ALINX-logo

ALINX AXKU042 KINTEX UltraScale FPGA Development Board

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-product

Version Record
Alinx Electronic Technology (Shanghai) Co., Ltd, based on the KINTEX UltraSacale series development platform for the architecture (model: AXKU042) has been officially released. In order to let you quickly understand this development platform, we have compiled this user manual.

Version Modify Record
REV1.0 Create Documents
   
   
   
   
   
   

AXKU042 adopts a core board and expansion board model, which facilitates users’ secondary development and utilization of the core board. The core board is equipped with four 1GB high-speed DDR4 SDRAM chips and two 128Mb QSPI FLASH chips. In terms of expansion board design, we have extended a variety of interfaces for users: two 10G SFP+fiber optic interfaces, 3 FMC expansion interfaces (1 HPC, 2 LPC), 1-gigabit network port, 1 UART serial port, 1 SD card interface, LED buttons, and so on. The following figure is a schematic diagram of the entire development system structure:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (1)

Through this diagram, you can see the interfaces and functions that the AXKU042 Development Board contains:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (2)

FPGA Core Board

  1. FPGA chip:Xilinx KINTEX UltraSacale chip XCKU040.
  2. DDR4:With four large-capacity 1GB (4 GB total) high-speed DDR4 SDRAM, can be used as data storage for FPGA, image analysis cache, and data processing;
  3. QSPI FLASH two 128Mbit QSPI NOR FLASH memory chips can be used as a storage for configuration files and user data;
  4. One differential crystal vibration of 200 Mhz;
  5. Two diode LEDs, 1 power indicator, 1 DONE configuration indicator.
    Development Board
    1. Two SFP and optical fiber communication interfaces, each fiber optical data communication receives and transmits at speeds of up to 16.3 Gb/s.
    2. One PCIE3.0 X8 interface, endpoint mode, is used to communicate data between PC and PCIE.
    3. USB Uart interface, used for communication with the computer for user debugging. The serial port chip adopts the USB-UAR chip of Silicon Labs CP2102GM, and the USB interface adopts the MINI USB interface.
    4. 1 channel 10/100M/1000MEthernet RJ45 interface for Ethernet data exchange with computers or other network devices. The network interface chip uses Micrel’s KSZ9031 industrial-grade GPHY chip.
  6. 3 standard FMC expansion port, including 2 LPC FMC expansion ports and 1 HPC FMC expansion port, which can be connected to various FMC modules of Xilinx or Alinx(HDMI input and output modules, binocular camera modules, high-speed AD modules, etc. )
  7. 1Micro SD card holder, used to store operating system image and file system.
  8. 2 SMA external interfaces, the pins are connected to the transceiver for external high-speed input and output signals.
  9. Onboard a temperature and humidity sensor chip LM75 for detecting the temperature and humidity of the environment around the board.
  10. One EEPROM is used for IIC bus communication and storage of some customer-defined information.
  11. A 10-pin 2.54mm spacing standard JTAG port for FPGA program download and debugging. Users can debug and download FPGAs through the XILINX downloader.
  12. Two 156.25Mhz differential crystal onboard provides a reference clock for the transceiver.
  13. LEDs,1 power indicator, 4 user indicators,1 pair of panel indicator.

Part 1 AXKU042 Development Board

Part 1.1: FPGA Development Board Introduction

AXKU042(core board model, the same below) FPGA core board, FPGA chip is based on XCKU040-2FFVA1156I of XILINX company XC7K325 series.This core board uses four Micron’s MT40A512M16LY-062EIT, each of which has a capacity of 1GB, the total capacity is 4 GB. In addition, the FPGA chip configuration uses two128MBit QSPI FLASH, used as FPGA data storage and system files. The six board-to-board connectors of the core board AXKU042 expand 359 IOs, Of which 104 IO levels of BANK64 and BANK65 is 3.3V, while other IOs levels of bank is 1.8V; In addition,the core board also extended 20 pairs of high-speed Transceiver GTH interfaces. For users who need a lot of IO, this core board will be a good choice. And IO connection part, the line between the chip and the interface have been done the equal length and differential processing, and the core board size is only 80 * 60 (mm), very suitable for secondary development.

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (3)

Part 1.2: FPGA Chip
The FPGA development board uses Xilinx’s KINTEX UltraScale chip, model number XCKU040-2FFVA1156I. The speed class is 2 and the temperature class is industrial. This model is a FFVA1156 package with 1156 pins and a 1.0mm pitch. The chip naming rules for Xilinx KINTEX UltraScale FPGA are shown in Figure 1-2-1 below:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- 28

Figure 1-2-1 The Chip Model Definition of KINTEX UltraScale Series The main parameters of AXKU042 are as follows:

Name Specific parameters
Logic Cells 530,250
CLB LUTs 242,400
CLB flip-flops 484,800
Block RAM(Mb) 21.1
DSP Slices 1,920
PCIe Gen3 x8 3
GTH Transceiver 20 个,16.3Gb/s max
Speed Grade -2
Temperature Grade Industrial

Part 1.3: DDR4 DRAM
The AXKU042 FPGA development board is equipped with four Micron 1GB DDR4 chips, model MT40A512M16LY-062EIT. Four DDR4 SDRAMs form a 64-bit bus width. Because four DDR4 chips are connected to the FPGA, the DDR4 SDRAM can run at speeds up to 1200MHz, and four DDR4 memory systems are directly connected to the BANK44, BANK45, and BANK46 interfaces of the FPGA. The specific configuration of DDR4 SDRAM is shown in Table 3-1.

