NVIDIA 900-2G610-0000-000

NVIDIA Tesla P40 Passive Cooling GPU Instruction Manual

Model: 900-2G610-0000-000

1. Pendahuluan

The NVIDIA Tesla P40 is a high-performance GPU accelerator designed for deep learning deployment and artificial intelligence applications. Built on the NVIDIA Pascal architecture, it provides significant computational power for accelerating demanding workloads. This manual provides essential information for the proper installation, operation, and maintenance of your Tesla P40 GPU.

NVIDIA Tesla P40 GPU, front angled view showing the passive heatsink and PCIe bracket.

Gambar 1: Sudut depan view of the NVIDIA Tesla P40 GPU, highlighting its passive cooling design and PCIe interface.

2. Fitur Utama

  • Seri: Tesla P40, Model: 900-2G610-0000-000
  • Arsitektur GPU: NVIDIA Pascal
  • Performa Presisi Tunggal: 12 TeraFLOPS
  • Integer Operations (INT8): 47 TOPS (Tera-Operations per Second)
  • Memori GPU: 24GB GDDR5
  • Lebar Pita Memori: 346 GB/detik
  • Antarmuka Sistem: PCI Ekspres 3.0x16
  • Daya Maksimum: 250W
  • Enhanced Programmability: With Page Migration Engine
  • ECC Protection: Ya
  • Server-Optimized: For Data Center Deployment
  • Hardware-Accelerated Video Engine: 1x Decode Engine, 2x Encode Engine

3. Panduan Pengaturan

3.1 Pemeriksaan Pra-instalasi

  • Kompatibilitas Sistem: Ensure your server or workstation has an available PCI Express 3.0 x16 slot.
  • Catu Daya: A robust power supply unit (PSU) capable of providing sufficient power (up to 250W for the GPU) and equipped with the necessary 8-pin CPU power cable (EPS12V) is required. Standard PCIe power cables may not be compatible or sufficient.
  • Pendinginan: The Tesla P40 features passive cooling and requires adequate system airflow within the server chassis to dissipate heat effectively. Ensure your server has sufficient fan configuration for proper cooling.
  • Pengaturan BIOS: Verify that your motherboard BIOS supports and has "Above 4G decoding" enabled, typically found under boot options or PCIe settings.

3.2 Instalasi Fisik

  1. Power down your system and disconnect all power cables.
  2. Open your computer case and locate an available PCI Express 3.0 x16 slot.
  3. Carefully insert the NVIDIA Tesla P40 into the PCIe slot, ensuring it is fully seated. Secure the card with the retaining clip or screw.
  4. Connect the 8-pin CPU power cable (EPS12V) from your power supply to the power connector on the Tesla P40. Ensure a secure connection.
NVIDIA Tesla P40 GPU, top view showing the power connector and NVIDIA branding.

Gambar 2: Atas view of the NVIDIA Tesla P40, illustrating the location of the 8-pin power connector.

3.3 Instalasi Driver

  1. After physical installation, close your computer case and reconnect power.
  2. Boot your system.
  3. Download the appropriate NVIDIA drivers for the Tesla P40 from the official NVIDIA website. It is crucial to select drivers compatible with the Pascal architecture. For optimal compatibility, consider using NVIDIA driver version 580 or earlier, as newer versions (e.g., 590 and later) may have dropped support for Pascal devices.
  4. Follow the on-screen instructions to install the drivers. A system reboot may be required.
  5. For Linux systems, if you encounter issues after enabling >4G decoding, you may need to boot into a rescue disk, mount your main OS, chroot into it, and run `mkinitcpio -P` or similar commands to regenerate your kernel image and grub configuration.

4. Petunjuk Pengoperasian

4.1 Pengaturan Lingkungan Perangkat Lunak

  • CUDA Toolkit: Install the NVIDIA CUDA Toolkit, which provides the development environment for GPU-accelerated applications. Ensure the CUDA version is compatible with your installed NVIDIA drivers.
  • Deep Learning Frameworks: Configure your preferred deep learning frameworks (e.g., TensorFlow, PyTorch) to utilize the NVIDIA Tesla P40. Refer to the documentation of your chosen framework for specific setup instructions.

4.2 Monitoring and Performance

  • Use NVIDIA's `nvidia-smi` utility (available after driver installation) to monitor GPU utilization, memory usage, temperature, and power consumption.
  • Ensure GPU temperatures remain within safe operating limits, typically below 90°C under load. Due to passive cooling, maintaining adequate system airflow is critical for thermal management.

5. Pemeliharaan

  • Penghilangan Debu: Periodically inspect your server chassis and the GPU for dust accumulation. Dust can impede airflow and reduce cooling efficiency. Use compressed air to gently clean the heatsink fins and surrounding areas.
  • Kontrol Lingkungan: Operate the system in a clean, temperature-controlled environment to prevent overheating and prolong component lifespan.
  • Pembaruan Driver: While keeping drivers updated is generally recommended, exercise caution with Tesla P40. Refer to NVIDIA's official support channels for recommended driver versions to avoid compatibility issues with older Pascal architecture.

