Logo ArduinoArduino ABX00087 UNO R4 WiFi Development Board

Scheda di sviluppo WiFi ABX00087 UNO R4

Cricket Shot Recognition using Arduino UNO R4 WiFi + ADXL345 + Edge
Impulso
This document provides a complete workflow for building a cricket shot recognition system using Arduino UNO R4 WiFi with an ADXL345 accelerometer and Edge Impulse Studio. The project involves collecting accelerometer data, training a machine learning model, and deploying the trained model back to the Arduino for real-time shot classification.
Cricket shots considered in this project:
– Cover Drive
– Straight Drive
– Pull Shot

Passaggio 1: Requisiti hardware

– Arduino UNO R4 WiFi
– ADXL345 Accelerometer (I2C)
– Jumper wires
– Breadboard (optional)
– Cavo USB di tipo C

Passaggio 2: requisiti software

– Arduino IDE (latest)
– Edge Impulse Studio account (free)
– Edge Impulse CLI tools (Node.js required)
– Adafruit ADXL345 library

Step 3: Wiring the ADXL345

Connect the ADXL345 sensor to the Arduino UNO R4 WiFi as follows:
VCC → 3.3 V
Terra → Terra
SDA → SDA (A4)
SCL → SCL (A5)
CS → 3.3V (optional, for I2C mode)
SDO → floating or GNDArduino ABX00087 UNO R4 WiFi Development Board - overview

Step 4: Make IDE Sensor Ready

Come installare le librerie dei sensori nell'IDE di Arduino?
Apri Arduino IDE
Open Tools → Manage Libraries… and install: Adafruit ADXL345 Unified Adafruit Unified Sensor
(If you have LSM6DSO or MPU6050 instead: install SparkFun LSM6DSO , Adafruit LSM6DS or MPU6050 accordingly.)

Step 5: Arduino Sketch for Data Collection

Upload this sketch to your Arduino UNO R4 WiFi. It streams accelerometer data in CSV format (x,y,z) at ~18 Hz for Edge Impulse.
#include
#include <Adafruit_ADXL345_U.h>
Adafruit_ADXL345_Unified accel =
Adafruit_ADXL345_Unified(12345);
impostazione nulla() {
Inizio seriale(115200);
se (!accel.begin()) {
Serial.println(“No ADXL345 detected”);
mentre (1);
}
accel.setRange(ADXL345_RANGE_4_G);
}
ciclo vuoto() {
sensori_evento_t e;
accel.getEvent(&e);
Serial.print (e.acceleration.x);
Serial.print(“,”);
Serial.print(e.acceleration.y);
Serial.print(“,”);
Serial.println(e.acceleration.z);delay(55); // ~18 Hz
}

Set Up Edge Impulse

Arduino ABX00087 UNO R4 WiFi Development Board - Set Up

Step 6: Connecting to Edge Impulse

  1. Close Arduino Serial Monitor.
  2. Run the command: edge-impulse-data-forwarder –frequency 18
  3. Enter axis names: accX, accY, accZ
  4. Name your device: Arduino-Cricket-Board
  5. Confirm connection in Edge Impulse Studio under ‘Devices’.

Arduino ABX00087 UNO R4 WiFi Development Board - Connecting to Edge ImpulseArduino ABX00087 UNO R4 WiFi Development Board - Connecting to Edge Impulse 1

Fase 7: Raccolta dati

In Edge Impulse Studio → Data acquisition:
– Device: Arduino-Cricket-Board
– Sensor: Accelerometer (3 axes)
- Sample length: 2000 ms (2 seconds)
– Frequenza: 18 Hz
Record at least 40 samples per class:
– Cover Drive
– Straight Drive
– Pull ShotArduino ABX00087 UNO R4 WiFi Development Board - Data CollectionCollect Data Examples
Copertura Drive
Device: Arduino-Cricket-Board
Label: Cover Drive
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length: 10000ms
Frequenza: 18 Hz
Example Raw Data:
accX -0.32
accY 9.61
accZ -0.12
Straight Drive
Device: Arduino-Cricket-Board
Label: Straight Drive
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length: 10000ms
Frequenza: 18 Hz
Example Raw Data:
accX 1.24
accY 8.93
accZ -0.42
Pull Shot
Device: Arduino-Cricket-Board
Label: Pull Shot
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length:10000 ms
Frequenza: 18 Hz
Example Raw Data:
accX 2.01
accY 7.84
accZ -0.63 Arduino ABX00087 UNO R4 WiFi Development Board - Data Collection 1

Step 8: Impulse Design

Open Create impulse:
Blocco di input: dati di serie temporali (3 assi).
Window size: 1000 ms Window increase (stride): 200 ms Enable: Axes, Magnitude (optional), frequency 18.
Processing block: Spectral analysis (a.k.a. Spectral Features for motion). Window size: 1000 ms Window increase (stride): 200 ms Enable: Axes, Magnitude (optional), keep all defaults first.
Blocco di apprendimento: Classificazione (Keras).
Fare clic su Salva impulso. Arduino ABX00087 UNO R4 WiFi Development Board - Impulse Design

Generate features:
Vai ad Analisi spettrale, fai clic su Salva parametri, quindi su Genera feature per il set di addestramento.