Figure 3-1 DDR4 SDRAM Configuration

Bit Number Chip Model Capacity Factory
U45,U47,U48,U49 MT40A512M16LY-062EIT 512M x 16bit Micron


The hardware design of DDR4 requires strict consideration of signal integrity. We have fully considered the matching resistor/terminal resistance, trace impedance control, and trace length control in circuit design and PCB design to ensure
the high-speed and stable operation of DDR3. The hardware connection mode of FPGA and DDR4 DRAM is shown in Figure 1-3-1:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (4)

Figure1-3-1 DDR4 DRAM schematic diagram 4 pieces DDR4 DRAM pin assignments

Part 1.4: QSPI Flash

The AXKU042 FPGA development board is equipped with two 128MBit Quad-SPI FLASH, and the model is N25Q128A, which uses the 3.3V CMOS voltage standard. Due to the non-volatile nature of QSPI FLASH, it can store FPGA configuration Bin files and other user data files in use. The specific models and related parameters of QSPI FLASH are shown in Figure 4-1.

Figure 4-1 QSPI Flash Specification

QSPI FLASH is connected to the dedicated pins of BANK0 of the FPGA chip. The clock pin is connected to CCLK0 of BANK0, and other data signals are connected to D00~D03 and FCS pins. Figure 4-2 shows the hardware connection of QSPI Flash and FPGA Chip.