6. Penyelesaian masalah

  • System Not Recognizing GPU:
    • Verify the GPU is fully seated in the PCIe slot.
    • Ensure the 8-pin CPU power cable is securely connected.
    • Check BIOS settings for "Above 4G decoding" and ensure it is enabled.
    • Reinstall or update NVIDIA drivers.
  • Masalah Panas Berlebih:
    • Confirm adequate airflow within the server chassis. Ensure all system fans are functioning correctly and are configured to provide sufficient cooling for passive components.
    • Clean any dust accumulation from the GPU heatsink and server vents.
    • Kurangi suhu sekitar jika memungkinkan.
  • Masalah Kabel Listrik: Some users have reported issues with included power cables. Ensure you are using a high-quality 8-pin EPS12V CPU power cable that can safely deliver the required wattage. If issues persist, consider replacing the cable with a verified compatible one.
  • Penurunan Kinerja:
    • Check GPU utilization and temperature using `nvidia-smi`. Thermal throttling can reduce performance.
    • Ensure your software environment (CUDA, deep learning frameworks) is correctly configured and optimized for the Tesla P40.

If troubleshooting steps do not resolve the issue, please contact NVIDIA support for further assistance.

7. Spesifikasi

Close-up of the NVIDIA Tesla P40 label showing model number 900-2G610-0000-000 and other regulatory information.

Figure 3: Product label displaying the model number and other identification details.

FiturDetil
Nomor Model900-2G610-0000-000
Arsitektur GPUNVIDIA Pascal
Koprosesor GrafisNVIDIA Tesla P40
Performa Presisi Tunggal12 TeraFLOPS
Integer Operations (INT8)47 TOPS (Tera-Operations per Second)
Memori GPU24GB GDDR5
Lebar Pita Memori346 GB/detik
Antarmuka SistemPCI Ekspres 3.0x16
Konsumsi Daya Maksimum250W
ECC ProtectionYa
Hardware-Accelerated Video Engine1x Decode Engine, 2x Encode Engine
Dimensi Paket17.05x8.66x3.19 inci
Berat Barang3.14 pon
Tanggal Pertama Tersedia7 Juli 2017

8. Garansi dan Dukungan

For information regarding product warranty, technical support, and service, please refer to the official NVIDIA website or contact your point of purchase. NVIDIA provides comprehensive resources and support for its products.

Dokumen Terkait - 900-2G610-0000-000

Praview Panduan Pengguna NVIDIA AI Enterprise: Instalasi, Konfigurasi, dan Manajemen
Panduan pengguna komprehensif untuk NVIDIA AI Enterprise, yang merinci instalasi, konfigurasi, dan pengelolaan NVIDIA vGPU, kerangka kerja AI, dan komponen perangkat lunak di berbagai hypervisor dan sistem operasi.
Praview NVIDIA TensorRT Support Matrix v4.0.1 - Platform and Layer Compatibility
Comprehensive support matrix for NVIDIA TensorRT version 4.0.1, detailing compatibility across platforms (Linux, Android, QNX) and software versions (CUDA, cuDNN), along with a detailed breakdown of supported features for each TensorRT layer.
Praview NVIDIA Jetson Xavier NX Series Product Marking Specification
This document specifies the product markings for the NVIDIA Jetson Xavier NX series modules, including details on part numbers, serial numbers, barcodes, and country of origin.
Praview CUDA on WSL User Guide - NVIDIA
NVIDIA's comprehensive guide to setting up and using CUDA with the Windows Subsystem for Linux (WSL) for GPU-accelerated computing, AI, and machine learning development.
Praview Panduan Pengguna Manajer GPU Pusat Data NVIDIA
Panduan pengguna ini memberikan informasi lengkap tentang NVIDIA Data Center GPU Manager (DCGM), sebuah alat yang dirancang untuk menyederhanakan administrasi, pemantauan, dan pengelolaan GPU NVIDIA Tesla di lingkungan klaster dan pusat data. Panduan ini mencakup instalasi, konfigurasi, dan fitur.views, integrasi dengan alat pemantauan seperti Prometheus dan Grafana, dan kemampuan diagnostik.
Praview Panduan Pengguna NVIDIA AI Enterprise: Virtualisasi, Penerapan, dan Manajemen GPU
Panduan pengguna komprehensif untuk NVIDIA AI Enterprise, yang merinci instalasi, konfigurasi, dan pengelolaan beban kerja AI dan analitik data pada lingkungan GPU tervirtualisasi. Mencakup vGPU, Kubernetes, VMware vSphere, dan Red Hat KVM.