Arduino ABX00087 UNO R4 WiFi Development Board - training set

Train a small model
Go to Classifier (Keras) and use a compact config like:
Neural network: 1–2 dense layers (e.g., 60 → 30), ReLU
Epochs: 40–60
Tasso di apprendimento: 0.001–0.005
Dimensione del lotto: 32
Data split: 80/20 (train/test)
Save and train the dataArduino ABX00087 UNO R4 WiFi Development Board - Save and train the data

Evaluate and Check Model testing with the holdout set.
Inspect the confusion matrix; if circle and up overlap, collect more diverse data or tweak
Spectral parameters (window size / noise floor).

Step 9: Deployment to Arduino

Go to Deployment:
Choose Arduino library (C++ library also works).
Abilitare EON Compiler (se disponibile) per ridurre le dimensioni del modello. Arduino ABX00087 UNO R4 WiFi Development Board - Deployment to ArduinoDownload the .zip, then in Arduino IDE: Sketch → Include Library → Add .ZIP Library… This adds examples come Buffer statico e Continuo sotto File → Esample →
Your Project Name – Edge Impulse. Inference sketch for Arduino UNO EK R4 WiFi + ADXL345.

Step 10: Arduino Inference Sketch

#include
#include
#include <your_project_inference.h> // Replace with Edge Impulse header
Adafruit_ADXL345_Unified accel =
Adafruit_ADXL345_Unified(12345);
statico bool debug_nn = false;
impostazione nulla() {
Inizio seriale(115200);
mentre (!Serial) {}
se (!accel.begin()) {
Serial.println("ERRORE: ADXL345 non rilevato");
mentre (1);
}
accel.setRange(ADXL345_RANGE_4_G);
}
ciclo vuoto() {
buffer float[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = {0};
for (size_t ix = 0; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix +=
3) {
uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS *
(1000);
sensori_evento_t e;
accel.getEvent(&e);
buffer[ix + 0] = e.accelerazione.x;
buffer[ix + 1] = e.accelerazione.y;
buffer[ix + 2] = e.accelerazione.z;
int32_t wait = (int32_t)(next_tick – micros());
se (attesa > 0) delayMicroseconds(attesa);
}
segnale_t segnale;
int err = numpy::signal_from_buffer(buffer,
EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
se (err != 0) ritorno;

ei_impulse_result_t risultato = {0};
EI_IMPULSE_ERROR res = run_classifier(&signal, &result,
debug_nn);
se (res != EI_IMPULSE_OK) ritorno;

per (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
ei_printf(“%s: %.3f “, result.classification[ix].label,
result.classification[ix].value);
}
#se EI_CLASSIFIER_HAS_ANOMALY == 1
ei_printf(“anomalia: %.3f”, risultato.anomalia);
#finese
ei_printf(“\n”);
}

Uscita esampon:

Arduino ABX00087 UNO R4 WiFi Development Board - Arduino Inference SketchSuggerimenti:
Mantieni EI_CLASSIFIER_INTERVAL_MS sincronizzato con la frequenza del tuo data forwarder (ad esempio, 100 Hz → 10 ms). La libreria Edge Impulse imposta automaticamente questa costante in base al tuo impulso.
Se si desidera un rilevamento continuo (finestra scorrevole), iniziare dall'esempio Continuoample incluso con la libreria EI e scambialo con le letture ADXL345.
We will be adding video tutorials soon; till then, stay tuned – https://www.youtube.com/@RobuInlabs
And If you still have some doubts, you can check out this video by Edged Impulse: https://www.youtube.com/watch?v=FseGCn-oBA0&t=468s

Logo Arduino

Documenti / Risorse

Arduino ABX00087 UNO R4 WiFi Development Board [pdf] Guida utente
R4 WiFi, ADXL345, ABX00087 UNO R4 WiFi Development Board, ABX00087, UNO R4 WiFi Development Board, WiFi Development Board, Development Board, Board

Riferimenti

Lascia un commento

Il tuo indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *