KLINGER logoLUGB Vortex Flow Meter
User Manual KLINGER logo

Vortex Flowmeter Instruction

Vortex Flowmeter is on the principle of Karman street, to measure liquid, gas and vapour even turbid liquid including micro grain and impurity.
Applications: petroleum, chemical industry, paper making, metallurgy, electric force, environmental protection, food industry and etc.

Working Principle

LUGB & LUCB Vortex flowmeter work on the principle of generatedvortex and relation between vortex and flow by theory of Karman and Strouhal, which specialize in measurement of steam, gas and liquid of lower viscosity.
As shown in below illustration, medium flows through bluff body and then vortex is generated, vortices are alternately formed on both sides with opposite directions of rotation, Vortices frequency is directly proportional to medium velocity. Through numbers of vortices that is measured by sensor head,medium velocity is calculated, plus flowmeter diameter, final volumeflow come out. KLINGER LUGB Vortex Flow Meter - fig 1

Computational formula as follows:
F=St*V/md ………………………………………………..Formula 1
Q=3600*F/K ………………………………………….Formula 2
M=Q*p ………………………………………………………..Formula 3
Among Formula:

  • F Fluid flow through bluff body generate frequency of vortex ( Unit : Hz)
  • St… Strouhal constant ( zero dimension )
  • V Mean velocity of fluid inside the pipeline ( Unit : m/s)
  • m The ratio between Lune Circulation area of bluff body at both sides and cross-sectional area ( Unit: zero dimension )
  • d Upstream face width of bluff body inside vortex flowmeter ( Unit : m )
  • D Inside diameter (ID) of vortex flowmeter ( Unit : m )
  • Q Instantaneous volume flow ( Unit : m3 / h )
  • K Instrument coefficient of vortex flowmeter ( Unit : pulses / m3 )
  • M Instantaneous mass flow ( Unit : kg/ h ) Fluid density ( Unit : kg/ m3 )

Note: vortex flowmeter “K” coefficient is corresponding with one diameter, the exact “K” value should be calibrated in practice. Viz. one cubic meter fluid through sensor output numbers of pulse under working condition.

Technical Parameters

III. I Physical Parameters
Medium: liquid , gas ( including natural gas ), steam ( saturated steam and superheated steam )
Normal diameter LUGB Pipeline-version: DN10-DN500 LUCB insertion-version: DN200-DN2000
Accurate: LUGB Pipeline-version: 1.0% 1.5% (0.2% & 0.5% supply by negotiation)
LUCB insertion-version: 2.5% (1.0%&1.5% supply by negotiation)
REFERENCE FLOW RANGE AS PER BELOW DIAGRAMS.
Velocity scope of flow about intelligent digital filtering vortex flowmeter Liquid (0.30 m/s…10 m/s), Gas/steam (3.0 m/s…90 m/s)
Normal pressure:
LUGB pipeline-version wafer connection: DN10-DN500 ( priority PN2.5MPa )
LUGB pipeline-version flange connection: DN10-DN80 ( priority PN2.5MPa )
DN100-DN200 ( priority PN1.6MPa ) DN250-DN500 ( priority PN1.0MPa )
LUCB insertion-version attachment flange: DN200-DN2000 ( priority PN1.6MPa )
Note : wafer-version vortex flowmeter assemble made-to-order flanges, when flowmeter leave factory including companion flanges. We are able to provide GB/T9119-2000, ANSI/ASME, DIN. JIS. KS…. Standard flanges (GB-China standard priority), pressure class recommend priority level.
Medium temperature LUGB pipeline-version: -40°C – +160°C +420°C -40°C – +280°C-40°C – +350°C-40°C-
LUCB insertion-version:-40°C – +160°C -40°C- +200°C
Ambient conditions:
Ambient temperature: -20t-+60t(normal ); -20t- +40r(explosion-proof ) Relative humidity (RH): 5% – 95%RH
Atmospheric Pressure: 86kPa -106kPa
Electrical Interface: M20*1.5 internal thread (priority). Protection level : IP65 (IP67, IP68 supply by negotiation)
Explosion-proof class: Intrinsic safety Exia II CT4; Exib II CT4;Flame-proof Exd II CT6
Main body material: stainless steel (other material supply by negotiation) Pressure lose: AP,c.1.2 PI V2 (AP unit is Pa,P unit is kg/m3, V unit is m /s)
Calibration method : all flowmeters should be calibrated in the way of lower reaches taking pressure before flowmeters leave factory.
III. I. I
LUGB and LUCB Vortex Flowmeter configuration & size
LUGB wafer connection vortex flowmeter: special companion flanges.
LUGB flange connection vortex flowmeter: see appendix 3 & 4 flanges size of configuration. we are able to provide GB (China); ANSI; DIN; JIS and etc.
LUCB insertion-version vortex flowmeter: flanges choose DN100 standard flange
Dimensions of vortex flowmeter as per fig2 and figlKLINGER LUGB Vortex Flow Meter - fig 2LUGB and LUCB vortex flowmeter max configuration size fig. 1 (unit: mm)

Items H1′ H1b Hi` D1 L1 HT HZ’ HT L2
DN15 525 445 355 45 65 540 460 370 170
DN20 531 451 361 58 65 545 465 375 170
DN25 531 451 361 58 65 550 470 380 250
DN32 531 451 361 58 65 563 483 393 250
DN40 529 449 359 85 70 578 498 408 250
DN50 541 461 371 99 70 590 510 420 250
DN65 558 478 388 118 70 612 532 442 250
DN80 573 493 403 132 70 625 545 455 280
DN100 595 515 425 156 70 644 564 474 300
DN125 621 541 451 184 70 674 594 504 350
DN150 647 567 477 211 70 703 623 533 350
DN200 705 625 535 266 98 757 677 587 400
DN250 757 677 587 319 114 810 730 640 450
Dn300 808 728 638 370 130 860 780 690 500

P.LUCB Insertion-Vortex Flowmeter ‘s Connection between amplifier and sensor
1.stop medium flow to dismantle
2.keep medium flow to dismantle
Q.The mode of wave filtering
1.common mode
2.Intelligent Digital filtering mode
R.LUCB Insertion-version Vortex flanges pressure class
1.PN1.6Mpa ( priority)
2.PN2.5MPa (pressure class >2.5 MPa supply by negotiation)
Attention: integrated P/T compensation Compact vortex apply in steam measurement, if designing drainage receiver configuration.Then Horizontal Installation is required. If vertical installation or leaning installation condensing drainage loop receiver is required.
Notes : each functions see appendix one.
III. I . II
LUGB pipeline-version vortex flowmeter measurable flow range (refer to Fig2-5)
Notes : when choose vortex flowmeter that keep medium flow with dismountable sensor head or vortex flowmeter with accuracy is ±0.5%, the lower limit of flow range is 1.5 times of corresponding value from fig 2-4, upper limit multiplied by 0.8 LUGB vortex flowmeter measurable liquid of different density corresponding with flow range under working condition fig. 2

Liquid flow range
Density,(kg/m”) 500 600 700 800 900 1000 1200 1400 1600 1800 Qmax
DW Different density liquid, the mini flow ate Qmin(Unit:m3/h) Unit:r0h)
DN15 0.66 0.55 0.52 0.41 0.4 0.39 0.33 0.31 0.29 0.26 4.5
DN20 1.27 1.1 1.08 0.99 0.88 0.66 0.64 0.62 0.59 0.57 8
DN25 1.43 1.32 1.21 1.16 1.1 0.99 0.9 0.84 0.78 0.75 12
DN32 2.09 1.98 1.87 1.78 1.72 1.65 1.6 1.49 1.32 1.1 20
DN40 3.85 3.52 3.3 3.08 2.86 2.51 2.42 2.31 2.2 2.09 32
DN50 5.17 4.73 4.29 4.07 3.96 3.85 3.3 3.08 2.86 2.75 50
DN65 7.81 7.15 6.93 6.82 6.71 6.6 5.5 4.95 4.62 4.4 84
DN80 12.1 11 10.56 10.12 10.01 9.9 8.8 8.36 7.7 6.6 127
DN100 22 19.8 18.7 17.6 16.5 15.4 14.3 13.2 11 9.9 198
DN125 30.8 28.6 27.5 26.4 25.3 24.2 23.1 22 19.8 15.4 310
DN150 57.2 55 49.5 46.2 39.6 35.2 33 30.8 28.6 22 445
DN200 108.9 96.8 85.8 77 68.2 62.7 58.3 55 47.3 38.5 791
DN250 202.4 181.5 165 143 121 97.9 88 79.2 74.8 60.5 1237
DN300 275 242 220 198 176 140.8 132 121 107.8 84.7 1780

LUGB Vortex flowmeter measure gas of different density corresponding with flow range under standard condition fig.3

gas flow range
Density(kg/m’) 0.5 0.8 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 12 20 Omax
DW Different density liquid, the mini flow rate Omin(Unit:m1/h) (Unit:m’Iti)
Dn15 5.28 3.85 3.52 3.08 2.97 2.86 2.75 2.64 2.53 2.42 2.31 2.2 38
DN20 9.02 7.26 5.5 5.28 5.17 4.95 4.73 4.4 4.29 4.18 4.07 3.3 67
DN25 11 9.9 8.69 8.36 7.92 7.59 7.26 6.82 6.49 5.94 5.5 4.95 100
DN32 28.6 19.8 15.4 14.52 14.08 13.42 13.2 12.87 12.32 11.99 11.11 9.9 170
DN40 41.8 27.5 22 20.9 19.8 18.7 17.6 16.5 15.4 14.3 13.2 11 300
DN50 52.8 44 34.1 31.9 30.8 28.6 25.3 24.2 23.1 22 19.8 13.2 500
DN65 88 72.6 58.3 49.5 48.4 46.2 44 41.8 38.5 33 28.6 19.8 780
DN80 143 110 88 83.6 77 72.6 68.2 63.8 55 50.6 41.8 30.8 1200
DN100 198 176 132 121 110 99 88 77 68.2 61.6 52.8 38.5 2000
DN125 308 275 209 187 171.6 159.5 148.5 132 110 99 83.6 60.5 2900
DN150 418 341 308 286 264 242 220 198 176 154 121 93.5 4100
DN200 880 660 550 528 473 440 418 396 363 330 297 220 7500
ON250 1100 968 869 803 748 682 649 572 528 462 440 330 12500
Dn300 1430 1309 1254 1166 1078 990 902 836 770 682 638 440 16500

Conversion formula o gas volume flow under working condition & volume flow under standard condition:
Q (Ambient) =0 (Standard) *P (Standard) *Z” (273.15+T (Ambient) ) / (P (Ambient) +P (Ambient) )* (273.15+T (Standard))]FORMULA 4
Among formula :
Q (Ambient) — volume flow under working condition ( unit: m3/h)
(Ambient) — gas pressure under working condition ( unit: Mpa) T (Ambient) — gas temperature under working condition ( unit: “C ) Z gas relative compressibility Z=Zs /ZN (zero dimension)
(Standard) — volume flow under standard condition (unit: m3/h )
(Standard) — Atm press under standard condition (take absolute pressure =0.101325 MPa)
T (Standard) — temperature under standard condition ( 0°C or 20°C )
(Local) — local Atm press ( unit: Mpa )
LUGB Vortex flowmeter measure saturated steam of different density corresponding with flow range under working condition fig.4

Mpa 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1 1.2 1.6 2 Unit
°C 120 134 144 152 159 165 175 180 184 192 204 215
Kg rn’ 1.12 1.67 2.19 2.68 3.18 3.67 4.62 5.16 5.63 6.67 8.52 10.57
DW Range Different steam density corresponding with flow range
mm
15 Omin 3.85 5.67 7.41 9.12 11 12.54 15.95 17.93 19.36 22.55 29.37 36.19 kg/h
Qmax 35 51.5 67.4 83 100 115 146 163 176 205 268 329
20 Omin 6.84 10.07 13.09 16.17 19.58 22.44 28.49 32.01 34.43 40.04 52.25 64.35
Qmax 62.2 91.6 120 147 178 204 259 291 313 365 476 586
25 Omin 10.68 15.73 20.46 25.3 30.69 34.98 44.55 49.94 53.79 62.59 81.73 100.54
Qmax 97.1 143 187 230 279 318 405 454 489 569 743 914
32 Omin 17.49 25.63 33.66 41.47 50.27 57.42 72.93 81.95 88.11 102.62 133.1 163.9
Qmax 159 234 306 378 457 522 664 745 802 933 1218 1499
40 Omin 25.3 36.3 47.3 58.3 70.4 80.3 102.3 110 121 143 187 231
Qmax 300 440 575 710 860 980 1250 1400 1500 1750 2280 2810
50 Omin 38.5 38.5 57.2 69.3 83.6 96.8 122.1 137.5 143 165 220 275
()max 550 460 680 845 1020 1170 1480 1670 1800 2100 2730 3360
65 Omin 64.9 95.7 125.4 150.7 182.6 209 264 303.6 326.7 379.5 495 605
Qmax 790 1160 1520 1835 2222 2540 3230 3620 3970 4620 6030 7422
80 Omin 98.45 144.1 189.2 233.2 282.7 319 407 451 495 572 748 924
Qmax 1195 1760 2300 2800 3400 3900 4900 5580 6000 6999 9100 11000
100 Omin 0.15 0.22 0.3 0.36 0.44 0.51 0.64 0.72 0.77 0.9 1.1 1.43 t/h
()max 1.87 2.75 3.6 4.43 5.36 6.12 7.78 8.73 9.4 11 14.3 17.6
125 Omin 0.24 0.35 0.46 0.56 0.68 0.78 1 1.1 1.21 1.41 1.84 2.2
Qmax 2.91 4.29 5.62 6.91 8.37 9.56 12 13.6 14.7 17 22.3 27.4
150 Omin 0.35 0.51 0.66 0.81 0.99 1.13 1.44 1.62 1.74 2.02 2.64 3.26
Qmax 4.2 6.18 8.09 9.96 12 13.8 17.5 19.6 21.1 24.6 32.1 39.5
200 Omin 0.62 0.9 1.19 1.45 1.76 2.01 2.56 2.87 3.09 3.61 4.71 5.8
Qmax 7.5 11 14.4 17.7 21.4 24.5 31.1 35 37.6 43.7 57.1 70.3
250 Omin 0.96 1.41 1.85 2.2 2.76 3.16 4 4.5 4.84 5.61 7.36 9.02
Qmax 11.6 17 22 27.6 33 38 48 54 58.7 68 89 110
300 Omin 1.38 2.04 2.66 3.28 3.97 4.54 5.78 6.48 6.97 8.12 10.56 12.98
Qmax 16.7 24.7 32 39 48 55 70 78 84 98 128 158

Superheated Steam fig.5 (unit : kg/m3 )

ITEM 130°C 140°C 150°C 160°C 170°C 180°C 190°C 210°C 220°C 250°C 300°C 360°C 420°C
0.10MPa 1.1 1.07 1.04 1.02 0.99 0.97 0.95 0.91 0.89 0.83 0.76 0.69 0.63
0.15MPa 1.38 1.34 1.34 1.28 1.24 1.21 1.19 1.13 1.11 1.04 0.95 0.86 0.78
0.26MPa 1.96 1.9 1.85 1.81 1.76 1.72 1.64 1.61 1.51 1.37 1.24 1.13
0.30MPa 2.12 2.067 2.01 1.96 1.92 1.83 1.79 1.68 1.53 1.38 1.26
0.36MPa 2.46 2.39 2.33 2.27 2.21 2.11 2.06 1.94 1.76 1.59 1.45
0.40MPa 2.61 2.54 2.47 2.41 2.3 2.25 2.11 1.91 1.73 1.57
0.50MPa 3.16 3.07 2.99 2.91 2.77 2.71 2.54 2.3 2.07 1.89
0.60MPa 3.61 3.51 3.42 3.25 3.18 2.97 2.69 2.42 2.21
0.70MPa 4.05 3.94 3.74 3.65 3.41 3.09 2.78 2.53
0.80MPa 4.59 4.46 4.23 4.13 3.85 3.48 3.13 2.84
0.90MPa 5.15 4.99 4.73 4.61 4.3 3.88 3.48 3.16
1.00MPa 5.54 5.23 5.09 4.75 4.28 3.84 3.48
1.15MPa 6.37 6 5.84 5.43 4.88 4.37 3.97
1.50MPa 7.87 7.64 7.05 6.3 5.63 5.1
1.65MPa 8.7 8.43 7.76 6.92 6.17 5.59
1.80MPa 9.55 9.24 8.48 7.55 6.72 6.08
2.00MPa 10.36 9.47 8.39 7.45 6.74
2.20MPa 11.51 10.47 9.24 8.2 7.4
2.50MPa 12.02 10.55 9.32 8.39

Several normal gas of density under standard conditionfig. 6 ( unit : kg/m3 )

Tag
Density
Air Hydrogen Oxygen Nitrogen Chlorine Ammonia gas Semi- watergas
1.293 0.0889 1.43 1.251 3.214 0.77 0.836
Tag
Density
Argon Acetylene Methane Ethane Propane Butane Coke-oven gas
1.79 1.017 0.717 1.357 2.005 2.703 0.4849
Tag
Density
Ethylene Propylene Natural gas Coal gas CO CO2
1.264 1.914 0.828 0.802 1.25 1.977

Notes: standard state is absolute pressure 0.101325MPa and temperature 0c
LUCB insertion-version vortex flowmeter measurable flow range under working condition and its calculation. See fig. 7
LUCB insertion-version vortex flowmeter measure liquid of different density corresponding with flow range under working condition. Fig.7

Gas Density p(kg/m3) 1 1-2 2 3 4 6 8 10 15 20 Vmax(m!s)
Vmin(m/s) 5.5 5.2 5 4.8 4.6 4.2 4 3.8 3.6 3.5 55
Liquid Density
p(kg/m3)
500 600 700 800 900 1000 1200 1400 1600 1800 Vmax(m/s)
Vmin(tn/s) 0.96 0.8 0.7 0.66 0.62 0.6 0.56 0.52 0.5 0.45 6

Notes : fig.7 that is accuracy ±2.5% of insertion-version vortex flowmeter flow range.When accuracy is better than ±2.5%, velocity of flow = lower limit of velocity multiplied by coefficient R(R=2-3), the upper limit multiplied by 0.8.
LUCB insertion-version vortex flowmeter measurable medium flow range calculation under working condition.
Gas & liquid : min volume flow formula under working condition Qmin=3600*Vmin*( it
*D2/4)———————————————— Formula 5
Gas & liquid : max volume flow formula under working condition Qmax=3600*Vmax*( n
*D2/4)———————————————— Formula 6
Gas : min volume flow formula under standard condition
QNmin=Qmin *[( Piocal+Pambient) )*(273.15+Tstandard)] Pstandard*Z*(273.15+Tambient)] —-Formula 7
Gas : max volume flow formula under standard condition
QNmax=Qmax *[( Rocal+Pambient) )*(273.15+Tstandard)]/ [P standard*Z*(273.15+Tambient) —— Formula 8 Gas : density formula under working condition
P = p n[( Piocal+Pambient) )*(273.15+Tstandard)]/ [Pstandard*Z*(273.15+Tambient)]– Formula 9
Among ( insertion-version vortex flowmeter) :
Qmin — min volume flow under working condition ( unit : m3/h ) Qmax — max volume flow under working condition ( unit : m3/h )
Vmin — min velocity under working condition ( unit : m/s refer to fig.7)
Vmax — max velocity under working condition ( unit : m/s refer to fig.7)
D nominal diameter of insertion-version vortex flowmeter ( unit : m) it circumference ratio 3.1415926535898
QNmin – gas min volume flow under standard condition ( unit : m3/h)
QNmax – gas max volume flow under standard condition ( unit : m3/h)
T standard — temperature under standard condition, general is 0°C or 20°C. (unit:°C)
T ambient — measurable gas temperature under working condition (unit:°C)
P standard — normal atmospheric pressure ( =0.101325MPa )
P Ambient — measurable gas pressure under working condition (unit : Mpa )
Z measurable fluid relative compressibility Z=Z Ambient/Z standard A gas density under working condition ( unit : kg/m3)
A n—- gas density under standard state ( unit: kg/m3 ; temp is0°C or 20°C, absolute pressure is 0.101325MPal among formula 9 the temperature is the same between
T standard and ID n corresponding temp. Several normal gas density under standard state see fig. 6 )
P local –local atmospheric pressure ( unit : Mpa )
LUCB insertion-version vortex flowmeter Numerical Methods of flow range matching steam measurement:
According to steam temperature and pressure refer to fig.4 & fig.5 then gain exact density’ P ” under working condition.
According to steam density* P ” under working condition, refer to fig.7 then gain max/min velocity of flow under working condition • Vmax/Vmin ” .
According to pipe diameter of insertion-version vortex flowmeter, through Formula 5 and Formula 6 calculate min volume under working condition or max volume.
The finaldensity p “underworkingcondition x QminorQmax = mass flow range .
III. II Electrical Parameter Signal output :

1.Instantaneous flow under working condition corresponding voltage-frequency­pulse output (lower PWL-:.1V, higher PWL?–6V)
2.Instantaneous flow under standard condition corresponding voltage-frequency­pulse output (lower PWL-.1V, higher PWL.-6V)
3.Instantaneous flow under standard condition pulse equivalent output (lower PWL-1V, higher PWL..?-6V)
4.Instantaneous flow under working condition corresponding two-wire or three-wire 4-20mA output (load resistanceLC300 )
5.Instantaneous flow under standard condition corresponding two-wire or three-wire 4-20mA output (load resistance–300 )

Communication interface: RS485 ; HART Display mode:
A . Intelligent numeric alphabetic display type: twin-row numeric alphabetic LCD instantaneous flow rate and totalizer)
Intelligent dot matrix LCD: English 128’64 dot matrix LCD( instantaneous flow rate, totalizer, temperature and pressure under working condition, battery voltage or density under working condition, instantaneous flow rate under working condition, send-out, time, menu modify records, power-off records, etc. )
111.111.1. Menu Display
Turn on power 24VDC, the main menu will display. The main menu has 5 sub-page, which can be displayed & switched by the button (K2).
KLINGER LUGB Vortex Flow Meter - fig 3
Connect the hand operator to the flow meter, and press the button(K1) for several second, then the hand operator starts receiving the data and displaying the main menu. KLINGER LUGB Vortex Flow Meter - fig 4

Menu instruction
Instantaneous flow: display range 0.000-99999999 Total flow: display
Range 0.000-999999999
Remarks: When the total flow is accumulated to 1000000000, it is all cleared and re-accumulated. When the flow unit changes, the total flow value remains at the original value. In this case, please record down the original total flow, then clear it and re­accumulate.
Temperature: display range -50.0…430.0
Gauge pressure/Absolute pressure -0.1000…20.0000MPa
When the unit is MPa, range is -0.1000…20.0000MPa;
Working condition: Display instantaneous volume flow under working condition, range is 0.000-99999999m3/h
Density: 0.000-99999999kg/m3
K-factor: When choose Nm3/h (standard condition), the compression factor will display with medium under working condition, range is 0.000000-9.999999
Input: The frequency value that actually measured by the sensor, range is 0.000- 9000.0Hz Output: Display the corresponding frequency or current output value according to the “output type” setting in the menu
Instrument Temperature: Display inside temperature of amplifier, range is -99.9-+99.9 Upper-limit: when the measurement limitation function open, transmitter will show the cumulative flow over the upper limit, range is 0.000-999999999
Noted: When the upper-limit flow rate up to 1000000000, all the record will be reset and reaccumulate.
Parameter set: Times of parameters setting, range is 0-9999, if up to 10000 times, the value will be re-set.
Menu four: Display current time, total power fail minutes; “system time” will be shown when flow meter turn on
Menu five: Display the power failure record, will save the last 10 times of power failure; “DATE” will be shown when flow meter turn on special display instructions
NULL: No display
B .ERROR: Data errors, check parameter setting or flow meter operation
C.OVERRUN: Data beyond display range
IIII.II.II. Parameter Setting

Parameters could be set KLINGER LUGB Vortex Flow Meter - icon 1by button(K1), KLINGER LUGB Vortex Flow Meter - icon 2 button(K2), KLINGER LUGB Vortex Flow Meter - icon 3button(K3), KLINGER LUGB Vortex Flow Meter - icon 4 button(K4)
1. Button function
K1 button: enter parameter setting and ; setting confirmation
K2 button: Move the cursor to the next position
K3 button: Increase value or function selection
K4 button: return to last menu
Parameter setting
Validation setting
Language
2.Main menu
Press K1 to enter main menu
Press K2 to select each menu, press K1 to enter
3. Main menu of parameters setting
KLINGER LUGB Vortex Flow Meter - fig 5After selecting menu, press K1 to enter password menu, input password; then set each parameter.
Noted: If there is no operating in the parameter setting menu over 30 seconds, the system will automatically exit the “Settings” state. Meanwhile, the setting parameter value is invalid. All the parameters setting will be workable by storage confirmation before exiting
3.1 Parameters Setting Menu 
Initial password: 000000
Parameters Setting Menu (table one)

Menu Menu Content Explanation
LOAD DEFAULT YES or NO Select ‘YES”, press the setting button until the LCD displays Please wait…”, then will display ‘Restore
completed”; select ‘NO’, to enter the next menu.
Default setting  is display “NO”.
APPLICATION LIQUID GAS GAS+P+T HEAT STEAM+P+T SAT.           STEAM+T
SAT. STEAM +P WATER 412+T LIQUID COMP. OIL+P+T NATURAL GAS +P+T       MIXED
GAS+P+T
SIZE 0000- 9999mm
FACTOR UNIT 1/m3,                1/L
K-FACTOR K-FACTOR
LINEAR FLOW
CURVE K- FACTOR
K-factor
setting range: 0.000000-99999999 Linear
frequency modification
setting range: 0.00-9999Hz
Method of linear correction settings please     kindly check chapter 6
FLOW CURVE POI NT 1
K 1
POINT 2
K 2
POINT 10 K 10
FLOW UNIT m3/h,
km3/h ,
I/min,
kg/h.
t/h,
kg/min.
( Nm3/h.
Nkm3/h,
NI/min,
Nm3/min.
Nkm3/min )
m3/h; km3/h; I/min are the volume flow unit under the working condition;
kg/h; t/h; kg/min are mass flow unit;
Nm3/h; Nkm3/h;
NI/min; Nm3/min;
Nkm3/min are gas volume flow
unit
OUTPUT UNSCALE PULS(calibration)
COMP, PULSE 4-20mA
UNSCALE PULSE: only output the frequency pulse before compensation
COMP. PULSE: Output the frequency after correction and compensation
4-20mA: Display and output the 4- 20ma current at the upper and lower limit of output
SCALED FACTOR 0.000000- 99999999 The scaled factor is only workable when output type is “COMP. PULSE Scaled factor should be selected according to the flow rate. For calculation formula, please refer to appendix 3.
HIGH FLOW 0.000000- 99999999 It’s workable under “4-20mA” output
LOW FLOW 0.000000- 99999999
DAMPING 00-99 “LIQUID COMP.” parameter setting
TEMP 1 – 9999-99999’C
FLUID DENSITY 1 0.000000- 99999999kq/m3
TEMP. 2 – 9999-99999r
FLUID DENSITY 2 0.000000- 99999999kg/m3
TEMP. 10 – 9999-999990
FLUID DENSITY 10 0.000000-99999999 kg/m3
Cot MOLE FRACTION 0.000000-99999999 Parameter setting for’
NATRUAL GAS +P+T0O2 MOLE FRACTION” default value 0.006; “H2MOLE FRACTION” default value 0;
“RELATIVE DENSITY”default
value 0.581 “OGR” default
value 40.66MJ/m3
H2 MOLE FRACTION 0.000000-99999999
RELATIVE DENSITY 0.000000-99999999
OCR 0.000000- 99999999MJ/m3
COMPEN SATION
OF COMP. FACTOR
AUTO, MENU
COMP. FACTOR 0.000000-99999999 ” COMPENSATION OF COMP. FACTOR”is available when choose -MENU”
CRITIC AL PRES 0.000000- 99999999MPa ‘GAS +P +T” and “MIXED GAS +P +r parameter setting. COMPENSATION OF COMP. FACTOR”is available when choose “AUTO”
CRITIC AL TEMP 0. 0.000000- 99999999K
GAS PRESSU RE 0.000000-99999999MPa Default value: 0.101325Mpa
STD.TE MP.t• 00-99 Default value: 0 ‘C.
COMPEN SATION OFT AUTO, MENU
TEMP. DATA SET 50-430’L. Temperature compensation model is workable when choose “MENU’:
PRES UNIT MPa . KPA . BAR
COMPENSATION OF P AUTO, MENU
M.P.DA TA SET – 0.1-+20MPa Pressure compensation model is workable when choose” MENU”.
FLUID DENSI TY 99999999KG /M3 0.000000 No compensation model: The density should be under working condition: Gas temperature compensation:The density should be under 0.101325Mpa and standard temp. Petroleum temperature compensation: The       density should be under 0.101325Mpa and20t: woodworking tern
FLOW CUTOFF UNIT Hz Hz, UNIT
CUTOFF DATA 0.000000- 99999999
DATE NO, YES
TIME SETTI NG 00 YY 00 MM 00 DD 00 HH 00 MM The time will not display when choose “NO”.
COMMUNICATION NO 485
DDRESS 001-255 Default: 001
BAUDRA TE 9600; 4800: 2400:1200 Default: 9600
PARITY MODE NO Odd Even Default: NO
STOP BIT 1 BIT, 2 BITS Default: 1 BIT
BACKLI GHT MODE ON,OFF,AUTO
SAVE YES, NO Press SET 2-3 seconds, and exit menu. Choose ”YES”, and the”PARAMETER SAVEdisplays, and returns to the main menu.

