AX064001 Laser Receiver
“
Product Information: Laser Receiver
Specifications:
- Input Voltage: +8Vdc to +36Vdc
- Power Supply Output: +5V, +3.3V, +1.8V
- Receiver Operation: Designed to pick up a rotating laser
beam
Product Usage Instructions:
1. Overview of the Laser Receiver
The Laser receiver is designed to pick up a rotating laser beam.
The beam detection algorithm filters the detection data from the
diode arrays to enhance resolution and ensure the preferred beam is
detected.
1.1. Receiver Operation
The Laser receiver uses different algorithms for filtering
data:
- 0 – Default filtering algorithm
- 1 – Reserved for future use
- 2 – Direct transmit on receive
1.2. Default Configuration
By default, the laser receiver transmits the detected beam
offset, status, and rps values in TPDO #1. TPDO #3 is also enabled
by default, containing saturation voltage and gain select
information for the diode arrays.
1.3. Status Information
Status index values and their meanings:
- 1: 0 … 3
- 2**: 0 … 3
- 3: 0 (not used in this mode)
2. Installation Instructions
2.1. Dimensions and Pinout
M12 Male Connector PIN #:
- 1: CAN Shield
- 2: Power +
- 3: GND
- 4: CAN H
- 5: CAN L
M12 Female Connector PIN #:
- CAN Shield
- Power +
- GND
- CAN H
- CAN L
3. Node ID and Baud Rate
The AX064001 controller ships factory programmed with a Node ID
= 80 (0x50) and Baud rate = 250 kbps by default.
3.1. LSS Protocol to Update – Setting Node-ID
Item: COB-ID
Length: 2
Data 0: 0x04
Data 1: 0x01
(cs=4 for switch state global) (switches to configuration
state)
Frequently Asked Questions (FAQ):
Q: Can I change the default filtering algorithm on the laser
receiver?
A: No, the default filtering algorithm is set by the
manufacturer and should not be changed for optimal performance.
Q: What is the default Node ID and Baud rate of the AX064001
controller?
A: The default Node ID is 80 (0x50) and the default Baud rate is
250 kbps.
“`
USER MANUAL UMAX064001
LASER RECEIVER
with CANopen®
USER MANUAL
P/N: AX064001
VERSION HISTORY
Version 1.0.0 1.0.0 1.0.1
1.0.2
Date Oct 18, 2021 Oct 18, 2021 Oct 19, 2021
Sep 14, 2023
Author Antti Keränen Amanda Wilkins Antti Keränen
Kiril Mojsov
Modifications Initial Draft Added technical spec from 12/3/2020 Block diagram, dimensional drawing and firmware reflash instructions updated. Performed Legacy Updates
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
ii
ACRONYMS
BATT +/DIN EMCY EA ECU GND RPS UIN Vps
Battery positive (a.k.a. Vps) or Battery Negative (a.k.a. GND) Digital Input used to measure active high or low signals Diagnostic Message (from CANopen® standard) The Axiomatic Electronic Assistant (A Service Tool for Axiomatic ECUs) Electronic Control Unit (from SAE J1939 standard) Ground reference (a.k.a. BATT-) Rotations per Second Universal input used to measure voltage, current, frequency or digital inputs Voltage Power Supply (a.k.a. BATT+)
Note: An Axiomatic Electronic Assistant KIT may be ordered as P/N: AX070502, or AX070506K
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
iii
TABLE OF CONTENTS
1.1. Receiver operation…………………………………………………………………………………………………………………………… 9 1.2. Default configuration………………………………………………………………………………………………………………………. 10 1.3. Status information………………………………………………………………………………………………………………………….. 10 2.1. Dimensions and Pinout…………………………………………………………………………………………………………………… 11 3.1. Node ID and Baud rate …………………………………………………………………………………………………………………… 12
3.1.1. LSS Protocol to Update …………………………………………………………………………………………………………… 12 3.2. Communication Objects (DS-301) ……………………………………………………………………………………………………. 16
3.2.1. 1000h Device Type…………………………………………………………………………………………………………………. 17 3.2.2. 1001h Error Register ………………………………………………………………………………………………………………. 17 3.2.3. 1002h Manufacturer Status Object ……………………………………………………………………………………………. 17 3.2.4. 1003h Pre-Defined Error Field………………………………………………………………………………………………….. 17 3.2.5. 1010h Store Parameters………………………………………………………………………………………………………….. 17 3.2.6. 1011h Restore Parameters ……………………………………………………………………………………………………… 18 3.2.7. 1016h Consumer Heartbeat Time …………………………………………………………………………………………….. 18 3.2.8. 1017h Producer Heartbeat Time ………………………………………………………………………………………………. 18 3.2.9. 1018h Identity Object………………………………………………………………………………………………………………. 18 3.2.10. 1020h Verify Configuration ………………………………………………………………………………………………………. 18 3.2.11. 1029h Error Behavior………………………………………………………………………………………………………………. 19 3.2.12. 1400h RPDO 1 Communication Parameters ……………………………………………………………………………… 19 3.2.13. 1401h RPDO 2 Communication Parameters ……………………………………………………………………………… 19 3.2.14. 1402h RPDO 3 Communication Parameters ……………………………………………………………………………… 19 3.2.15. 1403h RPDO 4 Communication Parameters ……………………………………………………………………………… 19 3.2.16. 1600h RPDO 1 Mapping Parameters………………………………………………………………………………………… 20 3.2.17. 1601h RPDO 2 Mapping Parameters………………………………………………………………………………………… 20 3.2.18. 1602h RPDO 3 Mapping Parameters………………………………………………………………………………………… 20 3.2.19. 1603h RPDO 4 Mapping Parameters………………………………………………………………………………………… 20 3.2.20. 1800h TPDO 1 Communication Parameters ………………………………………………………………………………. 20 3.2.21. 1801h TPDO 2 Communication Parameters ………………………………………………………………………………. 21 3.2.22. 1802h TPDO 3 Communication Parameters ………………………………………………………………………………. 21 3.2.23. 1803h TPDO 4 Communication Parameters ………………………………………………………………………………. 21 3.2.24. 1A00h TPDO 1 Mapping Parameters………………………………………………………………………………………… 21 3.2.25. 1A01h TPDO 2 Mapping Parameters………………………………………………………………………………………… 21 3.2.26. 1A02h TPDO 3 Mapping Parameters………………………………………………………………………………………… 22 3.2.27. 1A03h TPDO 4 Mapping Parameters………………………………………………………………………………………… 22 3.3. Manufacturer Objects …………………………………………………………………………………………………………………….. 23 APPENDIX A – TECHNICAL SPECIFICATION……………………………………………………………………………………………….A-1
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
iv
LIST OF TABLES
