operating behaviors (continued)

Symbol RPU (I3C)

Description Internal pullup resistors 5

Min

Typ

Max

Unit

(VDD - 1.75

--

0.27 V)/3

mA

k

--

RPD

Internal pulldown resistors

33

50

75

k

--

RHPU

High-resistance pullup option 0.67

--

(PCRx[PV] = 1) 6

1.5

M

--

RHPD

High-resistance pulldown option 0.67

--

(PCRx[PV] = 1) 6

1.5

M

--

VBG

Bandgap voltage reference

0.98

1.0

1.02

V

--

voltage

1. For the HD pads, when setting DSE1=1, the IOH/IOL are four times higher at the same VOH/VOL. 2. RESET_B pins are always configured in high drive mode 3. Open drain outputs must be pulled to VDD 4. Measured at VDD = 3.6 V. 5. Only I3C pins support this option 6. Only RST pins support this option.

Condition

3.2.4 On-chip regulator electrical specifications

3.2.4.1 LDO_CORE electrical specifications

Table 12. LDO_CORE electrical specifications

Symbol

Description

VDD

LDO_CORE input supply voltage

ILOAD ILOAD

LDO_CORE max load current LDO_CORE max load current

IDD

LDO_CORE current

consumption

IDD

LDO_CORE current

consumption

IINRUSH

LDO_CORE inrush current

Min 1.71
-- -- --
--
--

Typ --
-- -- --
--
--

Max 3.6
16 2 250
500
10

Unit V
mA mA A
nA
mA

Condition --
Normal drive strength Low drive strength Normal drive strength
Low drive strength
--

3.2.5 Power mode transition operating behaviors
All specifications in the following table assume this clock configuration: · CPU clock = 48 MHz · AHB clock = 48 MHz · Clock source = FIRC

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

16 / 88

NXP Semiconductors

General

Table 13. Power mode transition operating behaviors

Symbol

Description

Min

Typ

Max

Unit

Condition

tPOR
tSLEEP tDSLEEP tPWDN

After a POR event, amount

--

of time to execution of the

first instruction (measured from

the point where VDD reach

1.8V) across the operating

temperature range of the

chip. 1,2

Sleep  Active 1,2,3,4

--

Deep Sleep  Active 1,2,3,4

--

Power Down  Active 1,2,3,5

--

2.34

2.43

ms

--

0.23

0.27

s

--

7.1

8.4

s

--

16.6

19.9

s

--

tDPWDN

Deep Power Down  Active 1,2,3,4

--

1.44

1.52

ms

--

1. Max value is mean+3 × sigma of tested values at the worst case of ambient temperature range and VDD 1.71 V to 3.6 V. Max values are based on characterization but not covered by test limits in production.
2. Typical value is the average of values tested at Temperature=25  and VDD=3.3 V 3. WFE used for Low Power mode entry 4. SPC->LPWKUP_DELAY[LPWKUP_DELAY] = 0x00 and the Core voltage level is configured for the same level in Active
and Low Power mode (SPC->ACTIVE_CFG[CORELDO_VDD_LVL]=SPC->LP_CFG[CORELDO_VDD_LVL]= 01b). 5. SPC->LPWKUP_DELAY[LPWKUP_DELAY] = 0x5B and the Core voltage level is configured as different level for Active
mode, (SPC->ACTIVE_CFG[CORELDO_VDD_LVL] = 01b for Active mode, SPC->LP_CFG[CORELDO_VDD_LVL] = 00b for Low Power mode)

3.2.6 Power consumption operating behaviors
When calculating the total MCU current consumption the following considerations should be made: · Specifications below only include power for the MCU itself including VDD, VDD_ANA, VDD_P3. · VDD_USB current draw are not included · On top of the device's IDD current consumption, external loads applied to pins of the device need to be considered

Symbol

Description

Condition 1 Typ

Unit

IDD_ACT_MD_1 2

1. CPU_CLK = 48 MHz from FRO192M; VDD_CORE 25 °C

3.06

mA

= 1.0 V from LDO_CORE normal drive.

105 °C

3.62

mA

2. All peripheral clocks disabled; Flash is configured to 125 °C

4.17

mA

LP mode; Cache enabled.

3. While(1) loop executing from internal flash.

IDD_ACT_MD_2

1. CPU_CLK = 48 MHz from FRO192M; VDD_CORE 25 °C

3.31

mA

= 1.0 V from LDO_CORE normal drive.

105 °C

3.90

mA

2. All peripheral clocks enabled; Cache enabled.

125 °C

4.47

mA

3. While(1) loop executing from internal flash.

IDD_ACT_MD_CM_1

1. CPU_CLK = 48 MHz from FRO192M; VDD_CORE 25 °C

3.40

mA

= 1.0 V from LDO_CORE normal drive.

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

17 / 88

NXP Semiconductors

Table continued from the previous page...

105 °C

3.95

2. All peripheral clocks disabled; Flash is configured to

LP mode; Cache enabled.

125 °C

4.48

3. CoreMark executing from internal flash.

IDD_ACT_MD_CM_2

1. CPU_CLK = 48 MHz from FRO192M; VDD_CORE 25 °C

3.66

= 1.0 V from LDO_CORE normal drive.

105 °C

4.23

2. All peripheral clocks enabled; Cache enabled.

125 °C

4.79

IDD_ACT_SD_1

3. CoreMark executing from internal flash.

1. CPU_CLK = 96 MHz from FRO192M; VDD_CORE 25 °C

6.40

= 1.1 V from LDO_CORE normal drive.

105 °C

7.11

2. All peripheral clocks disabled; Cache enabled.

125 °C

7.76

IDD_ACT_SD_2

3. While(1) loop executing from internal flash.

1. CPU_CLK = 96 MHz from FRO192M, FRO192M 25 °C

7.45

output is 192MHz; VDD_CORE = 1.1 V from LDO_CORE normal drive.

105 °C

8.16

2. All peripheral clocks enabled; Cache enabled.

125 °C

8.82

IDD_ACT_SD_CM_1

3. While(1) loop executing from internal flash.

1. CPU_CLK = 96 MHz from FRO192M; VDD_CORE 25 °C

7.09

= 1.1 V from LDO_CORE normal drive.

105 °C

7.72

2. All peripheral clocks disabled; Cache enabled.

125 °C

8.40

IDD_ACT_SD_CM_2

3. CoreMark executing from internal flash.

1. CPU_CLK = 96 MHz from FRO192M, FRO192M 25 °C

8.13

output is 192MHz; VDD_CORE = 1.1 V from LDO_CORE normal drive.

105 °C

8.79

2. All peripheral clocks enabled; Cache enabled.

125 °C

9.42

IDD_SLEEP_SD IDD_SLEEP_MD_1

3. CoreMark executing from internal flash.

1. CPU_CLK = OFF, SYSTEM_CLK = 96 MHz from 25 °C

3.34

FRO192M; VDD_CORE = 1.1 V from LDO_CORE

normal drive.

105 °C

4.05

2. All peripheral clocks disabled.

125 °C

4.70

1. CPU_CLK = OFF, SYSTEM_CLK = 48 MHz from 25 °C

1.81

FRO192M; VDD_CORE = 1.0 V from LDO_CORE

normal drive.

105 °C

2.39

2. All peripheral clocks disabled.

125 °C

2.93

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

General
mA mA
mA mA mA
mA mA mA
mA mA mA
mA mA mA
mA mA mA
mA mA mA mA mA mA
18 / 88

NXP Semiconductors

Table continued from the previous page...

IDD_SLEEP_MD_2

1. CPU_CLK = OFF, SYSTEM_CLK = 12 MHz from FRO12M; VDD_CORE = 1.0 V from LDO_CORE low drive.

IDD_DEEP_SLEEP_SD

2. All peripheral clocks disabled.
1. CPU_CLK = SYSTEM_CLK = OFF; VDD_CORE = 1.1 V from LDO_CORE normal drive.

2. Core domain in Deep Sleep; FRO12M disabled.
IDD_DEEP_SLEEP_MD_1 1. CPU_CLK = SYSTEM_CLK = OFF; VDD_CORE = 1.0 V from LDO_CORE low drive.

2. Core domain in Deep Sleep; FRO12M disabled.
IDD_DEEP_SLEEP_MD_2 1. CPU_CLK = SYSTEM_CLK = OFF; VDD_CORE = 1.0 V from LDO_CORE low drive.

IDD_POWER_DOWN_1

2. Core domain in Deep Sleep; FRO12M enabled.
1. CPU_CLK = SYSTEM_CLK = OFF; VDD_CORE = retention voltage from LDO_CORE low drive.

IDD_POWER_DOWN_2

2. Core domain in Power Down(Lowest power mode can retain all registers); All RAM retained; FRO16K disabled.
1. CPU_CLK = SYSTEM_CLK = OFF; VDD_CORE = retention voltage from LDO_CORE low drive.

IDD_DEEP_POWER_DO WN_1

2. Core domain in Power Down(Lowest power mode can retain all registers); RAM X0/X1 and RAM A0 retained; FRO16K disabled.
1. CPU_CLK = SYSTEM_CLK = OFF; LDO_CORE is powered off.

IDD_DEEP_POWER_DO WN_2

2. Core domain in Deep Power Down; All RAM OFF; FRO16K disabled; Wakeup timer disabled.
1. CPU_CLK = SYSTEM_CLK = OFF; LDO_CORE is powered off.

IDD_DEEP_POWER_DO WN_3

2. Core domain in Deep Power Down; All RAM OFF; FRO16K enabled; Wakeup timer enabled.
1. CPU_CLK = SYSTEM_CLK = OFF; LDO_CORE is powered off.

IDD_DEEP_POWER_DO WN_4

2. Core domain in Deep Power Down; All RAM retained; FRO16K enabled; Wakeup timer enabled.
1. CPU_CLK = SYSTEM_CLK = OFF; LDO_CORE is powered off.

25 °C 105 °C 125 °C
25 °C 105 °C 125 °C 25 °C 105 °C 125 °C 25 °C 105 °C 125 °C 25 °C 105 °C 125 °C
25 °C 105 °C 125 °C
25 °C 105 °C 125 °C
25 °C 105 °C 125 °C
25 °C 105 °C 125 °C
25 °C

Table continues on the next page...

0.43 0.99 1.55
257.98 781.14 1286.88 32.26 470.82 916.19 104.53 542.00 988.01 9.47 257.00 520.08
8.20 222.28 443.17
0.41 5.62 12.88
0.60 5.83 13.08
2.19 47.39 105.34
1.57

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

General
mA mA mA µA µA µA µA µA µA µA µA µA µA µA µA
µA µA µA
µA µA µA µA µA µA µA µA µA µA
19 / 88

NXP Semiconductors

General

Table continued from the previous page...

105 °C

29.84

µA

2. Core domain in Deep Power Down; RAM X0/X1

and RAM A0~A3 retained; FRO16K enabled; Wakeup 125 °C

66.33

µA

timer enabled.

IDD_DEEP_POWER_DO 1. CPU_CLK = SYSTEM_CLK = OFF; LDO_CORE is 25 °C

0.93

µA

WN_5

powered off.

105 °C

12.71

µA

2. Core domain in Deep Power Down; RAM X0/X1 and 125 °C

28.28

µA

RAM A0 retained; FRO16K enabled; Wakeup timer

enabled.

IDD_DEEP_POWER_DO 1. CPU_CLK = SYSTEM_CLK = OFF; LDO_CORE is 25 °C

0.79

µA

WN_6

powered off.

105 °C

8.86

µA

2. Core domain in Deep Power Down; RAM A0

125 °C

19.80

µA

retained; FRO16K enabled; Wakeup timer enabled.

IDD_DEEP_POWER_DO 1. CPU_CLK = SYSTEM_CLK = OFF; LDO_CORE is 25 °C

0.82

µA

WN_7

powered off.

105 °C

9.88

µA

2. Core domain in Deep Power Down; RAM X0/X1

125 °C

22.00

µA

retained; FRO16K enabled; Wakeup timer enabled.

1. Ambient temperature 2. SD standard drive, core voltage is 1.1V. MD middle drive, core voltage is 1.0V

3.2.7 EMC radiated emissions operating behaviors
EMC measurements to IC-level IEC standards are available from NXP on request.

3.2.8 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to nxp.com. 2. Perform a keyword search for "EMC design".

3.2.9 Capacitance attributes

Table 14. Capacitance attributes

Symbol

Description

Min

Typ

Max

Unit

Condition

CIN_A

Input capacitance: analog pins --

--

7

pF

--

CIN_D

Input capacitance: digital pins --

--

7

pF

--

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

20 / 88

NXP Semiconductors

3.3 Switching specifications

3.3.1 Device clock specs

Table 15. Device clock specs

Symbol

Description

fCPU

CPU clock (CPU_CLK)

Min --

fSYSTEM

SYSTEM clock (SYSTEM_CLK) --

fSLOW

Slow clock (SLOW_CLK)

--

fCPU

CPU clock (CPU_CLK)

--

fSYSTEM

SYSTEM clock (SYSTEM_CLK) --

fSLOW

Slow clock (SLOW_CLK)

--

Typ -- -- -- -- -- --

Max 96 96 24 48 48 12

Unit MHz MHz MHz MHz MHz MHz

General
Condition Standard drive (SD) mode VDD_CORE = 1. 1 V Standard drive (SD) mode VDD_CORE = 1. 1 V Standard drive (SD) mode VDD_CORE = 1. 1 V Middle drive (MD) mode VDD_CORE = 1. 0 V Middle drive (MD) mode VDD_CORE = 1. 0 V Middle drive (MD) mode VDD_CORE = 1. 0 V

3.3.2 General switching specifications
These general-purpose specifications apply to all signals configured for GPIO, LPUART, LPI2C, LPI3C, LPSPI functions.
3.3.2.1 General switching specifications
NOTE Refer to attached pinout spreadsheet.

Table 16. General switching specifications

Symbol

Description

Min

Typ

Max

--

GPIO pin interrupt pulse width 1.5

--

--

(digital glitch filter disabled) --

Synchronous path 1

--

GPIO pin interrupt pulse width 150

--

--

(digital glitch filter disabled,

analog filter enabled) --

Asynchronous path

--

GPIO pin interrupt pulse width 50

--

--

(digital glitch filter disabled,

analog filter disabled) --

Asynchronous path

Table continues on the next page...

Unit

Condition

SYSTEM The synchronous and

clock

asynchronous timing

cycles must be met.

ns

--

ns

--

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

21 / 88

NXP Semiconductors

General

Table 16. General switching specifications (continued)

Symbol

Description

Min

--

External RST pin interrupt pulse 330

width -- Asynchronous path 2

Typ --

Max --

--

GPIO pin interrupt pulse width 16

--

--

-- Asynchronous path 2

--

Port rise/fall time for slow I/O 1

--

7

pins 3,4

--

Port rise/fall time for slow I/O 3.5

--

15

pins 3,4

--

Port rise/fall time for slow I/O 1

--

7

pins 3,4

--

Port rise/fall time for slow I/O 9

--

45

pins 3,4

--

Port rise/fall time for slow I/O 3.5

--

25

pins 3,4

--

Port rise/fall time for slow I/O 1

--

7

pins, 5V Tolerant 3,4

--

Port rise/fall time for slow I/O 3.5

--

15

pins, 5V Tolerant 3,4

--

Port rise/fall time for slow I/O 1

--

7

pins, 5V Tolerant 3,4

--

Port rise/fall time for slow I/O 3.5

--

25

pins, 5V Tolerant 3,4

--

Port rise/fall time for slow I/O 3.5

--

14

pins 3,4

--

Port rise/fall time for medium I/O 0.8

--

4

pins 5,6

--

Port rise/fall time for medium I/O 1

--

7

pins 5,6

Table continues on the next page...

Unit ns
ns ns ns ns ns ns ns ns ns ns ns ns ns

Condition
This is the shortest pulse that is guaranteed to be recognized.
--
2.7  VDD  3.6 V, Fast slew rate (SRE = 0; DSE = 0)
2.7  VDD 3.6 V, Slow slew rate (SRE = 1; DSE = 0)
1.71  VDD < 2.7 V, Fast slew rate (SRE = 0; DSE = 1)
1.14  VDD < 1.32 V, Slow slew rate (SRE = 1; DSE = 1)
1.71  VDD < 2.7 V, Slow slew rate (SRE = 1; DSE = 1)
2.7  VDD  3.6 V, Fast slew rate (SRE = 0; DSE = 0)
2.7  VDD 3.6 V, Slow slew rate (SRE = 1; DSE = 0)
1.71  VDD < 2.7 V, Fast slew rate (SRE = 0; DSE = 1)
1.71  VDD < 2.7 V, Fast slew rate (SRE = 1; DSE = 1)
1.14  VDD < 1.32 V, Fast slew rate (SRE = 0; DSE = 1)
2.7  VDD  3.6 V, Fast slew rate (SRE = 0; DSE = 0)
2.7  VDD  3.6 V, Slow slew rate (SRE = 1; DSE = 0)

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

22 / 88

NXP Semiconductors

General

Table 16. General switching specifications (continued)

Symbol -- -- --
--
--
-- -- --
--
-- --

Description

Min

Port rise/fall time for medium I/O 0.8 pins 5,6

Port rise/fall time for medium I/O 1 pins 5,6

HD pins 7

2.2

Port rise/fall time for HD pins 7 1

Port rise/fall time for HD pins 7 3.5

Port rise/fall time for HD pins 7 3.5 Port rise/fall time for HD pins 7 9 Port rise/fall time for HD pins 7 1

Port rise/fall time for HD pins 7 3.5

RST pins 4

3

RST pins 4

3.6

Typ -- -- --
--
--
-- -- --
--
-- --

Max 4 7 7
7
15
14 45 7
25
8 20

Unit ns ns ns
ns
ns
ns ns ns
ns
ns ns

Condition
1.71  VDD < 2.7 V, Fast slew rate (SRE = 0; DSE = 1)
1.71  VDD < 2.7 V, Slow slew rate (SRE = 1; DSE = 1)
2.7  VDD 3.6 V, Normal drive, fast slew rate (SRE = 0; DSE = 0)
2.7  VDD 3.6 V, Normal drive (DSE = 0), fast slew rate (SRE = 0)
2.7  VDD  3.6 V, Normal drive (DSE =0), slow slew rate (SRE = 1)
1.14  VDD < 1.32 V, Fast slew rate (SRE = 0; DSE = 1 or 3)
1.14  VDD < 1.32 V, Slow slew rate (SRE = 1; DSE = 1 or 3)
1.71  VDD < 2.7 V, High drive (DSE=1), Fast slew rate (SRE = 0)
1.71  VDD < 2.7 V, High drive (DSE =1), Slow slew rate (SRE=1)
2.7  VDD  3.6 V
1.71  VDD < 2.7 V

1. The synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized 3. For the HD I/O pins, setting DSE1 = 1 will support the same rise/fall time at 4x the load capacitance. For the 5VTOL I/O
pins, setting DSE1=1 will support the same fall time at 2x the load capacitance, but the rise time will increase due to the increased loading 4. Load is 25 pF. 5. Assumes default values in CALIB1 and CALIB0 in PORTS 6. 25 pF lumped load 7. Load is 25 pF for DSE=0. Load is 100 pF for DSE=2 or DSE=3. Drive strength and slew rate are configured using PORTx_PCRn[DSE1], PORTx_PCRn[DSE], and PORTx_PCRn[SRE].

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

23 / 88

NXP Semiconductors
3.4 Thermal specifications

Peripheral operating requirements and behaviors

3.4.1 Thermal operating requirements

Table 17. Thermal operating requirements

Symbol TA TJ

Description Ambient temperature 1 Die junction temperature 2,3,4

Min -40 --

Typ

Max

Unit

25

125

°C

--

--

125

°C

--

Condition

1. The device may operate at maximum TA rating as long as TJ maximum of 125 °C is not exceeded. The simplest method to determine TJ is: TJ = TA + RJA*chip power dissipation.
2. Operating at maximum conditions for extended periods may affect device reliability. Refer to Product Lifetime Usage Estimates application note (AN14194)
3. The device operating specification is not guaranteed beyond 125 °C TJ. 4. The maximum operating requirement applies to all chapters unless otherwise specifically stated.

3.4.2 Thermal attributes

Table 18. Thermal attributes Rating

Board Type1

Symbol

Junction to Ambient Thermal Resistance 2
Junction-to-Top of Package Thermal Characterization Parameter 2
Junction to Case Top Thermal Resistance 3

JESD51-9, 2s2p
JESD51-9, 2s2p
NA

RJA JT RJC

64 LFBGA
51.1

100 LQFP
52.7

112 VFBGA
53.0

Unit °C/W

8.4

6.0

4.8

°C/W

46.9

24.0

13.1

°C/W

1. Thermal test board meets JEDEC specification for this package (JESD51-9) 2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment 3. Junction-to-Case top thermal resistance determined using an isothermal cold plate.

4 Peripheral operating requirements and behaviors

4.1 Core modules

4.1.1 Debug trace operating behaviors

Table 19. Debug trace operating behaviors

Symbol --

Description Frequency of operation

Min --

Typ --

Max 36

--

Frequency of operation

--

--

25

T1

Clock period

27.78 --

--

T1

Clock period

40

--

--

Table continues on the next page...

Unit MHz MHz ns ns

Condition SD mode MD mode SD mode MD mode

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

24 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 19. Debug trace operating behaviors (continued)

Symbol

Description

Min

Typ

Max

Unit

Condition

T2

Low pulse width

2

--

--

ns

--

T3

High pulse width

2

--

--

ns

--

T4

Clock and data rise time

--

--

3

ns

--

T5

Clock and data fall time

--

--

3

ns

--

T6

Data setup

1.5

--

--

ns

--

T7

Data hold

1.0

--

--

ns

--

TRACE_CLK

T4

T5

T3

T2

T1

Figure 4. TRACE_CLKOUT specifications

TRACE_CLK

T6

T7

TRACE_DATA[3:0]

Figure 5. Trace data specifications

4.1.2 JTAG Debug Interface Timing
The following table gives the JTAG specifications in debug interface mode.

Table 20. JTAG Debug Interface Timing

Symbol

Description

Min

Typ

--

Operating voltage

1.71

--

J1

TCLK frequency of operation --

--

Max 3.6 25

J1

TCLK frequency of operation --

--

12.5

J1

TCLK frequency of operation --

--

25

Table continues on the next page...

Unit V MHz
MHz
--

Condition
--
Boundary Scan (SD mode)
Boundary Scan (MD mode)
JTAG-DP/TAP (SD mode)

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

25 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 20. JTAG Debug Interface Timing (continued)

Symbol

Description

J1

TCLK frequency of operation

Min --

Typ --

J2

TCLK cycle period

1000/J1 --

J3

TCLK clock pulse width

J2/2

--

J4

TCLK rise and fall times

--

--

J5

Boundary scan input data setup 8

--

time to TCLK rise

J5

Boundary scan input data setup 16

--

time to TCLK rise

J6

Boundary scan input data hold -1

--

time after TCLK rise

J6

Boundary scan input data hold -1

--

time after TCLK rise

J7

TCLK low to boundary scan

--

--

output data valid

J7

TCLK low to boundary scan

--

--

output data valid

J8

TCLK low to boundary scan

--

--

output high-Z

J8

TCLK low to boundary scan

--

--

output high-Z

J9

JTAG-DP/TAP TMS, TDI input 8

--

data setup time to TCLK rise

J9

JTAG-DP/TAP TMS, TDI input 16

--

data setup time to TCLK rise

J10

JTAG-DP/TAP TMS, TDI input 1

--

data hold time after TCLK rise

J10

JTAG-DP/TAP TMS, TDI input 1

--

data hold time after TCLK rise

J11

TCLK low to JTAG-DP/TAP

--

--

TDO data valid

J11

TCLK low to JTAG-DP/TAP

--

--

TDO data valid

J12

TCLK low to JTAG-DP/TAP

--

--

TDO high-Z

J12

TCLK low to JTAG-DP/TAP

--

--

TDO high-Z

Max 12.5 -- -- 3 -- -- -- -- 18 38 18 38 -- -- -- -- 18 38 18 38

Unit -- ns ns ns ns ns ns ns ns -- ns -- ns -- ns -- -- ns ns --

Condition JTAG-DP/TAP (MD mode) -- -- -- SD mode MD mode SD mode MD mode SD mode MD mode SD mode MD mode SD mode MD mode SD mode MD mode SD mode MD mode SD mode MD mode

TDOC represents the TDO bit frame of the scan packet in compact JTAG 2-wire mode.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

26 / 88

NXP Semiconductors

JTAG_TCLK

J2

J3

J3

J4

J4

Figure 6. Test clock input timing

Peripheral operating requirements and behaviors

JTAG_TCLK JTAG_TDI/TMS
JTAG_TDO JTAG_TDO Figure 7. Boundary scan (JTAG) timing

J5

J6

Input data valid

J7 Output data valid

J8

JTAG_TCLK JTAG_TDI/TMS
JTAG_TDO JTAG_TDO

J9

J10

Input data valid

J11 Output data valid

J12

Figure 8. JTAG-DP/TAP timing
4.1.3 Serial Wire Debug (SWD) Timing
The following table gives the Serial Wire Debug specifications for the device.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

27 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 21. Serial Wire Debug (SWD) Timing

Symbol

Description

Min

Typ

--

Operating voltage

1.71

--

S1

SWD_CLK frequency of

--

--

operation

S1

SWD_CLK frequency of

--

--

operation

S2

SWD_CLK cycle period

1000/S1 --

S2

SWD_CLK cycle period

1000/S1 --

S3

SWD_CLK clock pulse width

20

--

S3

SWD_CLK clock pulse width

25

--

S4

SWD_CLK rise and fall times --

--

S5

SWD_DIO input data setup time 10

--

to SWD_CLK rise

S5

SWD_DIO input data setup time 12.5

--

to SWD_CLK rise

S6

SWD_DIO input data hold time 0

--

after SWD_CLK rise

S6

SWD_DIO input data hold time 0

--

after SWD_CLK rise

S7

SWD_CLK high to SWD_DIO --

--

data valid

S7

SWD_CLK high to SWD_DIO --

--

data valid

S8

SWD_CLK high to SWD_DIO 25

--

high-Z

S8

SWD_CLK high to SWD_DIO 30

--

high-Z

Max 3.6 25
20
-- -- -- -- 3 --
--
--
--
25
30
--
--

Unit V MHz
MHz
ns ns ns ns ns ns
ns
ns
ns
ns
ns
ns
ns

Condition -- SD mode
MD mode
SD mode MD mode SD mode MD mode -- SD mode
MD mode
SD mode
MD mode
SD mode
MD mode
SD mode
MD mode

SWD_CLK

S2

S3

S3

S4

S4

Figure 9. Serial Wire clock input timing

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

28 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

SWD_CLK
SWD_DIO
S7
SWD_DIO
S8
SWD_DIO Figure 10. Serial Wire data timing

S5

S6

Input data valid

Output data valid

4.2 Clock modules

4.2.1 Reference Oscillator Specification

This chip is designed to meet targeted specifications with a ±40 ppm frequency error over the life of the part, which includes the temperature, mechanical, and aging excursions.
The table below shows typical specifications for the Crystal Oscillator.

4.2.1.1 System Crystal Oscillator Specification

Table 22. System Crystal Oscillator Specification

Symbol fosc Tol Jitosc Vpp
fec

Description
Crystal Frequency
Frequency tolerance
Jitter
Peak-to-peak amplitude of oscillation 1
Externally provided input clock frequency 2

Min 8 -- -- --
0

Typ -- ±10 70 0.6
--

Max 50 ±40 -- --
50

Unit MHz ppm -- V
MHz

Condition -- -- Period jitter (RMS) --
--

tDC_EXTAL

External clock duty cycle

45

50

55

%

--

Vec

Externally provided input clock Refer to --

--

--

--

amplitude 2

VIH and

VIL

specificat

ion

1. When a crystal is being used with the oscillator, the EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.
2. This specification is for an externally supplied clock driven to EXTAL and does not apply to any other clock input.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

29 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

4.2.1.2 System Oscillator Crystal Specifications.

Table 23. System Oscillator Crystal Specifications.

Symbol CP ESR
Cpara Cpara Cm Lm tstart IOSC IOSC

Description

Min

Shunt Capacitance

--

Crystal equivalent series

--

resistance 1

Parasitic capacitance of EXTAL --

Parasitic capacitance of XTAL --

Motional capacitance Cm

2.05

Motional inductance Lm

7.7

Crystal start-up time 2

--

Current consumption

--

Current consumption

--

Typ 1 20
-- -- 2.05 -- 350 270 1

Max 2 50
8 10 2.665 -- 500 -- 465

Unit pF 
pF pF fF mH s A --

Condition -- --
-- -- -- -- -- Normal mode Sleep mode

1. Maximum crystal equivalent series resistance for 16 MHz is 80 ohms with 2 pF shunt capacitance. 2. Dependent on crystal specifications, proper PC board layout procedures must be followed to achieve specifications

Lm

Cm

Rm

Cp

Cload

Figure 11. Crystal Electrical Block Diagram

4.2.1.3 System Oscillator Crystal Specifications

Table 24. System Oscillator Crystal Specifications.

Freq Crystal (MHz)

Rm(ohms) Cp(pF)

Cload(pF) Cm(pF)

Lm(mH)

Typical
startup (µs)1

8

100

5.00

18.0

0.008

49.47

1240

16

80

2.00

8.00

0.008

12.37

215

16

200

1.00

8.00

0.008

12.37

186

25

60

3.00

11.0

0.008

5.07

224

25

60

2.00

10.0

0.008

5.07

128

25

100

1.00

8.00

0.008

5.07

73.6

32

60

3.00

9.00

0.008

3.09

233

Table continues on the next page...

Typical Current consumpti on (µA)1

Drive level (µW)

min

max

168

24

34

168.3

16

22

200.4

31

46

245.6

70

93

232.5

61

80

232.7

62

82

269.6

71

95

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

30 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 24. System Oscillator Crystal Specifications. (continued)

32

60

2.00

8.00

0.008

3.09

116

253.2

59

80

32

100

1.00

8.00

0.008

3.09

52.4

289.3

91

123

40

50

2.00

8.00

0.008

1.98

80.4

296.9

73

99

40

60

3.00

9.00

0.008

1.98

162

333.2

99

135

48

50

2.00

8.00

0.008

1.37

73.1

359.6

104

140

48

60

3.00

9.00

0.008

1.37

155

407.9

138

188

1. This is based on simulation

4.2.2 FRO-192M specifications

Table 25. FRO-192M specifications

Symbol

Description

Min

ffro192m

FRO-192M frequency (nominal) --

ffro192m

Frequency deviation (Ta = 0 °C -- ­ 85 °C)

ffro192m

Frequency deviation (Ta = ­40 -- °C ­ 125 °C)

ffro192m

Frequency deviation (Ta = ­40 -- °C ­ 125 °C)

tstartup

Start-up time

--

tstartup

Start-up time

--

fos
jitper jitper
jitcyc Ifro192m_vdd1p8 Ifro192m_vddlv

Frequency overshoot during

--

startup

Period jitter RMS 1

--

Accumulated jitter over 10K

--

cycles 1

Cycle to cycle jitter 1

--

Current consumption for vdd1p8 --

Current consumption for vddlv --

1. Tested at 96 MHz

Typ 192 -- -- --
2
--
-- 70 800 100 70 35

Max -- ±1.5 ±3 ±0.25
--
20
2 -- -- -- -- --

Unit MHz % % %
s
s
% ps ps ps A A

Condition -- Open loop
Open loop
Closed loop (using accurate clock source as reference) Oscillation time with initial accuracy of -20 % to +2 % of enable signal assertion Oscillation time within +/- 2 % from enable signal assertion --
-- --
-- -- --

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

31 / 88

NXP Semiconductors

4.2.3 FRO-12M specifications

Table 26. FRO-12M specifications

Symbol

Description

ffro12m

FRO-12M frequency (nominal)

ffro12m

Frequency deviation

ffro12m

Frequency deviation

Min -- -- --

tstartup fos
Ifro12m

Start-up time

--

Frequency overshoot during

--

startup

Current consumption

--

Typ 12 -- --
5 10
7

Peripheral operating requirements and behaviors

Max -- ±3 ±0.6
-- 20

Unit MHz % %
s %

Condition -- open loop closed loop (using accurate clock source as reference) -- --

--

µA

--

4.2.4 FRO16K specifications

Table 27. FRO16K specifications

Symbol

Description

ffro16k

FRO16K frequency (nominal)

ffro16k

Frequency deviation over ­40 °C to 125 °C Ta

TRIMstep

Trimming step

tstartup

Start-up time

Ifro16k

Current consumption

Min -- --
-- -- --

Typ 16.384 --
1.5 310 50

Max -- ±6
-- -- --

Unit kHz %
% s nA

Condition -- open loop
-- -- --

4.3 Memories and memory interfaces

4.3.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.