Note:
* 1. The above form lists all the menus, but if use different password, some menus will be hidden.
* 2. When enter menu, some value maybe different with original value. The reason comes from non-flushed LCD screen,it’s normal.You could press K2 to recover.
3.2 Total flow reset
*Total Flow reset
*Yes, No
*Total flow reset when power fails
*Yes, No
* “Total flow reset” could clear the total flow and power failing records
*5.3.3 Zero setting
*Setting Method:
*Zero point value: 0053
*Manual setting
* Enter the menu and change the value and save it.
*Notice: Non-professional people are forbidden to change the Zero point manually.
*Auto Zero setting
*1. One Key zero setting: On the main interface, press(K3) until the light is on to enter the auto setting status. When the light off, the setting is finished.
*2. Two key zero setting: Enter the auto setting status first. When the value becomes stable, press (K1), and save setting.
Notice: When setting zero point, please make sure the flow is zero in the pipe.

Installation Instruction

Installation Place and Environment Selection Try to avoid strong power equipment, high-frequency equipment and strong power switchgear.
Try to avoid high-temp thermal source and source of radiant heating; outdoor installation should do some measures of sun-shading and rain shelter.
Try to avoid shock places and corrosion environment ; meanwhile, easy maintenance should be considered. Reasonable and correct installation position. Installation position should avoid strong shock pipeline, or take some measures of shock absorption. Horizontal, vertical and slanting installation. Liquid measuring ensure flow direction from low to high. Gas measuring, direction no required.
When measuring vapor or high-temp gas, flow meter body pillar should be at an angle of 45 Deg with vertical direction.
Grounding requirement. When pipelines without available grounding conditions, a ground-wire is essential between housing and earth. Straight length requirement In order to correct measurement, upstream or downstream of flow meter should obligate enough straight length. No components to effect fluid velocity in upstream of flow meter. All types of straight length installation reference:
LUGB Vortex Flowmeter Straight Length Size Drafts    KLINGER LUGB Vortex Flow Meter - fig 6KLINGER LUGB Vortex Flow Meter - fig 7

Installation and welding of flow meter
LUGB Vortex diameter is accordant to upstream and downstream tubing diameter at installation point; sensor is concentric with pipeline; prohibit gaskets between sensor and flanges bulge out into pipeline. Make sure that the connection end face of insertion-version vortex flowmeter parallel to the pipe axis. Details as per fig.4.
After initial installation, when medium is steam or other high-temp medium, flanges & bolts should be re-tightened when medium full of pipeline. Do heat reservation measures for pipeline in order to protect amplifier.
LUGB Vortex installation & Welding Reference FigureKLINGER LUGB Vortex Flow Meter - fig 8KLINGER LUGB Vortex Flow Meter - fig 9Be attention: concerning P/T compensation integrated vortex flow meter, to avoid high-temp or liner shock damage pressure transmitter, Pressure control valve must be closed before medium is full of pipeline. When medium full of pipeline meanwhile approaching working temperature and pressure, slowly turn on control valve. Pressure tapping and pressure detector should be done heat reservation if flow meter outdoor installation.

Tag

DN Medium Mediumtemp

Function description

Wafer Connection Dn10-500(mm) Gas Liquid
Saturatec steam
SuperheE ted steam
40…+150 °C
40…+280 °C
-40…+350 °C
Flowmeter body material: stainless steel
Wafer type companion flange: forged carbon steel Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation )
Flange Connection
Wafer connection
Patent type
DN25 -500 (mm) -40…+150+
40…+
-40…+280t
-40…+
350t-40…+4200
Flowmeter body material: stainless steel ( other material supply by negotiation ) Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation ) Features : replace sensor head without fluid flow inside pipeline.
Flange connection
Patent type
Flange connection Low flow version equipped dismountable sensor head Flowmeter body material: stainless steel ( other material supply by negotiation )
Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation )
Features :
1.Compare same diameter vortex flowmeter its more lower limit.
Replace sensor head without effect fluid flow inside pipeline.
Flange connection
Low flow version
Wafer version with temp compensation
Dn25- 500
Wafer version ( mm) with Temperature Compensation equipped dismountable sensor head
Saturate steam -100..+220+ Flowmeter body material: stainless steel ( other material supply by negotiation )
Flanges material: forged carbon steel Temperature gauge head: PT100 Max working pressure : 2.5Mpa Features :
1.Special for saturated steam.
Integrated flow and temperature sensor in one.
2.Sensor is dismountable type, replace sensor head without effect fluid flow inside pipeline.
Saturate steam
Saturate steam
Flange connection Integrated temperature with pressure compensation DN25- 500 (mm) Gas Saturated steam
Superheated steam
40…+150oc
– 40…+28 at
40…+35 Oc
Flowmeter body material: stainless steel ( other material supply by negotiation )
Temperature gauge head: Pt100 Pressure gauge head: diffuse silicon pressure sensor. Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation )
Features :
1.Integrated temperature and pressure compensation in one. 2.Sensor is dismountable type. replace sensor head without effect fluid flow inside pipeline.
Flange connection Integrated temperature with pressure compensation equipped dismountable Sensor head 40…+15 Oc
-40…+28 O’C’
40…+35 Oc
-40…+42 0c
Insertion- version with dismountable body need stop medium flow DN200- 2000 (mm) Gas Liquid Saturated steam Superhe ated steam -40…+1 60+

-40…+200+

Flowmeter body material: stainless steel Connection joint: carbon steel Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation ) Features:
1.Stop medium flow is the priority for insertion vortex flowmeter. Its compact conformation and good anti­vibration performance.
No need stop medium flow with dismountable flowmeter body is equipped DN100 glove valve. Do installation, maintenance and replacement without effect medium flow.
Insertion-version with dismountable body no need stop medium now
Submer gible- version vortex flowmeter
Flange-version
Insert version(mm)
Wafer DN10- version 50000(mm) Gas Liquid -40…+15 OC
40…+28 Oc
Flowmeter body and flange material: same
Max working pressure: 2.5Mpa ( over  2.5Mpa supply by negotiation ) Features :
1.Flowmeter sensor is Submergible-version. Appli cation: subsurface and Submergible pipeline. 2.Remote-version: transmitter and sensor is separated installation. (The biggest distance suggest sift.)
 DN25”  500(mm)
DN200-ion-2000

Appendix 2: Configuration Size of Flange Connection Models

KLINGER LUGB Vortex Flow Meter - fig 10

Flange diameter (may Pressure class(MN) Flange standard of connection version
O(mm) K(mm) a(MM) N H(mm) D(mm)
ON10 PN1.01PN1.6/PN2.5 90 60 14 4 14 7.2
0N15 PN1.0/12N1.6/PN2.5 95 65 14 4 14 21.3
ON20 PN1.0/PN1.6/PN2.5 105 75 14 4 16 26.9
0N25 PN1.0/PN1.6/PN2.5 115 85 14 4 16 33.7
0N32 PN1.0/PN1.6/PN2.5 140 100 18 4 18 42.4
0N40 PN1.0/PN1.6/PN2.5 150 110 18 4 18 48.3
ON50 PN1.0/13N1.6./PN2.5 165 125 18 4 20 60.3
ON65 PN1.0/PN1.61PN2.5 185 145 18 4/4/8 20/20/22 76.1
DN80 PN1.0/PN1.6/PN2.5 200 160 18 8 20/20124 88.9
ON100 PN1.0/PN1.6/PN2.5 220/220/235 180/180/190 18/18/22 8 22/22/26 114.3
DN125 PN1.0/PN1.6/PN2.5 250/250/270 210/210/220 18/18/28 8 22/22/28 139.7
DN150 PN1.0/PN1.6/PN2.5 285/285/300 240/240/250 22/22/26 8 24/24/30 188.3
0N200 PN1.0/PN1.6/PN2.5 340/340/360 295/295/310 22/22/26 8/12/12 24/26/32 219.1
DN250 PN1.0/PN1.6/PN2.5 395/405/425 350/355/370 22/26/30 12/12/12 26/29/35 273
DN300 PN1.0/PN1.6/PN2.5 445/460/485 400/410/430 22/26/30 12/12/16 28/32/38 323.9
0N350 PN1.0/PN1.6/PN2.5 505/520/555 460)470/490 22/26/33 16/16/16 30/35/42 355.6
ON400 PN1.0/PN1.8/PN2.5 565/580/620 515/525/550 26/30/36 16/16/16 32/38146 406.4
0N450 PN1.0/PN1.6/PN2.5 615/640/670 565/585/600 26/30/36 20/20/20 35/42/50 457
DN500 PN1.0/PN1.6/PN2.5 670/715/730 620/650/660 26/33/36 20/20/20 38/46/56 508

Notes: LUGB flange connection vortex flowmeter its flange pressure class: DN10- DN80 is PN2.5MPa; DN100-DN200 is PN1.6MPa; DN250-DN500 is PN1.0MPa;
if over above pressure class, please mention clearly in purchasing order. GB ( China flange standard follows GB9119-2000). International standard, such as ANSI/DIN/XS… Please customer provide clear model number.