Table 1 Laser beam detection algorithms ………………………………………………………………………………………………………. 9 Table 2 Laser beam status values ………………………………………………………………………………………………………………. 10 Table 3 AX064001 Connector Pinout …………………………………………………………………………………………………………… 11 Table 4 LSS Baud rate Indices……………………………………………………………………………………………………………………. 14
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
v
LIST OF FIGURES
Figure 1 AX064001 Block Diagram ……………………………………………………………………………………………………………….. 8 Figure 2 AX064001 Dimensional Drawing ……………………………………………………………………………………………………. 11
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
vi
REFERENCES TDAX064000 UMAX07050x
Technical Datasheet, Universal Motor Controller with CAN, Axiomatic Technologies 2020
User Manual, Axiomatic Electronic Assistant and USB-CAN, Axiomatic Technologies, 2023
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
vii
1. OVERVIEW OF THE LASER RECEIVER
+8Vdc…+36Vdc
VPS
+5V,+3.3V,+1.8V
+3.3V VPS
CPLD
CPLD
Power Supply Diagnostics
CAN TRANSCEIVER
Figure 1 AX064001 Block Diagram
The Laser Receiver is designed to detect a rotating laser beam and transmit the offset of the detected beam to CAN bus. The Laser Receiver has multiple configuration objects in its CANopen® object dictionary for configuring the detection parameters and the format of data to transmit to the CAN bus.
All CANopen® objects supported by the AX064001 are user configurable using standard commercially available tools that can interact with a CANopen® Object Dictionary via an .EDS file.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
8 – 34
1.1. Receiver operation
The Laser receiver is designed to pick up a rotating laser beam. By default the beam detection algorithm filters the detection data from the diode arrays to enhance the resolution and making sure the preferred beam is picked up.
There are various configuration objects available for tuning the operation. The filtering algorithm can be disabled and direct detection based data transmitted using object 300Ah Laser Beam Detection Algorithm Select. In case the direct detection based transmits is in use, the TPDO #1 transmit events will become dependent of the beam detection.
300Ah Laser Beam Detection Algorithm Select
Value Algorithm to use
0
Default filtering algorithm
1
Reserved for future use
2
Direct transmit on receive.
Table 1 Laser beam detection algorithms
The beam detection filtering algorithm is designed to pick up a rotating beam with rps value defined in 3002h Laser Beam Target RPS, 3003h Laser Beam Max RPS Error and 3000h Laser Beam Max RPS. The rps based detection can be enabled using object 3004h Laser Beam Trace Specific.
The detection parameters configuration can be done using objects 3006h Laser Beam Autoreset Time, which defines how long the data is valid in milliseconds and 3007h Laser Beam Detect Threshold Voltage. The beam detect threshold voltage defines the sensitivity of the receiver. The default value of 50mV is a general setting for most operating environments. Lowering the value will result in increased sensitivity. With increased sensitivity there will be a tradeoff with detection reliability, higher sensitivity can lead into erroneous detection due to other light sources such as sunlight.
The diode arrays also detect the level of ambient light. The object 3009h Laser Beam Saturation Threshold is used for defining the maximum saturation level before the internal detection gain is switched to lower value allowing detection with higher ambient light conditions, such as excessive sunlight. There is a tradeoff between the gain and detection sensitivity, the default mode of using higher gain yields better sensitivity.
The format of the detected offset level can be configured using object 3008h Laser Beam Offset Polarity. The laser receiver also contains a built-in heater resistor for enhancing the performance in lower temperatures and higher humidity environments. The heater resistor operation is configurable using object 3100h Heater Settings, in which subindex 1 defines the low temperature threshold at bootup (in °C) and subindex 2 defines the heater on time in minutes.
The two objects 3005h Laser Beam Trace Multiple and 3001h Laser Beam Minimum Separation are reserved for future use. These objects have no implementation in the current receiver firmware.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
9 – 34
1.2. Default configuration
By default, the laser receiver transmits the detected beam offset, status and rps values in TPDO #1. The TPDO #3 is also enabled by default, it contains the saturation voltage and gain select info for the two diode arrays.
The TPDOs #1 and #3 have a default transmit interval of 100ms when the laser receiver is in operational mode. In case object 300Ah Laser Beam Detection Algorithm Select is configured to use direct reception based transmits, the TPDO #1’s transmit interval should be configured to 0ms. This is because the TPDO #1 transmit events will be controlled by the reception events and the default timer configuration would yield additional TPDOs on the CAN bus.
1.3. Status information
The received beam offset is reported in object 2200h Laser Beam Offset in Millimeters. The offset is calculated as defined in object 3008h Laser Beam Offset Polarity, the options include both ends of the receiver and the middle point of the receiver, data reported with both polarities.
The detected beam status object 2201h Laser Beam Status contains the info which diode array has detected the beam.
300Ah Laser Beam Detection Algorithm set to 0 (default filtering)
Status index Possible values Meaning
1
0 … 3
0 no beam(s) detected
1 beam #1 detected only on array 1
2 beam #1 detected only on array 2
3 beam #1 detected on both arrays.
2**
0 … 3
0 no beam #2 detected
1 beam #2 detected only on array 1
2 beam #2 detected only on array 2
3 beam #2 detected on both arrays.
3
0
not used in this mode.
** Valid only if 3005h Laser Beam Trace Multiple is enabled
Table 2 Laser beam status values
The validity of the detected beam offset data can be determined by monitoring the 2203h Laser Diodes Saturated. In case the diode arrays have saturated due to excessive ambient light, any detected laser beam offset should be ignored. The current diode voltage created by the ambient light level is reported 2204h Laser Diodes Saturation Threshold.
The object dictionary also contains some status objects containing lower-level data of the algorithm, such as the 2205h Laser Diodes Gain Select, 2206h Heater Status and 2214h DAC Target Voltage.
The current CPU temperature and detected power supply voltage are reported in 2300h Processor Temperature and 2301h Power Supply Voltage. The processor temperature object contains the current CPU temperature in subindex #1 and the CPU temperature at boot up in subindex #2. The Laser Receiver internal temperature and the need for additional heating is determined based on the CPU built-in temperature measurements, and for having more accurate data, the need for additional heating is determined based on the CPU boot-up temperature.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
10 – 34
2. INSTALLATION INSTRUCTIONS 2.1. Dimensions and Pinout
Figure 2 AX064001 Dimensional Drawing
M12 Male Connector PIN #
1 2 3 4 5
Function
M12 Female Connector Function PIN #
CAN Shield Power + GND CAN H CAN L
1
CAN Shield
2
Power +
3
GND
4
CAN H
5
CAN L
Table 3 AX064001 Connector Pinout
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
11 – 34
3. CANOPEN® INTERFACE AND OBJECT DICTIONARY
3.1. Node ID and Baud rate
By default, the AX064001 controller ships factory programmed with a Node ID = 80 (0x50) and with Baud rate = 250 kbps. 3.1.1. LSS Protocol to Update
The only means by which the Node-ID and Baud rate can be changed is to use Layer Settling Services (LSS) and protocols as defined by CANopen® standard DS-305. Follow the steps below to configure either variable using LSS protocol. If required, please refer to the standard for more detailed information about how to use the protocol
3.1.1.1.
Setting Node-ID
· Set the module state to LSS-configuration by sending the following message:
Item COB-ID Length Data 0 Data 1
Value 0x7E5 2 0x04 0x01
(cs=4 for switch state global) (switches to configuration state)
· Set the Node-ID by sending the following message:
Item COB-ID Length Data 0 Data 1
Value 0x7E5 2 0x11 Node-ID
(cs=17 for configure node-id) (set new Node-ID as a hexadecimal number)
· The module will send the following response (any other response is a failure).
Item COB-ID Length Data 0 Data 1 Data 2
Value 0x7E4 3 0x11 0x00 0x00
(cs=17 for configure node-id)
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
12 – 34
· Save the configuration by sending the following message:
Item COB-ID Length Data 0
Value 0x7E5 1 0x17
(cs=23 for store configuration)
· The module will send the following response (any other response is a failure)
Item COB-ID Length Data 0 Data 1 Data 2
Value 0x7E4 3 0x17 0x00 0x00
(cs=23 for store configuration)
· Set the module state to LSS-operation by sending the following message: (Note, the module will reset itself back to the pre-operational state)
Item COB-ID Length Data 0 Data 1
Value 0x7E5 2 0x04 0x00
(cs=4 for switch state global) (switches to waiting state)
3.1.1.2.
Setting Baud rate
· Set the module state to LSS-configuration by sending the following message:
Item COB-ID Length Data 0 Data 1
Value 0x7E5 2 0x04 0x01
(cs=4 for switch state global) (switches to configuration state)
· Set the baud rate by sending the following message:
Item COB-ID Length Data 0 Data 1 Data 2
Value 0x7E5 3 0x13 0x00 Index
(cs=19 for configure bit timing parameters) (switches to waiting state) (select baudrate index per Table 32)
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
13 – 34
Index 0 1 2 3 4 5 6 7 8
Bit Rate 1 Mbit/s 800 kbit/s 500 kbit/s 250 kbit/s 125 kbit/s (default) reserved (100 kbit/s) 50 kbit/s 20 kbit/s 10 kbit/s
Table 4 LSS Baud rate Indices
· The module will send the following response (any other response is a failure):
Item COB-ID Length Data 0 Data 1 Data 2
Value 0x7E4 3 0x13 0x00 0x00
(cs=19 for configure bit timing parameters)
· Activate bit timing parameters by sending the following message:
Item COB-ID Length Data 0 Data 1 Data 2
Value
0x7E5
3
0x15
(cs=19 for activate bit timing parameters)
<delay_lsb>
<delay_msb>
The delay individually defines the duration of the two periods of time to wait until the bit timing parameters switch is done (first period) and before transmitting any CAN message with the new bit timing parameters after performing the switch (second period). The time unit of switch delay is 1 ms.
· Save the configuration by sending the following message (on the NEW baud rate):
Item COB-ID Length Data 0
Value 0x7E5 1 0x17
(cs=23 for store configuration)
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
14 – 34
· The module will send the following response (any other response is a failure):
Item COB-ID Length Data 0 Data 1 Data 2
Value 0x7E4 3 0x17 0x00 0x00
(cs=23 for store configuration)
· Set the module state to LSS-operation by sending the following message: (Note, the module will reset itself back to the pre-operational state)
Item COB-ID Length Data 0 Data 1
Value 0x7E5 2 0x04 0x00
(cs=4 for switch state global) (switches to waiting state)
The following screen capture (left) shows the CAN data was sent (7E5h) and received (7E4h) by the tool when the baud rate was changed to 250 kbps using the LSS protocol. The other image (right) shows what was printed on an example debug RS-232 menu while the operation took place.
Between CAN Frame 98 and 99, the baud rate on the CAN Scope tool was changed from 125 to 250 kbps.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
15 – 34
3.2. Communication Objects (DS-301)
Index (hex)
1000 1001 1002 1003 1010 1011 1016 1017 1018 1020 1029 1400 1401 1402 1403 1600 1601 1602 1603 1800 1801 1802 1803 1A00 1A01 1A02 1A03
Object
Device Type Error Register Manufacturer Status Register Pre-Defined Error Field Store Parameters Restore Default Parameters Consumer Heartbeat Time Producer Heartbeat Time Identity Object Verify Configuration Error Behavior RPDO1 Communication Parameter RPDO2 Communication Parameter RPDO3 Communication Parameter RPDO4 Communication Parameter RPDO1 Mapping Parameter RPDO2 Mapping Parameter RPDO3 Mapping Parameter RPDO4 Mapping Parameter TPDO1 Communication Parameter TPDO2 Communication Parameter TPDO3 Communication Parameter TPDO4 Communication Parameter TPDO1 Mapping Parameter TPDO2 Mapping Parameter TPDO3 Mapping Parameter TPDO4 Mapping Parameter
Object Type Data Type
VAR VAR VAR ARRAY ARRAY ARRAY ARRAY VAR RECORD ARRAY ARRAY RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD
UNSIGNED32 UNSIGNED8 UNSIGNED32 UNSIGNED32 UNSIGNED32 UNSIGNED32 UNSIGNED32 UNSIGNED16
UNSIGNED32 UNSIGNED8
Access
RO RO RO RO RW RW RW RW RO RO RW RW RW RW RW RO RO RO RO RW RW RW RW RW RW RW RW
PDO Mapping
No No No No No No No No No No No No No No No No No No No No No No No No No No No
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
16 – 34
3.2.1. 1000h Device Type
Index 1000
Subindex 0
Data Type UINT32
Access RO
PDO Mapping No
Value Range 0x0
Default Value 0x0
Description Laser receiver
3.2.2. 1001h Error Register
Index 1001
Subindex 0
Data Type UINT8
Access RO
PDO Mapping No
Value Range 0, 1
Default Value 0
Description Error register
3.2.3. 1002h Manufacturer Status Object
Index 1002
Subindex 0
Data Type UINT32
Access RO
PDO Mapping No
Value Default Range Value UINT32 0
Description Manufacturer debug information
3.2.4. 1003h Pre-Defined Error Field
Index 1003
Subindex
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Type UINT8 UINT32
Access
RW RO
PDO Mapping No
Value Range 15 UINT32
Default Value 15 0
Description
Number of subindexes / reset error codes EMCY error code #1 EMCY error code #2 EMCY error code #3 EMCY error code #4 EMCY error code #5 EMCY error code #6 EMCY error code #7 EMCY error code #8 EMCY error code #9 EMCY error code #10 EMCY error code #11 EMCY error code #12 EMCY error code #13 EMCY error code #14 EMCY error code #15
3.2.5. 1010h Store Parameters
Index 1010
Subindex
0 1
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No
Value Range 4 save
Default Value 4 1
2
3
4
Description
Number of subindexes Write 0x65766173 (`e’, `v’, `a’, `s’) for storing ALL parameters Write 0x65766173 (`e’, `v’, `a’, `s’) for storing Communication parameters Write 0x65766173 (`e’, `v’, `a’, `s’) for storing Application parameters Write 0x65766173 (`e’, `v’, `a’, `s’) for storing Manufacturer parameters
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
17 – 34
3.2.6. 1011h Restore Parameters
Index 1011
Subindex
0 1
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No
Value Range 4 load
Default Value 4 1
2
3
4
Description
Number of subindexes Write 0x4616F6C (`d’, `a’, `o’, `l’) for restoring ALL parameters Write 0x4616F6C (`d’, `a’, `o’, `l’) for restoring Communication parameters Write 0x4616F6C (`d’, `a’, `o’, `l’) for restoring Application parameters Write 0x4616F6C (`d’, `a’, `o’, `l’) for restoring Manufacturer parameters
3.2.7. 1016h Consumer Heartbeat Time
Index 1016
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No
Value Range 4 UINT32
Default Value 4 0
Description
Number of subindexes Consumer heartbeat time bits 31-24: reserved bits 23-16: Node ID bits 15-0: heartbeat time in milliseconds
3.2.8. 1017h Producer Heartbeat Time
Index 1017
Subindex 0
Data Type UINT16
Access RW
PDO Mapping No
Value Range 1065000
Default Value 0
Description Producer heartbeat time in milliseconds
3.2.9. 1018h Identity Object
Index 1018
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RO
PDO Mapping No
Value Range 4 UINT32
Default Value 4 0x55 0xAA064001
Description
Number of subindexes Vendor ID (Axiomatic Technologies) Product Code Revision Number Serial Number
3.2.10.
1020h Verify Configuration
Index 1020
Subindex
0 1 2
Data Type UINT8 UINT32
Access RO
PDO Mapping No
Value Range 4 UINT32
Default Value 4
Description
Number of subindexes Configuration date: DD-MM-YYYY Configuration time: HH-MM
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
18 – 34
3.2.11.
1029h Error Behavior
Index 1029
Subindex
0 1 2
Data Type UINT8
Access
RO RW
PDO Mapping No
Value Range 6 0-2
Default Value 4 1 (no change)
Description
Number of subindexes State transition on Comm. fault State transition on DI fault
3.2.12.
1400h RPDO 1 Communication Parameters
Index 1400
Subindex
0 1 2 3 4 5
Data Type UINT8 UINT32 UINT8 UINT16 UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 4 UINT32 UINT8 UINT16 UINT8 UINT16
Default Value 4 0x4000027F 0xFF 0 0 0
Description
Number of subindexes COB-ID Transmission type Inhibit time Compatibility entry Event timer
3.2.13.
1401h RPDO 2 Communication Parameters
Index 1401
Subindex
0 1 2 3 4 5
Data Type UINT8 UINT32 UINT8 UINT16 UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 4 UINT32 UINT8 UINT16 UINT8 UINT16
Default Value 4 0x4000037F 0xFF 0 0 0
Description
Number of subindexes COB-ID Transmission type Inhibit time Compatibility entry Event timer
3.2.14.