4.3.1.1 Timing specifications
The following command times assume a flash bus clock frequency of 24 MHz. Command times will be increased by up to 10 s at 24 MHz if the module is exiting Sleep mode when the command is launched. The time to abort a command is not included in the following table.

4.3.1.1.1 Flash command time specifications

Table 28. Flash command time specifications

Symbol

Description

Min

Typ

Max

Unit

Condition

trd1all256k

Read 1s All execution time (256 --

--

1700

µs

--

KB)

trd1all512k

Read 1s All execution time (512 --

--

3200

µs

--

KB)

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

32 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 28. Flash command time specifications (continued)

Symbol

Description

Min

Typ

Max

Unit

Condition

trd1all1MB

Read 1s All execution time (1 --

--

6200

µs

--

MB)

trd1blk256k

Read 1s Block execution time --

--

1500

µs

--

(256 KB)

trd1blk512k

Read 1s Block execution time --

--

3050

µs

--

(512KB)

trd1blk1MB

Read 1s Block execution time --

--

6000

µs

--

(1MB)

trd1scr

Read 1s Sector execution time --

--

50

µs

--

(8 KB) 1

trd1pg

Read 1s Page execution time --

--

4.4

µs

--

(128 B) 1

trd1pglv

Read 1s Page at low voltage --

--

5.8

µs

--

execution time (128 B)

trd1phr

Read 1s Phrase execution time --

--

3.8

µs

--

(16B) 1

trd1phrlv trdmisr8k

Read 1s Phrase at low voltage --

--

4.8

µs

--

execution time (16 B)

Read into MISR (8 KB) 1

--

--

50

µs

--

trdmisr256k

Read into MISR (256 KB)

--

--

1500

µs

--

trdmisr512k trdmisr1M

Read into MISR (512 KB)

--

--

3050

µs

--

Read into MISR (1 MB) 1

--

--

6000

µs

--

trd1iscr

Read 1s IFR Sector execution --

--

50

µs

--

time (8 KB) 1

trd1ipg

Read 1s IFR Page execution --

--

4.4

µs

--

time (128 B) 1

trd1ipglv

Read 1s IFR Page at low

--

--

5.8

µs

--

voltage execution time (128 B)

trd1iphr

Read 1s IFR Phrase execution --

--

3.8

µs

--

time (16 B) 1

trd1iphrlv

Read 1s IFR Phrase at low

--

--

4.8

µs

--

voltage execution time (16 B)

trdimisr8k

Read IFR into MISR (8 KB) 1 --

--

50

µs

--

trdimisrk32k

Read IFR into MISR (32 KB) 1 --

--

190

µs

--

tpgmpg_initial

Program Page execution time at --

450

600

µs

--

< 1k cycles (128 B) 2

tpgmpg_lifetime Program Page execution time at --

450

750

µs

--

< 1k cycles (128 B)

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

33 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 28. Flash command time specifications (continued)

Symbol

Description

Min

Typ

Max

Unit

Condition

tpgmphr_initial

Program Phrase execution time --

135

180

µs

--

at > 1k cycles (16 B) 2

tpgmphr_lifetime Program Phrase execution time --

135

225

µs

--

at > 1k cycles (16 B)

tersall256k

Erase All execution time (256 KB)

--

--

800

ms

--

tersall512k

Erase All execution time (512 KB)

--

--

1500

ms

--

tersall1M

Erase All execution time (1 MB) --

--

2800

ms

--

tmasers256k

Mass Erase execution time ( via --

--

800

ms

--

sideband) (256 KB)

tmasers512k

Mass Erase execution time ( via --

--

1500

ms

--

sideband) (512 KB)

tmasers1M

Mass Erase execution time ( via --

--

2800

ms

--

sideband) (1 MB)

terrscr

Erase Sector execution time (8 --

2

KB) 2

22

ms

--

tersall128k

Erase All execution time (128 --

--

400

ms

--

KB)

1. Time to abort the command may significantly impact the time to execute the command. 2. Measured from the time FSTAT[PERDY] is cleared.

4.3.1.2 Flash high voltage current behavior

Table 29. Flash high voltage current behavior

Symbol IDD_IO_PGM
IDD_IO_ERS

Description

Min

Typ

Max

Unit

Condition

Average current adder to

--

--

6

VDD during flash programming

operation 1

mA

--

Average current adder to VDD --

--

4

during flash erase operation 1

mA

--

1. See the Power Management chapter in the reference manual for the specific VDD voltage supply powering the flash array.

4.3.1.3 Flash reliability specifications.

Table 30. Flash reliability specifications.

Symbol

Description

Min

Typ

Max

tnvmretp10k nnvmcycscr

Data retention after up to 10 K cycles
Sector cycling endurance 1

10 10 K

50

--

500 K --

Table continues on the next page...

Unit years
cycles

Condition Program Flash
Program Flash

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

34 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 30. Flash reliability specifications. (continued)

Symbol Tnvmretp1k
Tnvmretp100k

Description

Min

Data retention after up to 1 K 20 cycles

Data retention after up to 100 K 5 cycles

Typ 100
50

Max --
--

Unit years
years

Condition Program Flash
Program Flash

Nnvmcyc256k

Sector cycling endurance for 100 K 500 K -- 256 KB 2

Cycles Program Flash

1. Sector cycling endurance represents the number of Program/Erase cycles on a single sector at -40°C  Tj  125°C. 2. For devices with a single flash block, sectors must be located within the last 256 KB of the flash main memory. For devices
with two flash blocks, sectors must be located within the last 256 KB of each flash main memory but must not total more than 256 KB per device.

NOTE Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile.

4.4 Analog

4.4.1 ADC electrical specifications
ADC operating conditions apply when the ADC is used in differential mode. All other ADC channels meet the 12-bit single-ended accuracy specifications.

4.4.1.1 ADC operating conditions

Table 31. ADC operating conditions

Symbol

Description

Min

Typ

Max

Unit

VDDAD

Supply voltage

1.71

--

3.6

V

VSSAD VDD VSS VREFH VREFL VADIN

Ground voltage -- 1 -- 1 Reference Voltage High 2 Reference Voltage Low 3 Input Voltage 3,4,5

-0.1

0

0.1

V

-0.1

0

0.1

V

0.1

0

0.1

V

0.99

VDDAD VDDAD V

VSSAD VSSAD VSSAD V

VREFL --

VREFH V

FADCK

ADC conversion clock frequency

6

--

24

MHz

FADCK

ADC conversion clock frequency

6

--

60

MHz

FADCK

ADC conversion clock frequency

6

--

64

MHz

RAS

Analog source resistance

--

--

5

k

(external) 6

Table continues on the next page...

Condition -- -- -- -- -- -- -- Low-power mode, PWRSEL=0 Normal Mode, 16b, PWRSEL=1 Normal Mode, 12b , PWRSEL=1 --

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

35 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 31. ADC operating conditions (continued)

Symbol

Description

Min

Typ

Max

Unit

Condition

RADIN

Input Resistance ADC channels --

--

1.65

k

VDDAD  1.71 V

7:0 7,8

RADIN

Input Resistance ADC channels --

--

1.525

k

VDDAD  2.1 V

7:0 7,8

RADIN

Input Resistance ADC channels -- 7:0 7,8

0.925

1.35

k

VDDAD  2.5 V

CADIN

Input Capacitance

--

1.92

2.4

pF

--

1. DC potential difference 2. Minimum VDDAD/VREFH is 2.4 V in high-speed mode 3. For devices that do not have a dedicated VREFL and VSS_ANA pins, VREFL and VSS_ANA are tied to VSS internally. 4. ADC selected inputs and unselected dedicated inputs must not exceed VDD_ANA during an ADC conversion. Unselected
muxed inputs may exceed VDD_ANA but must not exceed the IO supply associated with the inputs (VDD) when a conversion is in progress. If an ADC input may exceed these levels, then a minimum of 1 K series resistance must be used between the source and the ADC input pin. 5. If VREFH is less than VDD_ANA, then voltage inputs greater than VREFH but less than VDD_ANA are allowed but result in a full-scale conversion result 6. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. 7. If the input come through a mux in the IO pad, add the IO Mux Resistance Adder value to the resistance for the channel type 8. There are several types of ADC inputs. To see which channels correspond to which type of ADC inputs, see channel index map in reference manual

4.4.1.2 I/O mux resistance table

Table 32. I/O mux resistance table

Symbol

Description

RIOMUX

I/O MUX Resistance

RIOMUX

I/O MUX Resistance

RIOMUX

I/O MUX Resistance

Min -- -- --

Typ -- -- 0.35

Max 5.35 1 0.66

Unit k k k

Condition VDD  1.71v VDD  2.1v VDD  2.5 v

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

36 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Figure 12. ADC input impedance equivalency diagram

4.4.1.3 ADC electrical characteristics

Table 33. ADC electrical characteristics

Symbol --

Description Supply current 1

Min --

Typ 7

Max --

IDDAD IDDAD

Supply current 1 Supply current 1

--

60

--

--

200

--

IDDAD

Supply current 1

--

230

--

IDDAD

Supply current 1

--

550

--

Table continues on the next page...

Unit --
µA µA
µA
µA

Condition
PWREN=0, Conversions triggered at 10 kS/s
PWREN=1, No Conversions
Low-power mode, 6 MHz Clock, PWRSEL=0
Low-power mode, 24 MHz clock, PWRSEL=0
Normal Mode, 60 MHz, PWRSEL=1

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

37 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 33. ADC electrical characteristics (continued)

Symbol

Description

IDDAD

Supply cuurent

Min --

Typ 625

Max --

IDDTS
CSMP
Fconv Fconv TSMP_REQ

Temp Sensor Supply Current --

50

ADC Sample cycles 2

3.5

--

ADC conversion rate 3

--

--

ADC conversion rate 4

--

--

Required Sample Time 5

--

--

--
131.5
4.0 3.0 --

TSMP TSMP TSMP TSMPINT DNL INL ZSE FSE TUE ENOB16
ENOB16
ENOB16

Sample Time 6

145.8

Sample Time 7

58.3

Sample Time 8

54.7

Internal channel sample

2.0

time inputs 9

Differential non-linearity 10,11

--

Integral non-linearity 10,11

--

Zero-scale error (V_ADIN = V_ -- REFL) 10,11

Full-scale error (V_ADIN = V_ -- REFH) 10,11

Total Unadjusted Error 10,11

--

Effective number of bits, 16b -- Mode, 1 kHz input 11,12

TSMP_R -- EQ

TSMP_R -- EQ

TSMP_R -- EQ

--

--

±1

--

±1

--

±1

--

±2

--

±3

--

14.1

--

Effective number of bits, 16b -- Mode, 1 kHz input 11,12

13.2

--

Effective number of bits, 16b -- Mode, 1 kHz input

12.6

--

Table continues on the next page...

Unit µA
µA cycles MS/s MS/s ns
ns

Condition
High Speed Mode, 60 MHz Clock, PWRSEL=1, HS=1
Temperature Sensor Adder
Low-power mode and High speed mode
12b mode, (HS=1)
16b mode, (HS=1)
Use equation based on RAS, RIOMUX, RADIN, CADIN, RAS, CAS, CP and desired accuracy (B)
Low-power mode

ns

High-speed 16b mode

ns

High-speed 12b mode

µs

--

12b LSB -- 12b LSB -- 12b LSB --

12b LSB --

12b LSB --

bits

23.4 kS/s (FADCK

= 60 MHz, HS =1,

AVGS=0111)

bits

187 kS/s (FADCK =

60 MHz, HS=1, AVGS

=0100)

bits

750 kS/s (FADCK =

60 MHz, HS=1, AVGS

=0010)

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

38 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 33. ADC electrical characteristics (continued)

Symbol ENOB16 ENOB12 ENOB12 SNDR16

Description
Effective number of bits, 16b Mode, 1 kHz input

Min --

Effective number of bits, 12b -- Mode, 1 kHz input 11,12

Effective number of bits, 12b -- Mode, 1 kHz input 11,12

Signal-to-noise plus distortion, -- 16b Mode, 1 kHz input 11,12

Typ 12.0 11.5 11.0 86.6

Max -- -- -- --

Unit bits bits bits dB

Condition
3.0 MS/s (FADCK = 60 MHz, HS=1, AVGS =0000)
1.0 MS/s (FADCK = 64 MHz, HS =1, AVGS=0010)
4.0 MS/s (FADCK = 64 MHz, HS =1,AVGS=0000)
23.4 kS/s (FADCK=60 MHz, HS=1, AVGS=0111)

SNDR16

Signal-to-noise plus distortion, -- 16b Mode, 1 kHz input 11,12

81.2

--

dB

187.5 kS/s (FADCK=60

MHz, HS=1,

AVGS=0100)

SNDR16 SNDR16 SNDR12 SNDR12 SFDR

Signal-to-noise plus distortion, -- 16b Mode, 1 kHz input 11,12

Signal-to-noise plus distortion, -- 16b Mode, 1 kHz input

Signal-to-noise plus distortion, -- 12b Mode, 1 kHz input 11,12

Signal-to-noise plus distortion, -- 12b Mode, 1 kHz input 11,12

Spurious free dynamic

--

range 11,12

77.6

--

74

--

71.0

--

68.0

--

88.0

--

dB

750 kS/s

(FADCK=60MHz,

HS=1, AVGS=0010)

dB

3.0 MS/s (FADCK=60

MHz, HS=1,

AVGS=0000)

dB

1.0 MS/s (FADCK=64

MHz, HS=1,

AVGS=0010)

dB

4.0 MS/s (FADCK=64

MHz, HS=1,

AVGS=0000)

dB

12b/16b Mode, 1kHz

input, AVGS =0010

SFDR
Tsu E_TS E_TS A B 

Spurious free dynamic

--

range 11,12

Start-up time 13

5

Temperature sensor error 14

--

Temperature sensor error 14

--

Temp Sensor Slope Constant 15 --

Temp Sensor Offset Constant 15 --

Temp Sensor Bandgap

--

Constant 15

82.0

--

--

--

±1

±3

±2

±4

738

--

287.5

--

10.06

--

dB

12b/16b Mode, 1kHz

input, AVGS =0000

µs

--

°C

Tj=-40 to 105 °C

°C

Tj=-40 to 125 °C

°C

--

°C

--

°C

--

1. The ADC supply current depends on the ADC conversion clock speed, conversion rate, and power mode. Typical value show is at 6 MHz, 24 MHz, and 48 MHz. For lowest power operation, PWRSEL should be set to 00.
2. Must meet minimum TSMP requirement 3. fADCK=64 MHz (HS Mode)