Appendix 3: Configuration Size of Wafer Connection Models    

KLINGER LUGB Vortex Flow Meter - fig 11

(MPa) (mnil flangestandardofivalerconnectionversion
DI (mm) DAnin) K(mm) Anin) N(+)
PNI .0/PNI.6/PN2 _5 DNI 0 14 90 60 14 4
PNI.O/PN I .6/PN23 DNI 5 19 95 65 14 4
PNI.O/PNI .6/PN2.5 DN20 26 100 70 14 4
PNI.O/PNI .6/PN2.5 DN25 33 100 75 14 4
PNI.O/PN1.6/PN25 DN32 39 105 80 14 4
PNI.O/PNI .6/PN2.5 DN40 49 150 116 IS 4
PNI.O/PNI .6/PN2.5 DN50 60 160 124 18 4
PNI.O/PNI .6IPN2.5 D1*5 76 175 138 18 4
PNI .0/PN1.6/PN2 _5 DM0 90 204 164 20 4
PNI.O/PN I .6/PN2 .5 DNI00 109 234 192 22 6
PNI.O/PN I .6/PN23 DNI 25 134 250 205 22 6
PNI.O/PNI .6/PN2.5 DN150 163 280 232 22 6
PNI.O/PNI .6/PN2.5 DN200 220 340 286 24 8
PNI.O/PN1.61PN25 DM 50 274 390 338 24 8
PNI.O/PNI .6/PN2.5 DN300 327 450 393 26 12
PNI.O/PNI .6/PN23 DN350 377 510 460 26 16
PNI.O/PN1.6/PN2 _5 DN400 426 565 510 26 16
PNI.O/PNI .6/PN2 ..5 DN450 4n 620 565 30 16
PNI.O/PN1.61PN25 DN500 534 685 620 33 20

Notes: companion flanges for wafer connection follows PN2.5MPa pressure class, when over 2.5MPa please make clearly mention.

Appendix 4: Calibration Method

(1 ) When calibrating the instrument, the “output form” must be set to “frequency of working condition”, and “value of small signal cutting” is set to 0; after calibration, “K-factor” is set according to the actual calibration, and then change “output form” and “value of small signal cutting” back to the original setting.
(2) Flow rate stabilization time of calibration point: ?-60s

Appendix 5: Fundamental Formula

(1) Instantaneous volume flow rate of working condition
KLINGER LUGB Vortex Flow Meter - fig 12Qv – volume flow rate of working condition(Unit:m3/h/ F — current frequency of working condition (Unit: Hz)
K – K factor (Unit: number of pulse/ m3)
(2)Instantaneous mass flow rate of working condition
KLINGER LUGB Vortex Flow Meter - fig 13 Qm—Mass flow rate of working condition (unit: kg/h ) r)— medium density under working condition (unit: kg/m3)
(3)Scaled coefficient calculated method
KLINGER LUGB Vortex Flow Meter - fig 14KN – Scaled coefficient (unit: cumulative flow rate / pulse)
FN—Maximum frequency output (unit: Hz; when KN is selected, set FN<5000, and general FN should be 2000Hz)
Qmax—the actual maximum instantaneous flow rate (unit: same as the setting flow rate unit)

Appendix 6: Communication Function

  1. Relevant Parameters
    The instrument has RS485 communication interface, adopts standard MODBUS-RTU communication protocol, relevant parameters are as follows:
    Start bit: 1 bit ……………..Data bit: 8 digits ……………………Parity bit: can beset
    Termination bit: can be set………………Baud rate : can be set…………….response time: 0.05s
  2. Data Format
    IEEE754standard single float format
  3. Data Address
    This flow meter can transmit 1-16 continuous data at the same time, and each data is stored by the corresponding address as follows:
    1. 0001H: Instantaneous flow value
    2. 0003H: Cumulative flow value
    3. 0005H: Working temperature (Non-compensation model, it displays 0.0000)
    4. 0007H: Gauge Pressure/ absolute pressure (Non-compensation model, it displays 0.0000)
    5. 0009H: Volume flow rate of working condition
    6. 000BH: Density under working condition
    7. 000DH: compression coefficient (Non-standard condition volume unit, it displays 0.0000)
    8. 000FH: Input frequency
    9. 0011H: Frequency output under working condition (Not this output, it displays 0.0000)
    10. 0013H: Scaled pulse output (Not this output, it displays 0.0000)
    11. 0015H: Current output (Not this output, it displays 0.0000)
    12. 0017H: 0.0000 (This address is reserved by system and unrelated to the instrument data displays on the interface.)
    13. 0019H: Gauge temperature
    14. 001BH: Exceed to limited cumulative flow rate (When close the Protocol measurement, it displays 0.0000)
    15. 001DH: Total power outage time. (When the system clock is off, it displays 0.0000) 16.001FH: menu modification times
  4. Data Address
    When the LCD screen displays the following data transmission information: NULL: transmission data 0
    ERROR: transmission data -1234
    OVERRUN: transmission data -8888

Appendix 7: Electrical Wiring

KLINGER LUGB Vortex Flow Meter - fig 15Remote type wiringKLINGER LUGB Vortex Flow Meter - fig 16

KLINGER logoKLINGER Danmark A/S
Nyager 12-14
DK-2605 Broendby
Denmark
Phone +45 4364 6611
www.klinger.dk

Documents / Resources

KLINGER LUGB Vortex Flow Meter [pdf] User Manual
LUGB Vortex Flow Meter, LUGB, Vortex Flow Meter, Flow Meter

References

Leave a comment

Your email address will not be published. Required fields are marked *