1402h RPDO 3 Communication Parameters
Index 1402
Subindex
0 1 2 3 4 5
Data Type UINT8 UINT32 UINT8 UINT16 UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 4 UINT32 UINT8 UINT16 UINT8 UINT16
Default Value 4 0xC000047F 0xFF 0 0 0
Description
Number of subindexes COB-ID Transmission type Inhibit time Compatibility entry Event timer
3.2.15.
1403h RPDO 4 Communication Parameters
Index 1403
Subindex
0 1 2 3 4 5
Data Type UINT8 UINT32 UINT8 UINT16 UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 4 UINT32 UINT8 UINT16 UINT8 UINT16
Default Value 4 0xC000057F 0xFF 0 0 0
Description
Number of subindexes COB-ID Transmission type Inhibit time Compatibility entry Event timer
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
19 – 34
3.2.16.
1600h RPDO 1 Mapping Parameters
Index 1600
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RW
PDO Mapping No
Value Range 0-4 UINT32
Default Value 2 0x607E0008 0x60FF0020 0 0
Description
Number of subindexes Polarity Target velocity Not used by default Not used by default
3.2.17.
1601h RPDO 2 Mapping Parameters
Index 1601
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RW
PDO Mapping No
Value Range 0-4 UINT32
Default Value 4 0x25000110 0x25000210 0x25000310 0x25000410
Description
Number of subindexes EC Extra Received PV Value 1 EC Extra Received PV Value 2 EC Extra Received PV Value 3 EC Extra Received PV Value 4
3.2.18.
1602h RPDO 3 Mapping Parameters
Index 1602
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RW
PDO Mapping No
Value Range 0-4 UINT32
Default Value 0 0 0 0 0
Description
Number of subindexes Not used by default Not used by default Not used by default Not used by default
3.2.19.
1603h RPDO 4 Mapping Parameters
Index 1603
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RW
PDO Mapping No
Value Range 0-4 UINT32
Default Value 0 0 0 0 0
Description
Number of subindexes Not used by default Not used by default Not used by default Not used by default
3.2.20.
1800h TPDO 1 Communication Parameters
Index 1800
Subindex
0 1 2 3 4 5
Data Type UINT8 UINT32 UINT8 UINT16 UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 4 UINT32 UINT8 UINT16 UINT8 UINT16
Default Value 4 0x400001FF 0xFE 0 0 0x64
Description
Number of subindexes COB-ID Transmission type Inhibit time Compatibility entry Event timer
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
20 – 34
3.2.21.
1801h TPDO 2 Communication Parameters
Index 1801
Subindex
0 1 2 3 4 5
Data Type UINT8 UINT32 UINT8 UINT16 UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 4 UINT32 UINT8 UINT16 UINT8 UINT16
Default Value 4 0x400002FF 0xFE 0 0 0x64
Description
Number of subindexes COB-ID Transmission type Inhibit time Compatibility entry Event timer
3.2.22.
1802h TPDO 3 Communication Parameters
Index 1802
Subindex
0 1 2 3 4 5
Data Type UINT8 UINT32 UINT8 UINT16 UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 4 UINT32 UINT8 UINT16 UINT8 UINT16
Default Value 4 0x400003FF 0xFE 0 0 0
Description
Number of subindexes COB-ID Transmission type Inhibit time Compatibility entry Event timer
3.2.23.
1803h TPDO 4 Communication Parameters
Index 1803
Subindex
0 1 2 3 4 5
Data Type UINT8 UINT32 UINT8 UINT16 UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 4 UINT32 UINT8 UINT16 UINT8 UINT16
Default Value 4 0xC00004FF 0xFE 0 0 0
Description
Number of subindexes COB-ID Transmission type Inhibit time Compatibility entry Event timer
3.2.24.
1A00h TPDO 1 Mapping Parameters
Index 1A00
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RW
PDO Mapping No
Value Range 0-4 UINT32
Default Value 4 0x71000110 0x71000210 0x71000310 0x71000410
Description
Number of subindexes Universal Input #1 FV Universal Input #2 FV Universal Input #3 FV Universal Input #4 FV
3.2.25.
1A01h TPDO 2 Mapping Parameters
Index 1A01
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RW
PDO Mapping No
Value Range 0-4 UINT32
Default Value 2 0x60410010 0x606C0020 0 0
Description
Number of subindexes PDS FSA Status Word Velocity Actual Value Not used by default Not used by default
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
21 – 34
3.2.26.
1A02h TPDO 3 Mapping Parameters
Index 1A02
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RW
PDO Mapping No
Value Range 0-4 UINT32
Default Value 2 0x50200020 0x50300020 0 0
Description
Number of subindexes Processor Temperature Field Value Power Supply Field Value Not used by default Not used by default
3.2.27.