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

39 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

4. fADCK=60 MHz (HS Mode) 5. Required sample time is dictated by external components RAS, CAS, internal components RADIN, CADIN, CP, and
desired sample accuracy in bits (B). Calculate it with formula: TSMP_REQ = B*In(2)*[RAS*(CAS+CP)+ (RAS + RIOMUX + RADIN)* CADIN(typ). RIOMUX=0 unless the ADC input channel goes through an analog mux in the IO" 6. Min based on 3.5 cycles 7. Min based on 3.5 cycles @ 60 MHz 8. Min based on 3.5 cycles @ 64 MHz 9. Internal channel inputs are those that do not come from external source (temperature sensor, bandgap). 10. 1 LSB = (VREFH - VREFL)/2N (N=14 bits), for 16- bit specifications, multiply by 4. 11. All accuracy numbers assume that the ADC is calibrated with VREFH=VDD_ANA and using a high- speed- dedicated input channel. Typical values assume VDD_ANA = 3.0 V, Temp = 25 °C, fADCK = 24 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 12. Dynamic results assume Fin=1 kHz sinewave, no averaging unless otherwise specified 13. Delay required if PWREN=0 14. The temperature sensor can be calibrated to a +/- 1 % precision after board assembly by using a 3-temperature calibration flow with accurate ± 0.15 % temperature chamber 15. T(°C) = A*[°(Vbe8 - Vbe1)/(Vbe8 + (Vbe8 - Vbe1))] - B where Vbe1 is the first value stored to FIFO as a result of the temperature sensor channel conversion, Vbe8 is the second value stored to FIFO as a result of the temperature sensor channel conversion, A is the slope factor, B is the offset factor,  is the bandgap coefficient
Set the power-up delay (PUDLY) according to the ADC start-up time if PWREN=0.
Ilkg = leakage current (Refer to pin leakage specification in the voltage and current operating behaviours of packaged device)

14.5 ENOB
14

Typical ENOB vs AVGS (16b Mode)

13.5

13

12.5

12 0000

0001

0010

Figure 13. ENOB vs ADC (16b HS Mode)

0011

0100

0101

0110

0111

AVGS

aaa-052761

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

40 / 88

NXP Semiconductors
14.5 ENOB
14

Peripheral operating requirements and behaviors
Typical ENOB vs ADC sample rate (16b HS=1)

13.5

13

12.5

12 0.012

0.023

Figure 14. ENOB vs ADC sample rate

0.047

0.094

0.188

0.375

0.750

1.500

3.000

Fs (MS/s)

aaa-052762

4.4.2 12-bit DAC electrical characteristics

4.4.2.1 12-bit DAC operating requirements

Table 34. 12-bit DAC operating requirements

Symbol VDD_ANA VDACR
CL IL DAC_c_rate

Description Supply voltage Reference Voltage 1
Output load capacitance 2 Output load current 3 DAC conversion rate

Min

Typ

Max

Unit

Condition

1.71

--

3.6

V

--

0.97

--

VDD_AN V

--

A

--

50

100

pF

--

-1

--

1

mA

--

--

--

1

MSPS --

1. The DAC reference can be selected to be VDD_ANA or VREFH or VREFO PAD, keep VDD_ANA be the highest voltage. 2. A small load capacitance (50 pF) can improve the bandwidth performance of the DAC. 3. Sink or source current availability

4.4.2.2 12-bit DAC operating behaviors

Table 35. 12-bit DAC operating behaviors

Symbol

Description

Min

Typ

Max

IDD_DAC

Supply Current

--

300

500

IDD_DAC

Supply Current

--

100

150

IDD_DAC

Supply Current

--

10

--

tDAC

Full-scale settling time (0x100 to -- 0xF00) 1

2.5

3

Table continues on the next page...

Unit µA µA nA µs

Condition Normal mode Low-power mode Disabled Normal mode

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

41 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 35. 12-bit DAC operating behaviors (continued)

Symbol

Description

Min

Typ

Max

Unit

Condition

tDAC

Full-scale settling time (0x100 to --

5

6

µs

Low-power mode

0xF00) 1

tccDAC

Code-to-code settling time

--

(0xBF8 to 0xC08) 1

0.7

1

µs

--

Vdacoutl

DAC output voltage range low --

--

100

mV

--

-- high-speed mode, no load,

DAC set to 0x000

Vdacouth
INL DNL EOFFSET EG EG

DAC output voltage range high -- high-speed mode, no load, DAC set to 0xFFF Integral non-linearity error 2 Differential non-linearity error 3 Offset error 4 Gain error 4 Gain error 4

VDACR100
-- -- -- -- --

--
-- -- ± 0.4 ± 0.3 ± 0.1

VDACR mV

--

±3 ±1 ± 0.8 ± 0.6 ± 0.3

LSB LSB %FSR %FSR %FSR

-- -- -- VDACR < 2.1 V VDACR > 2.1 V

PSRR

Power supply rejection ratio,

--

70

--

dB

--

VDD_ANA  2.4 V

TCO

Temperature coefficient offset --

--

--

µV/C

--

voltage at middle scale 5

TEO

Temperature coefficient offset --

30

--

µV/C

--

error

TGE

Temperature coefficient gain --

10

--

PPM/C --

error

ROP

Output resistance (load = 10

--

200

--



--

k)

SR

Slew rate 100 h ->F00 h or F00 --

3.6

--

V/µs

--

h ->100 h

SR

Slew rate 100 h ->F00 h or F00 --

0.5

--

V/µs

--

h ->100 h

CT

DAC to DAC crosstalk 6

--

--

-80

dB

--

TPU

Power-up time

--

2.5

--

µs

--

1. Settling within ±1 LSB measured with a 47 pF load. 2. The INL is measured for 0 + 100 mV to VDACR -100 mV 3. The DNL is measured for 0 + 100 mV to VDACR -100 mV 4. Calculated by a best fit curve from VSS_ANA + 100 mV to VDACR - 100 mV 5. VDD_ANA = 3.0 V, reference select set for VDD_ANA (DACx_CO:DACRFS = 1), high- power mode (DACx_C0:LPEN = 0),
DAC set to 0x800, temperature range is across the full range of the device. 6. If two DACs are used and share same VREFH

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

42 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

8

6

4

2

DAC12 INL (LSB)

0

-2

-4

-6

-8

0

500

1000

1500

2000

2500

3000

3500

4000

Digital Code

Figure 15. Typical INL error vs. digital code

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

43 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

1.499

1.4985

DAC12 Mid Level Code Voltage

1.498

1.4975

1.497

1.4965

1.496 -40

25

55

85

105

125

Temperature °C

Figure 16. Offset at half scale vs. temperature

4.4.3 Comparator and 8-bit DAC electrical specifications

Table 36. Comparator and 8-bit DAC electrical specifications

Symbol

Description

Min

Typ

VDD

Supply voltage

1.71

--

VREFH

8-bit DAC reference voltage

0.97

--

high

IDD_CMP

Supply current

--

200

Max 3.6 VDD
--

IDD_CMP

Supply current

--

10

--

IDD_CMP

Supply current

--

400

--

VAIN VAIO

Analog input voltage

VSS

--

VDD

Analog input offset voltage

--

--

20

Table continues on the next page...

Unit V V A A nA
V mV

Condition -- --
High speed mode (EN=1, HPMD=1) Normal mode (EN=1, HPMD=0, NPMD=0) Low-power mode (EN=1, HPMD=0, NPMD=1) -- High speed mode

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

44 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 36. Comparator and 8-bit DAC electrical specifications (continued)

Symbol VAIO VAIO VH VH VH VH VCMPOh VCMPOl tD
tD
tD
tD
tinit IDAC8b IDAC8b INL DNL

Description

Min

Typ

Analog input offset voltage

--

--

Analog input offset voltage

--

--

Analog comparator hysteresis 1 --

0

Analog comparator hysteresis 1 --

10

Analog comparator hysteresis 1 --

20

Analog comparator hysteresis 1 --

30

Output high

VDD - 0. -- 2

Output low

--

--

Propagation delay 2

--

--

Propagation delay 2

--

--

Propagation delay 2

--

--

Propagation delay 2

--

--

Analog comparator initialization --

--

delay 3

8-bit DAC current adder (enabled)

--

10

8-bit DAC current consumption --

1

8-bit DAC integral non-linearity 4 -1

--

8-bit DAC differential non-

-1

--

linearity

Max 20 40 -- -- -- -- -- 0.2 25
50
600
5
40 -- -- +1.0 +1.0

Unit mV mV mV mV mV mV V V ns
ns
ns
s
s A µA LSB LSB

Condition Normal mode Low-power mode CR0[HYSTCTR] = 00 CR0[HYSTCTR] = 01 CR0[HYSTCTR] = 10 CR0[HYSTCTR] = 11 --
-- High speed mode, 100 mV overdrive, power > 1.71V High speed mode, 30 mV overdrive, power > 1.71V Normal mode, 30 mV overdrive, power > 1. 71V Low-power mode, 30 mV overdrive, power > 1.71V --
High power mode (EN=1, PMODE=1) Low power mode (EN=1, PMODE=0) Low/High power mode, supply power > 1.71V Low/High power mode, power > 1.71V

1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD_ANA­0.6 V. 2. Overdrive does not include input offset voltage or hysteresis. The propagation delay is defined as the time delay between
the change of the voltage on input pin and the output change of the comparator analog part 3. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 4. 1 LSB = Vreference/256

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

45 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Figure 17. Typical hysteresis vs. Vin level (VDD = 3.3 V, HPMD = 1)

Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, HPMD = 0, NPMD = 0)

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

46 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Figure 19. Typical hysteresis vs Vin level (VDD =3.3 V, HPMD = 0, NPMD = 1)

4.4.4 OpAmp electrical specifications

Table 37. OpAmp electrical specifications

Symbol

Description

Min

Typ

Max

Unit

Condition

VDD_ANA

Operating Voltage

1.71

3

3.6

V

--

ISUPPLY1

Supply Current (IOUT=0 mA

--

high-speed mode)

450

--

µA

--

ISUPPLY2

Supply Current (IOUT=0 mA

--

high-speed mode)

120

--

µA

--

VOS

Input Offset Voltage

-5

--

5

mV

--

VOS

Input Offset Voltage Temperature Coefficient

--

5

--

µV/C

--

VCML

Input Common Mode Voltage 0

--

--

V

--

Low

VCMH

Input Common Mode Voltage --

--

VDD_AN V

--

High

A

PSRR

Power Supply Rejection Ration --

80

--

dB

--

@ DC

SRh

Slew Rate positive (VIN=1 V, --

6

--

V/µs

--

high- speed mode)

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

47 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 37. OpAmp electrical specifications (continued)

Symbol

Description

Min

SRl

Slew Rate positive (VIN=1 V, --

low- speed mode)

GBWh

Unity Gain Bandwidth (high-

--

speed mode)

GBWl

Unity Gain Bandwidth (low-

--

speed mode)

AV

DC Open Loop Voltage Gain --

CL

Load Capacitance Driving

--

Capability

RL

Load resistance (low-power

3 K

mode)

PM

Phase Margin

--

Vn

Voltage noise density @1 kHz --

(high-speed mode)

Vo

Output swing

0.2

Tsettle
Cin T_start

Settling time (high-speed mode -- invert gain=4 input=10 mV with +/-730 V settling accuracy)

Input Capacitance

--

Startup Time high-speed

--

mode buffer with input 1 V)

Typ 1 6 1 110 -- -- 60 100 -- 1
5 5

Max

Unit

--

V/µs

--

--

MHz

--

--

MHz

--

--

dB

--

20

pF

--

--



--

--

deg

--

--

nv/sqrtHz --

VDD_AN V

--

A-0.2

--

µs

--

--

pF

--

--

µs

--

Condition

4.4.5 PGA electrical specifications
NOTE Gain is PGA mode gain and gain is 2.4.8

Table 38. PGA electrical specifications

Symbol

Description

Error gain

PGA gain accuracy

--

PGA bandwidth

--

PGA bandwidth

--

PGA bandwidth

--

PGA bandwidth

Min -- --
--
--
--

Typ

Max

±1

--

6/

--

(gain+1)

32/

--

(gain+1)

6/

--

(gain+1)

32/

--

(gain+1)

Unit % MHz
MHz
MHz
MHz

Condition
--
Inverting mode, gain = 1, 2, 4
Inverting mode, gain = 8, 16, 33, 64
Non-inverting mode, gain = 1, 2, 4
Non-inverting mode, gain = 8, 16, 33, 64

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

48 / 88

NXP Semiconductors
4.5 Timers
See General switching specifications.

Peripheral operating requirements and behaviors

4.6 Communication Interfaces

4.6.1 LPUART
The Low Power Universal Asynchronous Receiver / Transmitter (LPUART) provides an asynchronous serial bus with master and slave operations, can reach to 24Mbps maximum transfer rate, based on characterization but not covered by test limits in production. See General switching specifications.

4.6.2 LPSPI switching specifications
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes.

4.6.2.1 LPSPI master mode timing

Table 39. LPSPI master mode timing

Symbol LP1

Description Frequency of operation 1

Min --

Typ --

Max --

LP1

LPSPI0 ~ LPSPI1 medium

--

--

48

speed pad

LP1

LPSPI0 ~ LPSPI1 slow speed --

--

24

pad

LP1

LPSPI0 ~ LPSPI1 medium

--

--

24

speed pad

LP1

LPSPI0 ~ LPSPI1 slow speed --

--

24

pad

LP2

SPSCK period

1000/LP1 --

--

LP3

Enable lead time 2

1/2

--

--

LP4

Enable lag time 2

1/2

--

--

LP5

Clock (SPSCK) high or low time tSCK/2-3 --

tSCK/2

LP6

Data setup time (inputs)

--

--

--

LP6

LPSPI0 ~ LPSPI1 medium

7.2

--

--

speed pad

LP6

LPSPI0 ~ LPSPI1 slow speed 14.4

--

--

pad

LP6

LPSPI0 ~ LPSPI1 medium

14.4

--

--

speed pad

LP6

LPSPI0 ~ LPSPI1 slow speed 14.4

--

--

pad

LP7

Data hold time (inputs)

--

--

--

Table continues on the next page...

Unit MHz MHz
MHz
MHz
MHz
ns tperiph tperiph ns ns ns
ns
ns
ns
ns

Condition -- Master in SD mode
Master in SD mode
Master in MD mode
Master in MD mode
-- -- -- -- -- Master in SD mode
Master in SD mode
Master in MD mode
Master in MD mode
--

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

49 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 39. LPSPI master mode timing (continued)

Symbol

Description

LP7

LPSPI0 ~ LPSPI1 medium

speed pad

LP7

LPSPI0 ~ LPSPI1 slow speed

pad

LP7

LPSPI0 ~ LPSPI1 medium

speed pad

LP7

LPSPI0 ~ LPSPI1 slow speed

pad

LP8

Data valid (after SPSCK edge)

LP8

LPSPI0 ~ LPSPI1 medium

speed pad

LP8

LPSPI0 ~ LPSPI1 slow speed

pad

LP8

LPSPI0 ~ LPSPI1 medium

speed pad

LP8

LPSPI0 ~ LPSPI1 slow speed

pad

LP9

Data hold time (outputs)

LP9

LPSPI0 ~ LPSPI1 medium

speed pad

LP9

LPSPI0 ~ LPSPI1 slow speed

pad

LP9

LPSPI0 ~ LPSPI1 medium

speed pad

LP9

LPSPI0 ~ LPSPI1 slow speed

pad

Min 0 0 0 0 -- -- -- -- -- -- -- -- -- --

Typ -- -- -- -- -- -- -- -- -- -- -- -- -- --

Max -- -- -- -- -- 7.2 14.4 14.4 14.4 -- -1 -1 -1 -1

Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Condition Master in SD mode Master in SD mode Master in MD mode Master in MD mode -- Master in SD mode Master in SD mode Master in MD mode Master in MD mode -- Master in SD mode Master in SD mode Master in MD mode Master in MD mode

1. The frequency of operation is also limited to a minimum of fperiph/2048 and a max of fperiph/2, where fperiph is the LPSPI peripheral functional clock.
2. tperiph = 1/fperiph

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

50 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

PCS (OUTPUT)

SCK (CPOL=0) (OUTPUT)

LP3

LP2

LP5

LP5

SCK (CPOL=1) (OUTPUT)
SIN (INPUT)
SOUT (OUTPUT)

LP6

LP7

MSB IN2

MSB OUT2

BIT 6 . . . 1 LP8 BIT 6 . . . 1

1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 20. LPSPI master mode timing (CPHA = 0)

LP4
LSB IN LP9
LSB OUT

PCS (OUTPUT)

SCK (CPOL=0) (OUTPUT)
SCK (CPOL=1) (OUTPUT)
SIN (INPUT)

LP2 LP3

LP5

LP5

LP6

LP7

MSB IN2

LP8

SOUT (OUTPUT)

PORT DATA

MASTER MSB OUT2

BIT 6 . . . 1
LP9 BIT 6 . . . 1

1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 21. LPSPI master mode timing (CPHA = 1)

LP4

LSB IN

MASTER LSB OUT

PORT DATA

4.6.2.2 LPSPI slave mode timing

Table 40. LPSPI slave mode timing

Symbol

Description

Min

Typ

Max

LP1

Frequency of operation in OD --

--

--

mode 1

LP1

lpspi0~lpspi1 medium speed --

--

24

pad 1

Table continues on the next page...

Unit --
MHz

Condition --
Slave Tx in SD mode

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

51 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 40. LPSPI slave mode timing (continued)

Symbol LP1

Description

Min

lpspi0~lpspi1 slow speed pad 1 --

Typ --

Max 12

Unit MHz

LP1

lpspi0~lpspi1 medium speed --

--

48

MHz

pad 1

LP1

lpspi0~lpspi1 slow speed pad --

--

24

MHz

LP1

lpspi0~lpspi1 medium speed --

--

12

MHz

pad

LP1

lpspi0~lpspi1 slow speed pad --

--

12

MHz

LP1

lpspi0~lpspi1 medium speed --

--

12

MHz

pad

LP1

lpspi0~lpspi1 slow speed pad --

--

12

MHz

LP2

SPSCK period

4 x

--

tperiph

2048 x ns tperiph

LP3

Enable lead time 2

1

--

--

tperiph

LP4

Enable lag time 2

1

--

--

tperiph

LP5

Clock (SPSCK) high or low time tSPSCK/ --

tSPSCK/ ns

2 - 5

2

LP6

Data setup time (inputs)

--

--

--

ns

LP6

lpspi0~lpspi1 medium speed 3.6

--

--

ns

pad

LP6

lpspi0~lpspi1 slow speed pad 7.2

--

--

ns

LP6

lpspi0~lpspi1 medium speed 14.4

--

--

ns

pad

LP6

lpspi0~lpspi1 slow speed pad 14.4

--

--

ns

LP7

Data hold time (inputs)

--

--

--

ns

LP7

lpspi0~lpspi1 medium speed 0

--

--

ns

pad

LP7

lpspi0~lpspi1 slow speed pad 0

--

--

ns

LP7

lpspi0~lpspi1 medium speed 0

--

--

ns

pad

LP7

lpspi0~lpspi1 slow speed pad 0

--

--

ns

LP8

Slave access time 2,3

--

--

tperiph ns

LP9

Slave MISO disable time 2,4

--

--

tperiph ns

LP10

Data valid (after SPSCK edge) --

--

--

ns

LP10

lpspi0~lpspi1 medium speed --

--

15.6

ns

pad

LP10

lpspi0~lpspi1 slow speed pad --

--

31.2

ns

Table continues on the next page...

Condition Slave Tx in SD mode Slave Rx in SD mode
Slave Rx in SD mode Slave Tx in MD mode
Slave Tx in MD mode Slave Rx in MD mode
Slave Rx in MD mode --
-- -- --
-- Slave Rx in SD mode
Slave Rx in SD mode Slave Rx in MD mode
Slave Rx in MD mode -- Slave Rx in SD mode
Slave Rx in SD mode Slave Rx in MD mode
Slave Rx in MD mode -- -- -- Slave Tx in SD mode
Slave Tx in SD mode

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

52 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 40. LPSPI slave mode timing (continued)

Symbol

Description

LP10

lpspi0~lpspi1 medium speed pad

LP10

lpspi0~lpspi1 slow speed pad

LP11

Data hold time (outputs)

LP11

lpspi0~lpspi1 medium speed pad

LP11

lpspi0~lpspi1 slow speed pad

LP11

lpspi0~lpspi1 medium speed pad

LP11

lpspi0~lpspi1 slow speed pad

Min --
-- -- --
-- --
--

Typ --
-- -- --
-- --
--

Max 31.2
31.2 -- -1
-1 -1
-1

Unit ns
ns ns ns
ns ns
ns

Condition Slave Tx in MD mode
Slave Tx in MD mode -- Slave Tx in SD mode
Slave Tx in SD mode Slave Tx in MD mode
Slave Tx in MD mode

1. The frequency of operation is also limited to a minimum of fperiph/2048 and a max of fperiph/4, where fperiph is the LPSPI peripheral functional clock.
2. tperiph = 1/fperiph 3. Time to data active from high-impedance state 4. Hold time to high-impedance state

PCS (INPUT)

SCK (CPOL=0) (INPUT)
SCK (CPOL=1)
(INPUT)

LP2

LP3

LP5

LP5

LP8

SOUT (OUTPUT)

see

note

SLAVE MSB

LP6

LP7

SIN (INPUT)

MSB IN

NOTE: Not defined

LP10
BIT 6 . . . 1
BIT 6 . . . 1

Figure 22. LPSPI slave mode timing (CPHA = 0)

LP4

LP11

LP11

SLAVE LSB OUT

LP9
SEE NOTE

LSB IN

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

53 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

PCS (INPUT)

SCK (CPOL=0) (INPUT)
SCK (CPOL=1)
(INPUT)
SOUT (OUTPUT)
SIN (INPUT)

LP2 LP3

LP5

LP5

see note

LP10
SLAVE MSB OUT

LP8

LP6

LP7

MSB IN

NOTE: Not defined

Figure 23. LPSPI slave mode timing (CPHA = 1)

LP11 BIT 6 . . . 1
BIT 6 . . . 1

LP4
LP9 SLAVE LSB OUT
LSB IN

4.6.3 LPI2C timing

Table 41. LPI2C timing

Symbol

Description

Min

Typ

Max

Unit

Condition

fSCL

SCL Clock Frequency in

0

--

100

kHz

--

standard mode

fSCL

SCL Clock Frequency in fast 0 mode

--

400

kHz

--

tHD; STA

Hold time (repeated) START 4 condition. After this period, the first clock pulse is generated in standard mode

--

--

µs

--

tHD; STA

Hold time (repeated) START 0.6

--

--

µs

--

condition. After this period, the

first clock pulse is generated in

fast mode

tLOW

LOW period of the SCL clock in 4.7

--

--

µs

--

standard mode

tLOW

LOW period of the SCL clock in 1.25

--

--

µs

--

fast mode

tHIGH

HIGH period of the SCL clock in 4 standard mode

--

--

µs

--

tHIGH

HIGH period of the SCL clock in 0.6

--

--

µs

--

fast mode

tSU; STA

Set-up time for a repeated

4.7

--

--

µs

--

START condition in standard

mode

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

54 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 41. LPI2C timing (continued)

Symbol

Description

Min

Typ

Max

Unit

Condition

tSU; STA

Set-up time for a repeated

0.6

--

--

µs

--

START condition in fast mode

tHD; DAT

Data hold time for I2C bus

0

devices in standard mode 1,2

--

3.45

µs

--

tHD; DAT

Data hold time for I2C bus devic 0 es in fast mode 1,3

--

0.9

µs

--

tSU; DAT

Data set-up time in standard

250

--

--

ns

--

mode 4

tSU; DAT

Data setup time in fast mode 2,5

100A

--

--

ns

--

tr

Rise time of SDA and SCL

--

--

1000

ns

--

signals in standard mode 6

tr

Rise time of SDA and SCL sign 20 +0. --

300

ns

--

als in fast mode 6

1Cb

tf

Fall time of SDA and SCL

--

--

300

ns

--

signals in standard mode 5

tf

Fall time of SDA and SCL signal 20 +0. --

300

ns

--

s in fast mode 5

1Cb

tSU; STO

Set-up time for STOP condition 4 in standard mode

--

--

µs

--

tSU; STO

Set-

0.6

--

--

µs

--

up time for STOP condition in f

ast mode

tBUF

Bus free time between STOP 4.7

--

--

µs

--

and START condition in

standard mode

tBUF

Bus free time between STOP an 1.3

--

--

µs

--

d START condition in fast mode

tSP

Pulse width of spikes that must N/A

--

N/A

ns

--

be suppressed by the input filter

in standard mode

tSP

Pulse width of spikes that must 0

--

50

ns

--

be suppressed by the input filter

in fast mode

1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal 3. Input signal Slew = 10 ns and Output Load = 50 pF 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT  250 ns
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

55 / 88

NXP Semiconductors 6. Cb = total capacitance of the one bus line in pF.

Peripheral operating requirements and behaviors

4.6.4 I2C 1 Mbps timing

Table 42. I2C 1 Mbps timing

Symbol fSCL tHD; STA
tLOW tHIGH tSU; STA
tHD; DAT
tSU; DAT

Description

Min

Typ

Max

Unit

Condition

SCL Clock Frequency

0

--

1

MHz

--

Hold time (repeated) START 0.26

--

--

µs

--

condition. After this period, the

first clock pulse is generated.

LOW period of the SCL clock 0.5

--

--

µs

--

HIGH period of the SCL clock 0.26

--

--

µs

--

Set-up time for a repeated

0.26

--

--

µs

--



START condition

Data hold time for I2C bus

0

devices

--

--

µs

--



Data set-up time

50

--

--

ns

--

tr tf tSU; STO tBUF

Rise time of SDA and SCL

20 +0. --

120

ns

--

signals 1

1Cb

Fall time of SDA and SCL

20 +0. --

120

ns

--

signals 1

1Cb

Set-up time for STOP condition 0.26

--

--

µs

--

Bus free time between STOP 0.5

--

--

µs

--

and START condition

tSP

Pulse width of spikes that must 0

--

50

ns

--

be suppressed by the input filter

1. Cb = total capacitance of the one bus line in pF for maximum value

SDA tf

tLOW

tr

tSU; DAT

tf

SCL

S

HD; STA

tHD; DAT

tHIGH

tSU; STA

Figure 24. Timing definition for devices on the I2C bus

SR

tHD; STA

tSP

tr

tBUF

tSU; STO

P

S

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

56 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

4.6.5 I2C HS mode timing

Table 43. I2C HS mode timing

Symbol fSCL tHD; STA
tLOW tHIGH

Description

Min

Typ

Max

Unit

Condition

SCL Clock Frequency

0

--

3.4

MHz

--

Hold time (repeated) START 0.26

--

--

µs

--

condition. After this period, the

first clock pulse is generated.

LOW period of the SCL clock 0.5

--

--

µs

--

High period of the SCL clock 0.26

--

--

µs

--

tSU; STA tHD; DAT tSU; DAT tr

Set-up time for a repeated

0.26

--

--

µs

--

START condition

Data hold time for I2C bus

0

devices 1

--

--

µs

--

Data setup time

34

--

--

ns

--

Rise time of SDA and SCL

20

--

120

ns

--

signals 2

+0.1Cb

tf tSU; STO tBUF tSP

Fall time of SDA and SCL

20

--

120

ns

--

signals 2

+0.1Cb

Setup time for STOP condition 0.26

--

--

µs

--

Bus free time between STOP 0.5

--

--

µs

--

and START condition

Pulse width of spikes that must 0 be suppressed by the input filter

--

50

ns

--

1. A device must internally provide a data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time in maximum value.
2. Cb = total capacitance of the one bus line in pF. The max Cb value is 50 pF. Applicable for maximum value.

NOTE Only PTB4/5, PTA18/19, PTC0/1, PTC4/5 pin can support Fast+ (3 MHz) mode.

4.6.6 I3C Push-Pull Timing Parameters for SDR Mode
I3C interface is not supported on GPIO-Standard-plus pad type for 5 V operation. Measurements are with maximum output load of 30 pf, input transition of 1 ns. GPIO-Standard-plus pad configured with DSE = 1'b1 and GPIO-Medium pad with DSE = 1'b1 and SRE = 1'b1. SCL, SDA and PUR combination should be of same pad type. For e.g. I3C medium Data Pads to be used with I3C Medium Clock and PUR Pads Only. I3C Standard plus Data Pads to be used with I3C standard plus Clock and PUR pads only.

Table 44. I3C Push-Pull Timing Parameters for SDR Mode

Symbol fSCL
tDIG_L

Description SCL Clock Frequency
SCL Clock Low Period 1,2

Min 0.01
32

Typ 12.5
--

Max 12.9
--

Unit MHz
ns

Condition
FSCL = 1 / (tDIG_L + tDIG_H)
--

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

57 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Table 44. I3C Push-Pull Timing Parameters for SDR Mode (continued)

Symbol tDIG_H tSCO tCR
tCF
tHD_PP tSU_PP

Description SCL Clock High Period 2
Clock in to Data Out for Slave 3,4 SCL Clock Rise Time 5

Min 32 --
--

SCL Clock Fall Time 5

--

SDA Signal Data Hold in Push- 0 Pull Mode, Slave 6
SDA Signal Data Setup in Push- 3 Pull Mode

Typ -- -- --
--
-- --

Max -- 12

Unit ns ns

150e06 * ns 1 / fSCL (capped at 60)

150e06 * ns 1 / fSCL (capped at 60)

--

--

N/A

ns

Condition -- --
--
--
Applicable for slave and master loopback modes Applicable for slave and master loopback modes.

1. As both edges are used, the hold time needs to be satisfied for the respective edges; i.e., tCF + 3 for falling edge clocks, and tCR + 3 for rising edge clocks.
2. tDIG_L and tDIG_H are the clock Low and High periods as seen at the receiver end of the I3C Bus using VIL and VIH (see Figure 30)
3. Devices with more than 12ns of tSCO delay shall set the limitation bit in the BCR, and shall support the GETMXDS CCC to allow the Master to read this value and adjust computations accordingly. For purposes of system design and test conformance, this parameter should be considered together with pad delay, bus capacitance, propagation delay, and clock triggering points.
4. Pad delay based on 90  / 4 mA driver and 50 pF load. Note that Master may be a Slave in a multi-Master system, and thus shall also adhere to this requirement
5. The clock maximum rise/fall time is capped at 60 ns. For lower frequency rise and fall the maximum value is limited at 60 ns, and is not dependent upon the clock frequency.
6. tHD_PP is a Hold time parameter for Push-Pull Mode that has a different value for Master mode vs. Slave mode. In SDR Mode the Hold time parameter is referred to as tHD_SDR.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

58 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Sr

tfDA

trDA

tHD_DAT

SDA

tSU_STA

tHD_STA

tSU_DAT

tfCL

trCL

SCL

tHIGH tLOW

tLOW tHIGH

Sr

P

tSU_STO

0.7 x VDD 0.3 x VDD

0.7 x VDD 0.3 x VDD

= Open Drain With Weak Pullup
Figure 25. Legacy mode timing

= High Speed Active Push-Pull Drive

0.7 x VDD

tHIGH

tCF

tLOW

0.3 x VDD tCR
Figure 26. tDIG_H and tDIG_L

tDIG_H

tDIG_L

Figure 27. Master out timing

SDA SCL

tHD_PP tSU_PP

tCF

tCR

0.7 x VDD 0.3 x VDD
0.7 x VDD 0.3 x VDD

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

59 / 88

NXP Semiconductors

Peripheral operating requirements and behaviors

Figure 28. Slave out timing

SDA

tSCO

tSU_PP

SCL

tCF

tCR

0.7 x VDD 0.3 x VDD
0.7 x VDD 0.3 x VDD

SDA

0.7 x VDD 0.3 x VDD

SCL

Figure 29. Master SDR timing

tSU_PP

0.7 x VDD 0.3 x VDD tHD_SDR

4.6.7 USB Full-speed device electrical specifications
This section describes the USB0 port Full Speed/Low Speed transceiver. The USB0 (FS/LS Transceiver) meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 Specification with the amendments below.
· USB ENGINEERING CHANGE NOTICE -- Title: 5 V Short Circuit Withstand Requirement Change -- Applies to: Universal Serial Bus Specification, Revision 2.0
· Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 · USB ENGINEERING CHANGE NOTICE
-- Title: Pull-up/Pull-down resistors -- Applies to: Universal Serial Bus Specification, Revision 2.0 · USB ENGINEERING CHANGE NOTICE -- Title: Suspend Current Limit Changes -- Applies to: Universal Serial Bus Specification, Revision 2.0

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

60 / 88

NXP Semiconductors

Package dimensions

This SoC does not have a dedicated pin to monitor the state of the USB VBUS signal. Please refer to the USBFS chapter in the Reference Manual for methods which can be used for VBUS Session_Valid detection with either a P4-12/ALT1 pin using an external resistive divider.

4.6.8 FlexCAN
See General switching specifications.

4.6.9 Flexible I/O controller (FLEXIO) electrical specifications
The following table shows FlexIO timing specifications.

Table 45. Flexible I/O controller (FLEXIO) electrical specifications

Symbol

Description

Min

Typ

Max

Unit

Condition

tODS

Output delay skew between any 0 two FlexIO_Dx pins configured as outputs that toggle on same internal clock cycle

--

8

ns

--

tIDS

Input delay skew between any 0

--

8

ns

--

two FlexIO_Dx pins configured

as inputs that are sampled on

the same internal clock cycle

4.7 Human Machine Interface (HMI) modules
4.7.1 General Purpose Input/Output (GPIO)
See General switching specifications.
5 Package dimensions

5.1 Obtaining package dimensions
Package dimensions are provided in package drawings. To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package LQFP100 LFBGA64 VFBGA112
6 Pinout

Then use this document number 98ASS23308W 98ASA02085D 98ASA02081D

6.1 MCXA156, A155, A154, A146, A145, A144 Signal Multiplexing and Pin Assignments
The signal multiplexing and pin assignments are provided in an Excel file attached to this document: 1. Click the paperclip symbol on the left side of the PDF window.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

61 / 88

NXP Semiconductors

2. Double-click on the Excel file to open it. 3. Select the "Pinout" tab. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. However the pinout table is as given below

Table 46. Pinout

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

A14xA15x BGA64

Pinmux Assignment

Pad Settings

P1_8

A1

1

B2

ALT0 - P1_8

IO Supply - VDD

ALT1 - FREQME_CLK_IN0 Pad type - HD+I3C

ALT2 - LPUART1_RXD

Default - DIS

ALT3 - LPI2C2_SDA

ALT4 - CT_INP8

ALT5 - CT0_MAT2

ALT6 - FLEXIO0_D16

ALT10 - I3C0_SDA

P1_9

B1

2

C2

ALT0 - P1_9

IO Supply - VDD

ALT1 - FREQME_CLK_IN1 Pad type - HD

ALT2 - LPUART1_TXD

Default - DIS

ALT3 - LPI2C2_SCL

ALT4 - CT_INP9

ALT5 - CT0_MAT3

ALT6 - FLEXIO0_D17

ALT10 - I3C0_SCL

P1_10

C3

3

D2

ALT0 - P1_10

IO Supply - VDD

ALT2 - LPUART1_RTS_B Pad type - SLOW

ALT3 - LPI2C2_SDAS

Default - DIS

ALT4 - CT2_MAT0

ALT6 - FLEXIO0_D18

ALT11 - CAN0_TXD

P1_11

D3

4

D1

ALT0 - P1_11

IO Supply - VDD

ALT1 - TRIG_OUT2

Pad type - SLOW

ALT2 - LPUART1_CTS_B Default - DIS

ALT3 - LPI2C2_SCLS

ALT4 - CT2_MAT1

ALT6 - FLEXIO0_D19

ALT10 - I3C0_PUR

ALT11 - CAN0_RXD

P1_12

D2

5

--

ALT0 - P1_12

IO Supply - VDD

Table continues on the next page...

Pinout
Alternate Functions ISP - I2C_SDA VDD SYS - WUU0_IN10
ISP - I2C_SCL
ANALOG - ADC1_A8
ANALOG - ADC1_A9 VDD SYS - WUU0_IN11
ANALOG - ADC1_A10

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

62 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P1_13

D1

6

P1_14

E4

7

P1_15

F4

8

P1_29

F3

9

P1_30

F1

10

P1_31

F2

11

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT2 - LPI2C1_SDA ALT3 - LPUART2_RXD ALT4 - CT2_MAT2 ALT6 - FLEXIO0_D20 ALT11 - CAN0_RXD

Pad type - SLOW Default - DIS

--

ALT0 - P1_13

IO Supply - VDD

ALT1 - TRIG_IN3

Pad type - SLOW

ALT2 - LPI2C1_SCL

Default - DIS

ALT3 - LPUART2_TXD

ALT4 - CT2_MAT3

ALT6 - FLEXIO0_D21

ALT11 - CAN0_TXD

--

ALT0 - P1_14

IO Supply - VDD

ALT2 - LPI2C1_SCLS

Pad type - SLOW

ALT3 - LPUART2_RTS_B Default - DIS

ALT4 - CT_INP10

ALT5 - CT3_MAT0

ALT6 - FLEXIO0_D22

--

ALT0 - P1_15

IO Supply - VDD

ALT2 - LPI2C1_SDAS

Pad type - SLOW

ALT3 - LPUART2_CTS_B Default - DIS

ALT4 - CT_INP11

ALT5 - CT3_MAT1

ALT6 - FLEXIO0_D23

E1

ALT0 - P1_29

IO Supply - VDD

ALT1 - RESET_B

Pad type - RST

ALT2 - SPC_LPREQ

Default - ALT1

E2

ALT0 - P1_30

IO Supply - VDD

ALT1 - TRIG_OUT3

Pad type - HD+I3C

ALT3 - LPI2C0_SDA

Default - DIS

ALT4 - CT_INP16

ALT6 - FLEXIO0_D30

ALT10 - I3C0_SDA

F2

ALT0 - P1_31

IO Supply - VDD

ALT1 - TRIG_IN4

Pad type - HD

Table continues on the next page...

Pinout
Alternate Functions VDD SYS - WUU0_IN12 ANALOG - ADC1_A11
ANALOG - ADC1_A12
ANALOG - ADC1_A13
VDD SYS - RESET_B ANALOG - XTAL48M
ANALOG - EXTAL48M

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

63 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

VSS
VSS
VREFL VREFH VDD_ANA VDD P4_2

D4,D10,F7,G2,G6, 12 G8,K4,K10,M12

D4,D10,F7,G2,G6, 12 G8,K4,K10,M12

H7

12

H6

13

J5

14

E5,F6,H8,J9

15

H1

16

P4_3

H3

17

P4_4

J3

18

P4_5

K3

19

A14xA15x BGA64

Pinmux Assignment

ALT3 - LPI2C0_SCL ALT4 - CT_INP17 ALT6 - FLEXIO0_D31 ALT10 - I3C0_SCL

D4,D5,D6,E6,F5,F 6

D4,D5,D6,E6,F5,F 6

E4

F4

E3

G3

--

ALT0 - P4_2

ALT1 - CLKOUT

ALT2 - LPI2C2_SDAS

ALT3 - LPUART3_RXD

ALT4 - CT4_MAT0

ALT5 - PWM0_A2

ALT6 - FLEXIO0_D10

--

ALT0 - P4_3

ALT2 - LPI2C2_SCL

ALT3 - LPUART4_TXD

ALT4 - CT4_MAT1

ALT5 - PWM0_B2

ALT6 - FLEXIO0_D11

--

ALT0 - P4_4

ALT2 - LPI2C2_SDA

ALT3 - LPUART4_RXD

ALT4 - CT4_MAT2

ALT5 - PWM0_A1

ALT6 - FLEXIO0_D12

--

ALT0 - P4_5

ALT1 - TRIG_OUT3

ALT2 - LPI2C2_SCLS

ALT3 - LPUART3_TXD

Table continues on the next page...

Pad Settings Default - DIS
IO Supply - VDD IO Supply - VDD IO Supply - VDD IO Supply - VDD IO Supply - VDD IO Supply - VDD IO Supply - VDD Pad type - MED Default - DIS
IO Supply - VDD Pad type - MED Default - DIS
IO Supply - VDD Pad type - MED Default - DIS
IO Supply - VDD Pad type - MED Default - DIS

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

Pinout
Alternate Functions
VDD SYS - WUU0_IN16 VDD SYS - WUU0_IN17
64 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P4_6

K1

20

P4_7

K2

21

P2_0

L2

22

P2_1

M2

23

P2_2

M1

24

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT4 - CT4_MAT3 ALT5 - PWM0_B1 ALT6 - FLEXIO0_D13

--

ALT0 - P4_6

IO Supply - VDD

ALT1 - TRIG_IN4

Pad type - MED

ALT2 - LPI2C2_HREQ

Default - DIS

ALT3 - LPUART3_CTS_B

ALT4 - CT_INP6

ALT5 - PWM0_A0

ALT6 - FLEXIO0_D14

--

ALT0 - P4_7

IO Supply - VDD

ALT1 - TRIG_IN5

Pad type - MED

ALT3 - LPUART3_RTS_B Default - DIS

ALT4 - CT_INP7

ALT5 - PWM0_B0

ALT6 - FLEXIO0_D15

G2

ALT0 - P2_0

IO Supply - VDD

ALT1 - TRIG_IN6

Pad type - SLOW

ALT2 - LPUART0_RXD

Default - DIS

ALT3 - LPUART4_CTS_B

ALT4 - CT_INP16

ALT5 - CT2_MAT0

ALT6 - FLEXIO0_D8

G1

ALT0 - P2_1

IO Supply - VDD

ALT1 - TRIG_IN7

Pad type - SLOW

ALT2 - LPUART0_TXD

Default - DIS

ALT3 - LPUART4_RTS_B

ALT4 - CT_INP17

ALT5 - CT2_MAT1

ALT6 - FLEXIO0_D9

H1

ALT0 - P2_2

IO Supply - VDD

ALT1 - TRIG_IN6

Pad type - SLOW

ALT2 - LPUART0_RTS_B Default - DIS

ALT3 - LPUART2_TXD

ALT4 - CT_INP12

ALT5 - CT2_MAT2

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

Pinout
Alternate Functions
ANALOG - ADC0_A0 VDD SYS - WUU0_IN18 ANALOG - ADC0_A1 ANALOG - ADC0_A4/ CMP0_IN0/DAC0_OUT
65 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P2_3

N1

25

P2_4

N2

26

P2_5

L3

27

P2_6

M4

28

P2_7

N4

29

P2_7

N4

29

P2_10

L4

30

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT6 - FLEXIO0_D10

J1

ALT0 - P2_3

IO Supply - VDD

ALT1 - TRIG_IN7

Pad type - SLOW

ALT2 - LPUART0_CTS_B Default - DIS

ALT3 - LPUART2_RXD

ALT4 - CT_INP13

ALT5 - CT2_MAT3

ALT6 - FLEXIO0_D11

J2

ALT0 - P2_4

IO Supply - VDD

ALT3 - LPUART2_CTS_B Pad type - SLOW

ALT4 - CT_INP14

Default - DIS

ALT5 - CT1_MAT0

ALT6 - FLEXIO0_D12

H2

ALT0 - P2_5

IO Supply - VDD

ALT3 - LPUART2_RTS_B Pad type - SLOW

ALT4 - CT_INP15

Default - DIS

ALT5 - CT1_MAT1

ALT6 - FLEXIO0_D13

H3

ALT0 - P2_6

IO Supply - VDD

ALT1 - TRIG_OUT4

Pad type - SLOW

ALT2 - LPSPI1_PCS1

Default - DIS

ALT3 - LPUART4_RXD

ALT4 - CT_INP18

ALT5 - CT1_MAT2

ALT6 - FLEXIO0_D14

H4

ALT0 - P2_7

IO Supply - VDD

ALT1 - TRIG_IN5

Pad type - SLOW

ALT3 - LPUART4_TXD

Default - DIS

ALT4 - CT_INP19

ALT5 - CT1_MAT3

ALT6 - FLEXIO0_D15

H4

IO Supply - VDD

Pad type - ANA

--

ALT0 - P2_10

IO Supply - VDD

ALT1 - TRIG_OUT5

Pad type - SLOW

Table continues on the next page...

Pinout
Alternate Functions ANALOG CMP1_IN0/ADC1_A4 VDD SYS - WUU0_IN19
ANALOG - ADC1_A0
ANALOG - ADC1_A1
ANALOG - ADC1_A3
ANALOG - VREFI/ ADC0_A7/ADC1_A7

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

66 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P2_11

K5

31

VSS
VDD P2_12

D4,D10,F7,G2,G6, 32 G8,K4,K10,M12

E5,F6,H8,J9

33

K6

34

P2_13

L6

35

P2_13

L6

35

P2_15

N6

36

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT3 - LPUART2_TXD ALT4 - CT3_MAT2 ALT6 - FLEXIO0_D18

Default - DIS

--

ALT0 - P2_11

IO Supply - VDD

ALT1 - TRIG_IN4

Pad type - SLOW

ALT3 - LPUART2_RXD

Default - DIS

ALT4 - CT3_MAT3

ALT6 - FLEXIO0_D19

D4,D5,D6,E6,F5,F 6

IO Supply - VDD

G3

IO Supply - VDD

J4

ALT0 - P2_12

IO Supply - VDD

ALT1 - USB0_VBUS_DET Pad type - SLOW

ALT2 - LPSPI1_SCK

Default - DIS

ALT3 - LPUART1_RXD

ALT4 - CT4_MAT0

ALT5 - CT0_MAT0

ALT6 - FLEXIO0_D20

ALT11 - CAN0_RXD

J5

ALT0 - P2_13

IO Supply - VDD

ALT1 - TRIG_IN8

Pad type - SLOW

ALT2 - LPSPI1_SDO

Default - DIS

ALT3 - LPUART1_TXD

ALT4 - CT4_MAT1

ALT5 - CT0_MAT1

ALT6 - FLEXIO0_D21

ALT11 - CAN0_TXD

J5

IO Supply - VDD

Pad type - LOLK

H5

ALT0 - P2_15

IO Supply - VDD

ALT1 - TRIG_OUT4

Pad type - SLOW

ALT2 - LPSPI1_SDI

Default - DIS

ALT3 - LPUART1_RTS_B

ALT4 - CT4_MAT3

ALT5 - CT0_MAT2

Table continues on the next page...

Pinout
Alternate Functions
ISP - USB0_VBUS_DET ANALOG ADC0_A5/OPAMP0_INP0 VDD SYS - WUU0_IN20
ANALOG - ADC1_A5
ANALOG - OPAMP0_INN ANALOG OPAMP0_OUT/ADC0_A2

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

67 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P2_16

M6

37

P2_17

M7

38

P2_19

M8

39

P2_20

N8

40

P2_21

L8

41

P2_23

L9

42

VDD_USB

M11

43

USB0_DM

M10

44

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT6 - FLEXIO0_D23

--

ALT0 - P2_16

IO Supply - VDD

ALT2 - LPSPI1_SDI

Pad type - SLOW

ALT3 - LPUART1_RTS_B Default - DIS

ALT4 - CT3_MAT0

ALT5 - CT0_MAT2

ALT6 - FLEXIO0_D24

--

ALT0 - P2_17

IO Supply - VDD

ALT1 - TRIG_IN9

Pad type - SLOW

ALT2 - LPSPI1_PCS0

Default - DIS

ALT3 - LPUART1_CTS_B

ALT4 - CT3_MAT1

ALT5 - CT0_MAT3

ALT6 - FLEXIO0_D25

--

ALT0 - P2_19

IO Supply - VDD

ALT1 - TRIG_OUT5

Pad type - SLOW

ALT4 - CT3_MAT3

Default - DIS

ALT6 - FLEXIO0_D27

--

ALT0 - P2_20

IO Supply - VDD

ALT1 - TRIG_IN8

Pad type - SLOW

ALT2 - LPSPI1_PCS2

Default - DIS

ALT4 - CT2_MAT0

ALT6 - FLEXIO0_D28

--

ALT0 - P2_21

IO Supply - VDD

ALT1 - TRIG_IN9

Pad type - SLOW

ALT2 - LPSPI1_PCS3

Default - DIS

ALT4 - CT2_MAT1

ALT6 - FLEXIO0_D29

--

ALT0 - P2_23

IO Supply - VDD

ALT1 - TRIG_OUT5

Pad type - SLOW

ALT4 - CT2_MAT3

Default - DIS

ALT6 - FLEXIO0_D31

H6

IO Supply - VDD_USB

H7

IO Supply - VDD_USB

Table continues on the next page...

Pinout
Alternate Functions ANALOG - ADC0_A6 ANALOG - ADC1_A6 ANALOG - ADC1_A2
ANALOG - USB0_DM VDD SYS - WUU0_IN28

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

68 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

USB0_DP

N10

45

A14xA15x BGA64 J7

Pinmux Assignment

Pad Settings

IO Supply - VDD_USB

VSS
VDD_P3 P3_31

D4,D10,F7,G2,G6, 46 G8,K4,K10,M12

E9,F8

47

N12

48

P3_30

N13

49

P3_29

M13

50

P3_28

L11

51

P3_27

K11

52

D4,D5,D6,E6,F5,F 6

IO Supply - VDD_P3

G5

IO Supply - VDD_P3

J8

ALT0 - P3_31

IO Supply - VDD_P3

ALT1 - TRIG_IN10

Pad type - SLOW

ALT2 - LPI2C3_SDAS

Default - DIS

ALT3 - LPUART4_CTS_B

ALT4 - CT0_MAT3

ALT6 - FLEXIO0_D31

J9

ALT0 - P3_30

IO Supply - VDD_P3

ALT1 - TRIG_OUT6

Pad type - SLOW

ALT2 - LPI2C3_SCLS

Default - DIS

ALT3 - LPUART4_RTS_B

ALT4 - CT0_MAT2

ALT6 - FLEXIO0_D30

H9

ALT0 - P3_29

IO Supply - VDD_P3

ALT1 - ISPMODE_N

Pad type - SLOW

ALT2 - LPI2C3_HREQ

Default - ALT1

ALT4 - CT_INP3

ALT5 - CT3_MAT3

ALT6 - FLEXIO0_D29

G7

ALT0 - P3_28

IO Supply - VDD_P3

ALT1 - TRIG_IN11

Pad type - 5VTOL

ALT2 - LPI2C3_SDA

Default - DIS

ALT3 - LPUART4_RXD

ALT4 - CT_INP12

ALT5 - CT3_MAT2

ALT6 - FLEXIO0_D28

E7

ALT0 - P3_27

IO Supply - VDD_P3

ALT1 - TRIG_OUT7

Pad type - 5VTOL

ALT2 - LPI2C3_SCL

Default - DIS

ALT3 - LPUART4_TXD

ALT4 - CT_INP13

Table continues on the next page...

Pinout
Alternate Functions ANALOG - USB0_DP VDD SYS - WUU0_IN29
ANALOG - ADC1_A20 VDD SYS - LPTMR0_ALT2
ANALOG - ADC1_A21
ANALOG - ADC1_A22 VDD SYS - WUU0_IN27
VDD SYS - WUU0_IN26
VDD SYS - WUU0_IN30

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

69 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P3_22

K13

53

P3_21

J10

54

P3_20

H10

55

P3_19

G11

56

P3_18

F10

57

P3_17

H11

58

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT5 - CT3_MAT1 ALT6 - FLEXIO0_D27

--

ALT0 - P3_22

IO Supply - VDD_P3

ALT3 - LPUART1_RTS_B Pad type - SLOW

ALT4 - CT_INP10

Default - DIS

ALT6 - FLEXIO0_D30

ALT7 - PWM1_X2

--

ALT0 - P3_21

IO Supply - VDD_P3

ALT1 - TRIG_OUT1

Pad type - SLOW

ALT2 - LPI2C3_SCL

Default - DIS

ALT3 - LPUART1_TXD

ALT4 - CT2_MAT3

ALT6 - FLEXIO0_D29

--

ALT0 - P3_20

IO Supply - VDD_P3

ALT1 - TRIG_OUT0

Pad type - SLOW

ALT2 - LPI2C3_SDA

Default - DIS

ALT3 - LPUART1_RXD

ALT4 - CT2_MAT2

ALT5 - PWM0_X2

ALT6 - FLEXIO0_D28

--

ALT0 - P3_19

IO Supply - VDD_P3

ALT2 - LPUART4_TXD

Pad type - SLOW

ALT4 - CT2_MAT1

Default - DIS

ALT5 - PWM0_X1

ALT6 - FLEXIO0_D27

ALT7 - PWM1_X1

--

ALT0 - P3_18

IO Supply - VDD_P3

ALT2 - LPUART4_RXD

Pad type - SLOW

ALT4 - CT2_MAT0

Default - DIS

ALT5 - PWM0_X0

ALT6 - FLEXIO0_D26

ALT7 - PWM1_X0

--

ALT0 - P3_17

IO Supply - VDD_P3

ALT2 - LPUART4_CTS_B Pad type - SLOW

ALT4 - CT_INP9

Default - DIS

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

Pinout
Alternate Functions
70 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P3_16

H13

59

P3_15

H12

60

P3_14

G12

61

P3_13

F12

62

P3_12

F13

63

VSS

D4,D10,F7,G2,G6, 64 G8,K4,K10,M12

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT6 - FLEXIO0_D25 ALT7 - PWM1_B0

--

ALT0 - P3_16

IO Supply - VDD_P3

ALT2 - LPUART4_RTS_B Pad type - SLOW

ALT4 - CT_INP8

Default - DIS

ALT6 - FLEXIO0_D24

ALT7 - PWM1_A0

H8

ALT0 - P3_15

IO Supply - VDD_P3

ALT2 - LPUART2_TXD

Pad type - SLOW

ALT3 - LPUART3_RTS_B Default - DIS

ALT4 - CT_INP7

ALT6 - FLEXIO0_D23

ALT7 - PWM1_B1

G8

ALT0 - P3_14

IO Supply - VDD_P3

ALT2 - LPUART2_RXD

Pad type - SLOW

ALT3 - LPUART3_CTS_B Default - DIS

ALT4 - CT_INP6

ALT5 - PWM0_X2

ALT6 - FLEXIO0_D22

ALT7 - PWM1_A1

F8

ALT0 - P3_13

IO Supply - VDD_P3

ALT2 - LPUART2_CTS_B Pad type - SLOW

ALT3 - LPUART3_RXD

Default - DIS

ALT4 - CT1_MAT3

ALT5 - PWM0_X1

ALT6 - FLEXIO0_D21

ALT7 - PWM1_B2

F9

ALT0 - P3_12

IO Supply - VDD_P3

ALT2 - LPUART2_RTS_B Pad type - SLOW

ALT3 - LPUART3_TXD

Default - DIS

ALT4 - CT1_MAT2

ALT5 - PWM0_X0

ALT6 - FLEXIO0_D20

ALT7 - PWM1_A2

D4,D5,D6,E6,F5,F 6

IO Supply - VDD_P3

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

Pinout
Alternate Functions VDD SYS - WUU0_IN25
71 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

VDD_P3

E9,F8

65

P3_11

F11

66

P3_10

E11

67

P3_9

D11

68

P3_8

D13

69

P3_7

D12

70

A14xA15x BGA64

Pinmux Assignment

Pad Settings

G5

IO Supply - VDD_P3

E9

ALT0 - P3_11

IO Supply - VDD_P3

ALT1 - TRIG_IN6

Pad type - MED

ALT2 - LPSPI1_PCS0

Default - DIS

ALT3 - LPUART1_CTS_B

ALT4 - CT1_MAT1

ALT5 - PWM0_B2

ALT6 - FLEXIO0_D19

E8

ALT0 - P3_10

IO Supply - VDD_P3

ALT1 - TRIG_IN5

Pad type - MED

ALT2 - LPSPI1_SCK

Default - DIS

ALT3 - LPUART1_RTS_B

ALT4 - CT1_MAT0

ALT5 - PWM0_A2

ALT6 - FLEXIO0_D18

D8

ALT0 - P3_9

IO Supply - VDD_P3

ALT1 - TRIG_IN4

Pad type - MED

ALT2 - LPSPI1_SDI

Default - DIS

ALT3 - LPUART1_TXD

ALT4 - CT_INP5

ALT5 - PWM0_B1

ALT6 - FLEXIO0_D17

C8

ALT0 - P3_8

IO Supply - VDD_P3

ALT1 - TRIG_IN3

Pad type - MED

ALT2 - LPSPI1_SDO

Default - DIS

ALT3 - LPUART1_RXD

ALT4 - CT_INP4

ALT5 - PWM0_A1

ALT6 - FLEXIO0_D16

ALT12 - CLKOUT

C9

ALT0 - P3_7

IO Supply - VDD_P3

ALT1 - TRIG_IN2

Pad type - MED

ALT2 - LPSPI1_PCS2

Default - DIS

ALT3 - LPUART3_CTS_B

ALT4 - CT4_MAT3

ALT5 - PWM0_B0

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

Pinout
Alternate Functions VDD SYS - WUU0_IN24
VDD SYS - WUU0_IN23
72 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P3_6

C12

71

P3_2

B12

--

P3_1

B13

72

P3_0

A13

73

VSS VDD_P3

D4,D10,F7,G2,G6, 74 G8,K4,K10,M12

E9,F8

75

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT6 - FLEXIO0_D15 ALT7 - PWM1_B0

B9

ALT0 - P3_6

IO Supply - VDD_P3

ALT1 - CLKOUT

Pad type - MED

ALT2 - LPSPI1_PCS3

Default - DIS

ALT3 - LPUART3_RTS_B

ALT4 - CT4_MAT2

ALT5 - PWM0_A0

ALT6 - FLEXIO0_D14

ALT7 - PWM1_A0

ALT12 - FREQME_CLK_OUT1

--

ALT0 - P3_2

IO Supply - VDD_P3

ALT2 - LPSPI1_PCS1

Pad type - MED

ALT4 - CT4_MAT0

Default - DIS

ALT6 - FLEXIO0_D10

ALT7 - PWM1_X2

A9

ALT0 - P3_1

IO Supply - VDD_P3

ALT1 - TRIG_IN1

Pad type - HD

ALT3 - LPUART3_TXD

Default - DIS

ALT4 - CT_INP17

ALT5 - PWM0_B0

ALT6 - FLEXIO0_D9

ALT7 - PWM1_X1

ALT12 - FREQME_CLK_OUT0

A8

ALT0 - P3_0

IO Supply - VDD_P3

ALT1 - TRIG_IN0

Pad type - HD

ALT3 - LPUART3_RXD

Default - DIS

ALT4 - CT_INP16

ALT5 - PWM0_A0

ALT6 - FLEXIO0_D8

ALT7 - PWM1_X0

D4,D5,D6,E6,F5,F 6

IO Supply - VDD_P3

G5

IO Supply - VDD_P3

Table continues on the next page...

Pinout
Alternate Functions
VDD SYS - WUU0_IN22

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

73 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

VDD

E5,F6,H8,J9

--

P0_0

A12

76

P0_1

C11

77

P0_2

C10

78

P0_3

B10

79

P0_6

A10

80

A14xA15x BGA64

Pinmux Assignment

Pad Settings

G3

IO Supply - VDD

B8

ALT0 - P0_0

IO Supply - VDD

ALT1 - TMS/SWDIO

Pad type - MED

ALT2 - LPUART0_RTS_B Default - ALT1

ALT3 - LPSPI0_PCS0

ALT4 - CT_INP0

ALT6 - FLEXIO0_D0

B7

ALT0 - P0_1

IO Supply - VDD

ALT1 - TCLK/SWCLK

Pad type - MED

ALT2 - LPUART0_CTS_B Default - ALT1

ALT3 - LPSPI0_SDI

ALT4 - CT_INP1

ALT6 - FLEXIO0_D1

B6

ALT0 - P0_2

IO Supply - VDD

ALT1 - TDO/SWO

Pad type - MED

ALT2 - LPUART0_RXD

Default - ALT1

ALT3 - LPSPI0_SCK

ALT4 - CT0_MAT0

ALT5 - UTICK_CAP0

ALT6 - FLEXIO0_D2

ALT10 - I3C0_PUR

A6

ALT0 - P0_3

IO Supply - VDD

ALT1 - TDI

Pad type - MED

ALT2 - LPUART0_TXD

Default - ALT1

ALT3 - LPSPI0_SDO

ALT4 - CT0_MAT1

ALT5 - UTICK_CAP1

ALT6 - FLEXIO0_D3

ALT8 - CMP0_OUT

C7

ALT0 - P0_6

IO Supply - VDD

ALT1 - ISPMODE_N

Pad type - SLOW

ALT2 - LPI2C0_HREQ

Default - ALT1

ALT3 - LPSPI0_PCS1

ALT4 - CT_INP2

ALT6 - FLEXIO0_D6

ALT8 - CMP1_OUT

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

Pinout
Alternate Functions
ISP - UART_RXD
ISP - UART_TXD ANALOG CMP1_IN1/ADC0_A14 ISP - ISPMODE_N ANALOG - ADC0_A15
74 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

VDD VSS
P0_16

E5,F6,H8,J9

81

D4,D10,F7,G2,G6, 82 G8,K4,K10,M12

D9

83

P0_17

D8

84

P0_18

C8

85

P0_19

A8

86

P0_20

B8

87

P0_21

B7

88

A14xA15x BGA64

Pinmux Assignment

ALT12 - CLKOUT

G3

D4,D5,D6,E6,F5,F 6

C5

ALT0 - P0_16

ALT2 - LPI2C0_SDA

ALT3 - LPSPI0_PCS2

ALT4 - CT0_MAT0

ALT5 - UTICK_CAP2

ALT6 - FLEXIO0_D0

ALT10 - I3C0_SDA

C3

ALT0 - P0_17

ALT2 - LPI2C0_SCL

ALT3 - LPSPI0_PCS3

ALT4 - CT0_MAT1

ALT5 - UTICK_CAP3

ALT6 - FLEXIO0_D1

ALT10 - I3C0_SCL

--

ALT0 - P0_18

ALT2 - LPI2C0_SCLS

ALT4 - CT0_MAT2

ALT6 - FLEXIO0_D2

ALT8 - CMP0_OUT

--

ALT0 - P0_19

ALT2 - LPI2C0_SDAS

ALT4 - CT0_MAT3

ALT6 - FLEXIO0_D3

ALT8 - CMP1_OUT

--

ALT0 - P0_20

ALT3 - LPUART0_RXD

ALT4 - CT_INP0

ALT6 - FLEXIO0_D4

--

ALT0 - P0_21

ALT3 - LPUART0_TXD

ALT4 - CT_INP1

Table continues on the next page...