1A03h TPDO 4 Mapping Parameters
Index 1A03
Subindex
0 1 2 3 4
Data Type UINT8 UINT32
Access RW
PDO Mapping No
Value Range 0-4 UINT32
Default Value 0 0 0 0 0
Description
Number of subindexes Not used by default Not used by default Not used by default Not used by default
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
22 – 34
3.3. Manufacturer Objects
Index (hex)
2000 2001 2002 2003 2100 2101 2102 2103
2200 2201 2202 2203 2204 2205 2206 2214 2300 2301
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 300A 300B 3100
5555 5556
5B50
5B51
Object
RX Data 1 RX Data 2 RX Data 3 RX Data 4 TX Data 1 TX Data 2 TX Data 3 TX Data 4 Laser Beam Offset in mm Laser Beam Status Laser Beam RPS Laser Diodes Saturated Laser Diode Saturation Voltage Laser Diode Gain Select Heater Status DAC Target Voltage Processor temperature Power supply voltage Laser Beam Max RPS Laser Beam Minimum Separation Laser Beam Target RPS Laser Beam Max RPS Error Trace Specific Laser Beam Trace Multiple Laser Beams Laser Beam Autoreset Time Laser Beam Detect Threshold Voltage Laser Beam Offset Polarity Laser Beam Saturation Threshold Laser Beam Detection Algorithm Sel. Override Gain Select Heater Settings Start in Operational Mode Start in Operational NMT Delay Set Baudrate Set NodeID
Object Type
ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY
ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY VAR ARRAY VAR VAR
VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ARRAY ARRAY
VAR VAR
VAR
VAR
Data Type
UNSIGNED32 UNSIGNED32 UNSIGNED32 UNSIGNED32 UNSIGNED32 UNSIGNED32 UNSIGNED32 UNSIGNED32 INTEGER16 UNSIGNED8 UNSIGNED8 UNSIGNED8 UNSIGNED16 UNSIGNED8 UNSIGNED8 UNSIGNED16 FLOAT32 FLOAT32 UNSIGNED16 UNSIGNED16 UNSIGNED16 UNSIGNED16 UNSIGNED16 UNSIGNED16 UNSIGNED16 UNSIGNED16 UNSIGNED8 UNSIGNED16 UNSIGNED8 UNSIGNED8 INTEGER16 BOOLEAN UNSIGNED16 UNSIGNED16 UNSIGNED8
Access
RW RW RW RW RW RW RW RW RO RO RO RO RO RO RO RO RO RO RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW
PDO Mapping
Yes Yes Yes Yes Yes Yes Yes Yes
No No No No No No No No Yes Yes
No No No No No No No No No No No Yes No
No No
No
No
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
23 – 34
3.3.1. 2000h RX Data 1
Index 2000
Subindex
0 1…4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No Yes
Value Range 4 UINT32
3.3.2. 2001h RX Data 2
Index 2001
Subindex
0 1…4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No Yes
Value Range 4 UINT32
3.3.3. 2002h RX Data 3
Index 2002
Subindex
0 1…4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No Yes
Value Range 4 UINT32
3.3.4. 2003h RX Data 4
Index 2003
Subindex
0 1…4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No Yes
Value Range 4 UINT32
3.3.5. 2100h TX Data 1
Index 2100
Subindex
0 1…4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No Yes
Value Range 4 UINT32
3.3.6. 2100h TX Data 2
Index 2101
Subindex
0 1…4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No Yes
Value Range 4 UINT32
3.3.7. 2102h TX Data 3
Index 2102
Subindex
0 1…4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No Yes
Value Range 4 UINT32
Default Value 4 0
Description
Number of subindexes RX Data
Default Value 4 0
Description
Number of subindexes RX Data
Default Value 4 0
Description
Number of subindexes RX Data
Default Value 4 0
Description
Number of subindexes RX Data
Default Value 4 0
Description
Number of subindexes TX Data
Default Value 4 0
Description
Number of subindexes TX Data
Default Value 4 0
Description
Number of subindexes TX Data
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
24 – 34
3.3.8. 2103h TX Data 4
Index 2103
Subindex
0 1…4
Data Type UINT8 UINT32
Access
RO RW
PDO Mapping No Yes
Value Range 4 UINT32
3.3.9. 2200h Laser Beam Offset in mm
Default Value 4 0
Description
Number of subindexes TX Data
Index 2200
Subindex
0 1…2
Data Type UINT8 INT16
Access RO
PDO Mapping No Yes
Value Range 2 INT16
3.3.10.
2201h Laser Beam Status
Default Value 2 0
Description
Number of subindexes Laser beam #x offset in mm
Index 2201
Subindex
0 1…2
Data Type UINT8
Access RO
PDO Mapping No Yes
Value Range 2 0 … 3
3.3.11.
2202h Laser Beam RPS
Default Value 2 0
Description
Number of subindexes Laser beam #x status
Index 2202
Subindex
0 1…2
Data Type UINT8
Access RO
PDO Mapping No Yes
Value Range 2 UINT8
3.3.12.
2203h Laser Diodes Saturated
Default Value 2 0
Description
Number of subindexes Laser beam #x rps
Index 2203
Subindex
0 1…2
Data Type UINT8
Access RO
PDO Mapping No Yes
Value Range 2 0, 1
Default Value 2 0
Description
Number of subindexes Laser diodes saturated in diode array #x
3.3.13.
2204h Laser Diode Saturation Voltage
Index 2204
Subindex
0 1…2
Data Type UINT8 UINT16
Access RO
PDO Mapping No Yes
Value Range 2 UINT16
3.3.14.
2205h Laser Diode Gain Select
Default Value 2 0
Description
Number of subindexes Laser diode saturation voltage in array #x
Index 2205
Subindex
0 1…2
Data Type UINT8
Access RO
PDO Mapping No Yes
Value Range 2 0, 1
Default Value 2 0
Description
Number of subindexes Laser diode gain select in array #x
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
25 – 34
3.3.15.
2206h Heater Status
Index 2206
Subindex 0
Data Type UINT16
Access RO
PDO Mapping Yes
Value Range UINT8
Default Value 0
Description Heater resistor status
3.3.16.
2214h DAC Target Voltage
Index 2214
Subindex
0 1…2
Data Type UINT8 UINT16
Access RO
PDO Mapping No Yes
Value Range 2 UINT16
3.3.17.
2300h CPU Temperature
Default Value 2 0
Description
Number of subindexes DAC target voltage for array #x
Index 2300
Subindex
0 1 2
Data Type UINT8 FLOAT32
Access RO
PDO Mapping No Yes
Value Range 2 -40…150
3.3.18.
2301h Power Supply Voltage
Default Value 2 0
Description
Number of subindexes CPU Temperature CPU Temperature at boot up
Index 2301
Subindex 0
Data
Access
Type
FLOAT32 RO
PDO Mapping Yes
Value Range VPS
Default Value 0
Description Measured VPS
3.3.19.
3000h Laser Beam Max RPS
Index 3000
Subindex
0 1…2
Data Type UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 2 0-4095
Default Value 2 20
Description
Number of subindexes Max RPS for laser beam #x
3.3.20.
3001h Laser Beam Minimum Separation
Index 3001
Subindex
0 1…2
Data Type UINT8 UINT16
Access
RO RW
PDO Mapping No
Value Range 2 UINT16
3.3.21.
3002h Laser Beam Target RPS
Default Value 2 5
Description
Number of subindexes Minimum separation for laser beam #x
Index 3002
Subindex
0 1…2
Data Type UINT8
Access
RO RW
PDO Mapping No
Value Range 2 UINT8
Default Value 2 10
Description
Number of subindexes Preferred RPS for laser beam #x
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
26 – 34
3.3.22.
3003h Laser Beam Max RPS Error
Index 3003
Subindex
0 1…2
Data Type UINT8
Access
RO RW
PDO Mapping No
Value Range 2 UINT8
Default Value 2 1
Description
Number of subindexes Maximum RPS error for laser beam #x
3.3.23.
3004h Laser Beam Trace Specific
Index 3004
Subindex 0
Data Type UINT8
Access RW
PDO Mapping No
Value Range 0, 1
Default Value 0
Description Trace specific laser beam
3.3.24.
3005h Laser Beam Trace Multiple
Index 3005
Subindex 0
Data Type UINT8
Access RW
PDO Mapping No
Value Range 0, 1
Default Value 0
Description Trace multiple laser beams
3.3.25.
3006h Laser Beam Autoreset Time
Index 3006
Subindex 0
Data Type UINT16
Access RW
PDO Mapping No
Value Default Range Value UINT16 200
Description Laser detection autoreset time in milliseconds
3.3.26.
3007h Laser Beam Detect Threshold Voltage
Index 3007
Subindex 0
Data Type UINT16
Access RW
PDO Mapping No
Value Default Range Value 0…4095 50
Description Laser detection threshold voltage in millivolts
3.3.27.
3008h Laser Beam Offset Polarity
Index 3008
Subindex 0
Data Type UINT8
Access RW
PDO Mapping No
Value Range 0…3
Default Value 0
Description
Laser beam detection offset polarity 0 zero at bottom 1 zero at top 2 zero in the middle, positive 3 zero in the middle, negative
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
27 – 34
3.3.28.
3009h Laser Diode Saturation Threshold
Index 3009
Subindex 0
Data Type UINT16
Access RW
PDO Mapping No
Value Default Range Value 0…5000 4500
Description
Laser detection saturation threshold voltage in millivolts
3.3.29.
300Ah Laser Beam Detection Algorithm Select
Index 300A
Subindex 0
Data Type UINT8
Access RW
PDO Mapping No
Value Range 0…2
Default Value 0
Description
Laser detection algorithm select 0 Default algorithm 1 Reserved for future use 2 Transmit at reception (unfiltered)
3.3.30.
300Bh Override Gain Select
Index 300B
Subindex
0 1…2
Data Type UINT8
Access
RO RW
PDO Mapping No Yes
Value Range 2 0, 1, 255
Default Value 2 255
Description
Number of subindexes Override gain select 0 low gain 1 high gain 255 automatic gain detection
3.3.31.
3100h Heater Settings
Index 3100
Subindex
0 1
Data Type UINT8 INT16
2
Access
RO RW
PDO Mapping No
Value Range 2 -40 … 150
Default Value 2 10
0 … 10080 5
Description
Number of subindexes Heater on threshold temperature at bootup in degrees Celsius Heater on duration in minutes
3.3.32.
5555h Start In Operational Mode
Index 5555
Subindex 0
Data Type UINT8
Access RW
PDO Mapping No
Value Range 0-3
Default Value 0
Description
0 No action, wait NMT commands 1 Start directly in operational mode 2 Start in operational mode and send NMT for starting also other devices 3 Start in operational mode and set PDS FSA to Enabled Mode.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
28 – 34
3.3.33.
5556h Start In Operational Mode NMT Delay
Index 5556
Subindex 0
Data Type UINT16
Access RW
PDO Mapping No
Value Range 065000
Default Value 1000
Description
Delay in milliseconds before sending the NMT message in case object 5555h is set to `2′.
3.3.34.
5B50h Set Baudrate
Index 5B50
Subindex 0
Data Type UINT16
Access RW
PDO Mapping No
Value Range enum
Default Value 250
Description
Shows current CAN baud rate, sets a new one on write (enum values accepted, see Table 4)
3.3.35.
5B51h Set Node ID
Index 5B51
Subindex 0
Data Type UINT8
Access RW
PDO Mapping No
Value Range 1-127
Default Value 80
Description Shows current node ID, sets a new one on write
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
29 – 34
4. FIRMWARE REFLASHING INSTRUCTIONS
WARNING! The firmware reflashing can be carried out only using Axiomatic Technologies’ Electronic Assistant KIT, AX070502/AX070506K and 250k CAN baud rate.
DO NOT START THE BOOTLOADER WITHOUT THE KIT!
The Axiomatic Electronic Assistant compatible J1939 bootloader can be started by writing `1′ to subindex 0 of the object 55AAh:
1. To do so, the object 55AAh can be accessed using CANopen® tools or by sending the
following SDO write message using CAN Assistant Scope (assuming default node id of
0x7F):
ID
Len D0 D1 D2 D3 D4 D5 D6 D7
67F
8 2F AA 55 00 01 00 00 00
If everything is correct, the controller acknowledges the writing operation and activates software reset after the message is sent.
2. Run the Axiomatic Electronic Assistant (EA) software and connect to the CAN port. The CAN baud rate needs to be changed to 250k because the bootloader and the Axiomatic EA use J1939 messaging. The user should see the following screen:
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
30 – 34
Note that the bootloader is NOT Arbitrary Address Capable. This means that if you want to have multiple bootloaders running simultaneously (not recommended) you would have to manually change the address for each one before activating the next, or there will be address conflicts. And only one ECU would show up as the bootloader. Once the `active’ bootloader returns to regular functionality, the other ECU(s) would have to be power cycled to re-activate the bootloader feature.
3. Select the Flashing button and navigate to where you had saved the AF-20174-x.xx.bin (or equivalent) file sent from Axiomatic. (Note: only binary (.bin) files can be flashed using the Axiomatic EA tool.)
4. Once the Flash Application Firmware window opens, you can enter comments such as “Firmware upgraded by [Name]” if you so desire. This is not required, and you can leave the field blank if you do not want to use it.
Note: You do not have to date/time-stamp the file, as this is done automatically by the Axiomatic EA tool when you upload the new firmware.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
31 – 34
NOTE: It is good practice to tick the “Erase All ECU Flash Memory” box. Please note, that selecting this option will erase ALL data stored in non-volatile flash. It will also erase any configuration of the setpoints that might have been done to the ECU and reset all setpoints to their factory defaults. In case the controller contains custom settings, those settings need to be saved to PC before reflashing.
A progress bar will show how much of the firmware has been sent as the upload progresses. The more traffic there is on the J1939 network, the longer the upload process will take.
Once the firmware has finished uploading, a message will pop up indicating the successful operation. If you select to reset the ECU, the new version of the AX064001 application will start running, and the ECU will switch back to CANopen communications. Otherwise, the next time the ECU is powercycled, the AX064001 application will run rather than the bootloader function.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
32 – 34
Note: If at any time during the upload the process is interrupted, the data is corrupted (bad checksum) or for any other reason the new firmware is not correct, i.e. bootloader detects that the file loaded was not designed to run on the hardware platform, the bad or corrupted application will not run. Rather, when the ECU is reset or power-cycled the J1939 Bootloader will continue to be the default application until valid firmware has been successfully uploaded into the unit.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
33 – 34
APPENDIX A – TECHNICAL SPECIFICATION Technical Specifications:
Specifications are indicative and subject to change. Actual performance will vary depending on the application and operating conditions. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process as described on https://www.axiomatic.com/service/.
All specifications are typical at nominal input voltage and 25 degrees C unless otherwise specified.
Power Input CAN Port Interface with laser beam
User Interface
Approvals Enclosure Electrical Pinout Protection Vibration Shock Weight Temperature Rating
8….36Vdc (12V or 24V nominal)
CANopen®
160 degree beam detection 190 mm (7.5 in.) beam detection height range Detects rotational lasers with rotation speed between 2-20 RPS. Detects rotational lasers within 630 nm 850 nm and 1m 150 m Reports RPS of received laser beam Resolution is 2.3 mm. Precision 3 mm (0.1 in.)
The Axiomatic Electronic Assistant, P/Ns: AX070502 or AX070506K for SAE J1939 model and to flash new firmware. EDS file for CANopen® model AX064001
CE marking
Plexiglass Refer to the dimensional drawing.
2 5-pin M12 connectors
IP69K
MIL-STD-202G, Test 204D and 214A (Sine and Random) 10 g peak (Sine); 7.86 Grms peak (Random)
MIL-STD-202G, Test 213B; 50 g
1.00 lb. (0.453 kg)
Operating: -40 to 85°C (-40 to 185°F) Storage: -50 to 90°C (-58 to 194°F)
Figure 1.0 Dimensional Drawing
NOTE: CANopen® is a registered community trademark of CAN in Automation e.V.
UMAX064001 Version 1.0.2.
Documentation May be Subject to Change
A-1
OUR PRODUCTS
AC/DC Power Supplies Actuator Controls/Interfaces Automotive Ethernet Interfaces Battery Chargers CAN Controls, Routers, Repeaters CAN/WiFi, CAN/Bluetooth, Routers Current/Voltage/PWM Converters DC/DC Power Converters Engine Temperature Scanners Ethernet/CAN Converters, Gateways, Switches Fan Drive Controllers Gateways, CAN/Modbus, RS-232 Gyroscopes, Inclinometers Hydraulic Valve Controllers Inclinometers, Triaxial I/O Controls LVDT Signal Converters Machine Controls Modbus, RS-422, RS-485 Controls Motor Controls, Inverters Power Supplies, DC/DC, AC/DC PWM Signal Converters/Isolators Resolver Signal Conditioners Service Tools Signal Conditioners, Converters Strain Gauge CAN Controls Surge Suppressors
OUR COMPANY
Axiomatic provides electronic machine control components to the off-highway, commercial vehicle, electric vehicle, power generator set, material handling, renewable energy and industrial OEM markets. We innovate with engineered and off-the-shelf machine controls that add value for our customers.
QUALITY DESIGN AND MANUFACTURING
We have an ISO9001:2015 registered design/manufacturing facility in Canada.
WARRANTY, APPLICATION APPROVALS/LIMITATIONS
Axiomatic Technologies Corporation reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process at https://www.axiomatic.com/service/.
COMPLIANCE
Product compliance details can be found in the product literature and/or on axiomatic.com. Any inquiries should be sent to sales@axiomatic.com.
SAFE USE
All products should be serviced by Axiomatic. Do not open the product and perform the service yourself.
This product can expose you to chemicals which are known in the State of California, USA to cause cancer and reproductive harm. For more information go to www.P65Warnings.ca.gov.
SERVICE
All products to be returned to Axiomatic require a Return Materials Authorization Number (RMA#) from sales@axiomatic.com. Please provide the following information when requesting an RMA number:
· Serial number, part number · Runtime hours, description of problem · Wiring set up diagram, application and other comments as needed
DISPOSAL
Axiomatic products are electronic waste. Please follow your local environmental waste and recycling laws, regulations and policies for safe disposal or recycling of electronic waste.
CONTACTS
Axiomatic Technologies Corporation 1445 Courtneypark Drive E. Mississauga, ON CANADA L5T 2E3 TEL: +1 905 602 9270 FAX: +1 905 602 9279 www.axiomatic.com sales@axiomatic.com
Axiomatic Technologies Oy Höytämöntie 6 33880 Lempäälä FINLAND TEL: +358 103 375 750
www.axiomatic.com
salesfinland@axiomatic.com
Copyright 2023
Documents / Resources
![]() |
AXIOMATIC AX064001 Laser Receiver [pdf] User Manual AX064001 Laser Receiver, AX064001, Laser Receiver, Receiver |