Pad Settings
IO Supply - VDD IO Supply - VDD IO Supply - VDD Pad type - HD+I3C Default - DIS
IO Supply - VDD Pad type - HD Default - DIS
IO Supply - VDD Pad type - SLOW Default - DIS
IO Supply - VDD Pad type - SLOW Default - DIS
IO Supply - VDD Pad type - SLOW Default - DIS
IO Supply - VDD Pad type - SLOW Default - DIS

Pinout
Alternate Functions
ANALOG - NVM_TM0 VDD SYS - WUU0_IN2
ANALOG - NVM_TM1
ANALOG - ADC0_A8 ANALOG - ADC0_A9 ANALOG - ADC0_A10 ANALOG - ADC0_A11

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

75 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

P0_22

B6

89

P0_23

A6

90

P1_0

C6

91

P1_1

C5

92

P1_2

C4

93

P1_3

A4

94

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT6 - FLEXIO0_D5

--

ALT0 - P0_22

IO Supply - VDD

ALT3 - LPUART0_RTS_B Pad type - SLOW

ALT4 - CT_INP2

Default - DIS

ALT5 - CT0_MAT0

ALT6 - FLEXIO0_D6

--

ALT0 - P0_23

IO Supply - VDD

ALT3 - LPUART0_CTS_B Pad type - SLOW

ALT4 - CT_INP3

Default - DIS

ALT5 - CT0_MAT1

ALT6 - FLEXIO0_D7

A5

ALT0 - P1_0

IO Supply - VDD

ALT1 - TRIG_IN0

Pad type - MED+I2C

ALT2 - LPSPI0_SDO

Default - DIS

ALT3 - LPI2C1_SDA

ALT4 - CT_INP4

ALT5 - CT0_MAT2

ALT6 - FLEXIO0_D8

B5

ALT0 - P1_1

IO Supply - VDD

ALT1 - TRIG_IN1

Pad type - MED+I2C

ALT2 - LPSPI0_SCK

Default - DIS

ALT3 - LPI2C1_SCL

ALT4 - CT_INP5

ALT5 - CT0_MAT3

ALT6 - FLEXIO0_D9

B4

ALT0 - P1_2

IO Supply - VDD

ALT1 - TRIG_OUT0

Pad type - MED

ALT2 - LPSPI0_SDI

Default - DIS

ALT3 - LPI2C1_SDAS

ALT4 - CT1_MAT0

ALT5 - CT_INP0

ALT6 - FLEXIO0_D10

ALT11 - CAN0_TXD

B3

ALT0 - P1_3

IO Supply - VDD

ALT1 - TRIG_OUT1

Pad type - MED

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

Pinout
Alternate Functions
ANALOG - ADC0_A12
ANALOG - ADC0_A13
ISP - SPI_SDO ANALOG ADC0_A16/CMP0_IN3 VDD SYS WUU0_IN6/LPTMR0_ALT3
ISP - SPI_SCK ANALOG ADC0_A17/CMP1_IN3
ISP - SPI_SDI ANALOG - ADC0_A18
ISP - SPI_PCS ANALOG ADC0_A19/CMP0_IN1
76 / 88

NXP Semiconductors

Table 46. Pinout (continued)

Pin Name

A14xA15x BGA112

A14xA15x LQFP100

VDD VSS
P1_4

E5,F6,H8,J9

95

D4,D10,F7,G2,G6, 96 G8,K4,K10,M12

B4

97

P1_5

B3

98

P1_6

B2

99

P1_7

A2

100

A14xA15x BGA64

Pinmux Assignment

Pad Settings

ALT2 - LPSPI0_PCS0 ALT3 - LPI2C1_SCLS ALT4 - CT1_MAT1 ALT5 - CT_INP1 ALT6 - FLEXIO0_D11 ALT11 - CAN0_RXD

Default - DIS

G3

IO Supply - VDD

D4,D5,D6,E6,F5,F 6

IO Supply - VDD

A3

ALT0 - P1_4

IO Supply - VDD

ALT1 - FREQME_CLK_IN0 Pad type - MED

ALT2 - LPSPI0_PCS3

Default - DIS

ALT3 - LPUART2_RXD

ALT4 - CT1_MAT2

ALT6 - FLEXIO0_D12

A2

ALT0 - P1_5

IO Supply - VDD

ALT1 - FREQME_CLK_IN1 Pad type - MED

ALT2 - LPSPI0_PCS2

Default - DIS

ALT3 - LPUART2_TXD

ALT4 - CT1_MAT3

ALT6 - FLEXIO0_D13

A1

ALT0 - P1_6

IO Supply - VDD

ALT1 - TRIG_IN2

Pad type - MED

ALT2 - LPSPI0_PCS1

Default - DIS

ALT3 - LPUART2_RTS_B

ALT4 - CT_INP6

ALT5 - CT4_MAT0

ALT6 - FLEXIO0_D14

ALT11 - CAN0_TXD

B1

ALT0 - P1_7

IO Supply - VDD

ALT1 - TRIG_OUT2

Pad type - MED

ALT3 - LPUART2_CTS_B Default - DIS

ALT4 - CT_INP7

ALT5 - CT4_MAT1

ALT6 - FLEXIO0_D15

ALT11 - CAN0_RXD

Pinout
Alternate Functions VDD SYS - WUU0_IN7
ANALOG ADC0_A20/CMP0_IN2 VDD SYS - WUU0_IN8
ANALOG ADC0_A21/CMP1_IN2
ANALOG - ADC0_A22
ANALOG - ADC0_A23 VDD SYS - WUU0_IN9

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

77 / 88

NXP Semiconductors
NOTE · +I3C in Pad Type represents that strong pull up resistor is implemented on the pin. PV bit is implemented in
Pin Control register of the pin. · +I2C_FILT in Pad Type represents that I2C filter is implemented on the pin. PFE bit is implemented in Pin
Control register of the pin. · HD in Pad Type represents that the pin can support up to 20mA drive strength. I2C filter is implemented on
the pin. PFE bit is implemented in Pin Control register of the pin. · 5VTOL in Pad Type represents that the pin is 5V tolerant · DIS in default column represents that the pin's input buffer is disabled by default · RST pads support passive filter and 1M ohm pull resistor. PFE and PV bits are implemented in Pin Control
register of the pin. · PE, PS, SRE, ODE and DSE are supported in Pin Control register of all types of IO. · 5VTol and HD pads support two DSE bits in Pin Control register of the pin. · PWM1, OpAMP and DAC are not available in MCXA145 and MCXA146. · In LQFP100, BGA112 and BGA64, the ISPMODE_n pin is on P0_6. In 64LQFP and smaller pin count
package, ISPMODE_n pin is on P3_29. · SLOW in Pad Type represents the IO supports 25 MHz. MED in Pad Type represents the Io supports 50 MHz.

Pinout

6.2 MCXA156, A155, A154, A146, A145, A144 Pinout diagram
The pinout diagrams are provided in an Excel file attached to this document: 1. Click the paperclip symbol on the left side of the PDF window. 2. Double-click on the Excel file to open it. 3. Select the respective package tab.
Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, refer to the "Pinout" tab in the Excel file.

6.3 Recommended connection for unused analog and digital pins
Table 47 shows the recommended connections for pins if those pins are not used in the customer's application

Table 47. Recommended connection for unused interfaces

Pin Type

Pin Function

Recommendation

Comments

Power

VDD

Must be powered

VDD is the IO supply of P0,P1,P2 and P4, and supplies internal modules including Flash, CMP, and etc. It must be on.

Power

VDD_P3

Must be powered

VDD_P3 is the IO supply of P3. It must be ramp up together with or after VDD. If want to shut down VDD_P3, must assert the isolation in SPC EVD_CFG register before shut down VDD_P3 in Active mode.

Power

VDD_ANA

Must be powered

VDD_ANA must be same level with VDD, and ramps up together with VDD_ANA

Power

VDD_USB

Tie to ground through a 10 k resistor if VDD_

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

78 / 88

NXP Semiconductors

Ordering parts

Table 47. Recommended connection for unused interfaces (continued)

Pin Type

Pin Function

Recommendation

Comments

USB is an independent pin in the package version used

Power

VREFH

Always connect to VDD_ANA potential

Always connect to VDD_ANA potential

Power

VREFL

Always connect to VSS Always connect to VSS potential potential

Power

VSS_ANA

Always connect to VSS Always connect to VSS potential potential

Power

VSS_USB

Always connect to VSS Always connect to VSS potential potential

Analog/non-GPIO

ADCn_x

Float

Analog/non-GPIO

ADCn_x/DACn_OUT Float

Analog/non-GPIO

EXTAL

Float

Analog/non-GPIO

XTAL

Float

Analog output - Float

Analog/non-GPIO

USB0_DP

Float

Float

Analog/non-GPIO

USB0_DM

Float

Float

GPIO/Analog

Px/ADCn_x

Float

Float (default is analog input)

GPIO/Analog

Px/CMPn_INx

Float

Float (default is analog input)

GPIO/Digital

JTAG_TCLK

Float

Float (default is JTAG with pulldown)

GPIO/Digital

JTAG_TDI

Float

Float (default is JTAG with pullup)

GPIO/Digital

JTAG_TDO

Float

Float (default is JTAG with pullup)

GPIO/Digital

JTAG_TMS

Float

Float (default is JTAG with pullup)

GPIO/Digital

Px

Float

Float (default is disabled)

7 Ordering parts

7.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers: MCX A146
NOTE For complete list of Orderable part numbers, please refer Table 1
8 Part identification
Part numbers for the device have fields that identify the specific part. Use the values of these fields to determine the specific part.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

79 / 88

NXP Semiconductors

Part identification

8.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

8.2 Part number format
Part numbers for this device have the following format: B PS F C D FS T PG SR PT

Table 48. Part number fields descriptions

Field

Description

B

Brand

PS

Product series name

F

Family

C

Core Features

FS

Flash Size

T

Junction Temperature range (°C)

PG

Package

SR

Silicon Revision

PT

Package Type

· MCX

Values

·A

· 1 = First Device, Smallest Die size · 2 = 2nd Device w Always On Domain · 3 = 3rd Device w Advance Analog

· 4 = 48 MHz, Motor PWM, USB FS · 5 = 96 MHz, Motor PWM, USB FS

· 1 = 32 KB · 2 = 64 KB · 3 = 128 KB · 4 = 256 KB · 5 = 512 KB · 6 = 1024 KB · 7=2M

· V = ­40 to 125

· LL = LQFP100 · MP = LFBGA64 · PJ = VFBGA112

· A = Initial Mask set · B = 1st Major spin · C = 2nd Major spin

· R = Tape and Reel · T = Tray

8.3 Example
This is an example part number:

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

80 / 88

NXP Semiconductors

MCXA146VLH

8.4 Small package marking

8.4.1 Package marking information

Table 49. Package marking

LQFP100 14*14

First line

AAAAAAAAAA

Second line

MMMMM

Third line

XXXXYYWWXX

LFBGA64 5*5 AAAAAA MMMMM XXYWXX

Terminology and guidelines
VFBGA112 7*7 AAAAAA MMMMM XXXYWXX

Identifier a m y w x

Description Part number code, refer to Ordering Information Mask set Year Work week NXP internal use

9 Terminology and guidelines

9.1 Definitions
Key terms are defined in the following table:

Term Rating

Definition
A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:
· Operating ratings apply during operation of the chip. · Handling ratings apply when the chip is not powered.
NOTE The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.

Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip

Operating behavior

A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions

Typical value

A specified value for a technical characteristic that:

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

81 / 88

NXP Semiconductors

Terminology and guidelines

Term

Table continued from the previous page...
Definition
· Lies within the range of values specified by the operating behavior · Is representative of that characteristic during operation when you meet the typical-value
conditions or other specified conditions
NOTE Typical values are provided as design guidelines and are neither tested nor guaranteed.

9.2 Examples

9.3 Typical-value conditions
Typical values assume you meet the following conditions (or other conditions as specified):

Symbol

Description

Value

Unit

TA

Ambient temperature

25

°C

VDD

Supply voltage

3.3

V

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

82 / 88

NXP Semiconductors

Terminology and guidelines

9.4 Relationship between ratings and operating requirements

Fatal range

Operating rating (min.)

Operating requirement (min.)

Operating requirement (max.)

Operating rating (max.)

Degraded operating range Normal operating range Degraded operating range

Fatal range

Expected permanent failure

- No permanent failure - Possible decreased life - Possible incorrect operation

- No permanent failure - Correct operation

- No permanent failure - Possible decreased life - Possible incorrect operation

Expected permanent failure

­



Operating (power on)

Fatal range

Handling rating (min.)

Expected permanent failure

­

Handling range No permanent failure
Handling (power off)

Handling rating (max.) Fatal range
Expected permanent failure


9.5 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements: · Never exceed any of the chip's ratings. · During normal operation, don't exceed any of the chip's operating requirements. · If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.
9.6 Specification Test Methods
Each specification is tested using one of these methods.

Code P I
C L

Method

Description

Production direct

On every chip during production, testing the specification

Production indirect

On every chip during production, testing parts of a module that affect whether the chip meets the specification but not testing the specification itself

Characterization on a production tester
Characterization on lab equipment or a nonproduction tester

Measuring a statistically significant number of sample chips across process (matrix lot), voltage, and temperature

Table continues on the next page...

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

83 / 88

NXP Semiconductors

Revision History

Code
D O

Table continued from the previous page...

Method

Description

NOTE Typical values are not necessarily characterized across process.

Guaranteed by design Other

Specification based on scientific and engineering principles
Using methods such as:
· Performing silicon simulations
· Performing package thermal simulations
· Calculating specifications using reliability data

10 Revision History

The following table provides a revision history for this document.

Table 50. Revision History

Rev. No.

Date

5

July 2024

Substantial Changes · Initial public release

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

84 / 88

NXP Semiconductors
Legal information

Legal information

Data sheet status
Document status[1][2] Objective [short] data sheet
Preliminary [short] data sheet Product [short] data sheet

Product status[3] Development
Qualification Production

Definition This document contains data from the objective specification for product development. This document contains data from the preliminary specification. This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design. [2] The term 'short data sheet' is explained in section "Definitions". [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices.
The latest product status information is available on the Internet at URL https://www.nxp.com.

Definitions
Draft -- A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.
Short data sheet -- A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification -- The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers
Limited warranty and liability -- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes -- NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use -- NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

85 / 88

NXP Semiconductors
Applications -- Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.
Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale -- NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.
No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
Hazardous voltage -- Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.

Legal information
Bare die -- All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.
NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.
All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.
AEC unqualified products -- This product has not been qualified to the appropriate Automotive Electronics Council (AEC) standard Q100 or Q101 and should not be used in automotive applications, including but not limited to applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.
Quick reference data -- The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
ESD protection devices -- These products are only intended for protection against ElectroStatic Discharge (ESD) pulses and are not intended for any other usage including, without limitation, voltage regulation applications. NXP Semiconductors accepts no liability for use in such applications and therefore such use is at the customer's own risk.
Export control -- This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

86 / 88

NXP Semiconductors
Suitability for use in non-automotive qualified products -- Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.
Translations -- A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.
Security -- Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.
NXP B.V. -- NXP B.V. is not an operating company and it does not distribute or sell products.
Trademarks
Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.
NXP -- wordmark and logo are trademarks of NXP B.V.

Legal information
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, Vision, Versatile -- are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.
EdgeLock -- is a trademark of NXP B.V.
I2C-bus -- logo is a trademark of NXP B.V.
MCX -- is a trademark of NXP B.V.

Data Sheet: Technical Data

MCXA156, A155, A154, A146, A145, A144 Data Sheet, Rev. 5, July 2024

87 / 88

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2024.

All rights reserved.

For more information, please visit: https://www.nxp.com Date of release: July 2024
Document identifier: MCXAP100M96FS6


AH XSL Formatter V7.1 MR4 for Linux64 : 7.1.5.52097 (2021-08-03T13:31 09) Antenna House PDF Output Library 7.1.1688