QSPI Flash pin assignments

Signal Name FPGA Pin Name FPGA Pin
PL_DDR4_DQ0 IO_L3N_T0L_N5_AD15N_44 AE20
PL_DDR4_DQ1 IO_L2N_T0L_N3_44 AG20
PL_DDR4_DQ2 IO_L2P_T0L_N2_44 AF20
PL_DDR4_DQ3 IO_L5P_T0U_N8_AD14P_44 AE22
PL_DDR4_DQ4 IO_L3P_T0L_N4_AD15P_44 AD20
PL_DDR4_DQ5 IO_L6N_T0U_N11_AD6N_44 AG22
PL_DDR4_DQ6 IO_L6P_T0U_N10_AD6P_44 AF22
PL_DDR4_DQ7 IO_L5N_T0U_N9_AD14N_44 AE23
PL_DDR4_DQ8 IO_L8N_T1L_N3_AD5N_44 AF24
PL_DDR4_DQ9 IO_L11P_T1U_N8_GC_44 AJ23
PL_DDR4_DQ10 IO_L8P_T1L_N2_AD5P_44 AF23
PL_DDR4_DQ11 IO_L12N_T1U_N11_GC_44 AH23
PL_DDR4_DQ12 IO_L9N_T1L_N5_AD12N_44 AG25
PL_DDR4_DQ13 IO_L11N_T1U_N9_GC_44 AJ24
PL_DDR4_DQ14 IO_L9P_T1L_N4_AD12P_44 AG24
PL_DDR4_DQ15 IO_L12P_T1U_N10_GC_44 AH22
PL_DDR4_DQ16 IO_L14P_T2L_N2_GC_44 AK22
PL_DDR4_DQ17 IO_L17P_T2U_N8_AD10P_44 AL22
PL_DDR4_DQ18 IO_L15N_T2L_N5_AD11N_44 AM20
PL_DDR4_DQ19 IO_L17N_T2U_N9_AD10N_44 AL23
PL_DDR4_DQ20 IO_L14N_T2L_N3_GC_44 AK23
PL_DDR4_DQ21 IO_L18N_T2U_N11_AD2N_44 AL25
PL_DDR4_DQ22 IO_L15P_T2L_N4_AD11P_44 AL20
PL_DDR4_DQ23 IO_L18P_T2U_N10_AD2P_44 AL24
PL_DDR4_DQ24 IO_L20P_T3L_N2_AD1P_44 AM22
PL_DDR4_DQ25 IO_L23P_T3U_N8_44 AP24
PL_DDR4_DQ26 IO_L20N_T3L_N3_AD1N_44 AN22
PL_DDR4_DQ27 IO_L21N_T3L_N5_AD8N_44 AN24
PL_DDR4_DQ28 IO_L24P_T3U_N10_44 AN23
PL_DDR4_DQ29 IO_L23N_T3U_N9_44 AP25
PL_DDR4_DQ30 IO_L24N_T3U_N11_44 AP23
PL_DDR4_DQ31 IO_L21P_T3L_N4_AD8P_44 AM24
PL_DDR4_DQ32 IO_L2P_T0L_N2_46 AM26
PL_DDR4_DQ33 IO_L6P_T0U_N10_AD6P_46 AJ28
PL_DDR4_DQ34 IO_L2N_T0L_N3_46 AM27
PL_DDR4_DQ35 IO_L6N_T0U_N11_AD6N_46 AK28
PL_DDR4_DQ36 IO_L5P_T0U_N8_AD14P_46 AH27
PL_DDR4_DQ37 IO_L5N_T0U_N9_AD14N_46 AH28
PL_DDR4_DQ38 IO_L3P_T0L_N4_AD15P_46 AK26
PL_DDR4_DQ39 IO_L3N_T0L_N5_AD15N_46 AK27
PL_DDR4_DQ40 IO_L9N_T1L_N5_AD12N_46 AN28
PL_DDR4_DQ41 IO_L12N_T1U_N11_GC_46 AM30
PL_DDR4_DQ42 IO_L8P_T1L_N2_AD5P_46 AP28
PL_DDR4_DQ43 IO_L11N_T1U_N9_GC_46 AM29
PL_DDR4_DQ44 IO_L9P_T1L_N4_AD12P_46 AN27
PL_DDR4_DQ45 IO_L12P_T1U_N10_GC_46 AL30
PL_DDR4_DQ46 IO_L11P_T1U_N8_GC_46 AL29
PL_DDR4_DQ47 IO_L8N_T1L_N3_AD5N_46 AP29
PL_DDR4_DQ48 IO_L14P_T2L_N2_GC_46 AK31
PL_DDR4_DQ49 IO_L18P_T2U_N10_AD2P_46 AH34
PL_DDR4_DQ50 IO_L14N_T2L_N3_GC_46 AK32
PL_DDR4_DQ51 IO_L15N_T2L_N5_AD11N_46 AJ31
PL_DDR4_DQ52 IO_L15P_T2L_N4_AD11P_46 AJ30
PL_DDR4_DQ53 IO_L17P_T2U_N8_AD10P_46 AH31
PL_DDR4_DQ54 IO_L18N_T2U_N11_AD2N_46 AJ34
PL_DDR4_DQ55 IO_L17N_T2U_N9_AD10N_46 AH32
PL_DDR4_DQ56 IO_L21P_T3L_N4_AD8P_46 AN31
PL_DDR4_DQ57 IO_L24P_T3U_N10_46 AL34
PL_DDR4_DQ58 IO_L23N_T3U_N9_46 AN32
PL_DDR4_DQ59 IO_L20P_T3L_N2_AD1P_46 AN33
PL_DDR4_DQ60 IO_L23P_T3U_N8_46 AM32
PL_DDR4_DQ61 IO_L24N_T3U_N11_46 AM34
PL_DDR4_DQ62 IO_L21N_T3L_N5_AD8N_46 AP31
PL_DDR4_DQ63 IO_L20N_T3L_N3_AD1N_46 AP33
PL_DDR4_DM0 IO_L1P_T0L_N0_DBC_44 AD21
PL_DDR4_DM1 IO_L7P_T1L_N0_QBC_AD13P_44 AE25
PL_DDR4_DM2 IO_L13P_T2L_N0_GC_QBC_44 AJ21
PL_DDR4_DM3 IO_L19P_T3L_N0_DBC_AD9P_44 AM21
PL_DDR4_DM4 IO_L1P_T0L_N0_DBC_46 AH26
PL_DDR4_DM5 IO_L7P_T1L_N0_QBC_AD13P_46 AN26
PL_DDR4_DM6 IO_L13P_T2L_N0_GC_QBC_46 AJ29
PL_DDR4_DM7 IO_L19P_T3L_N0_DBC_AD9P_46 AL32
PL_DDR4_DQS0_P IO_L4P_T0U_N6_DBC_AD7P_44 AG21
PL_DDR4_DQS0_N IO_L4N_T0U_N7_DBC_AD7N_44 AH21
PL_DDR4_DQS1_P IO_L10P_T1U_N6_QBC_AD4P_44 AH24
PL_DDR4_DQS1_N IO_L10N_T1U_N7_QBC_AD4N_44 AJ25
PL_DDR4_DQS2_P IO_L16P_T2U_N6_QBC_AD3P_44 AJ20
PL_DDR4_DQS2_N IO_L16N_T2U_N7_QBC_AD3N_44 AK20
PL_DDR4_DQS3_P IO_L22P_T3U_N6_DBC_AD0P_44 AP20
PL_DDR4_DQS3_N IO_L22N_T3U_N7_DBC_AD0N_44 AP21
PL_DDR4_DQS4_P IO_L4P_T0U_N6_DBC_AD7P_46 AL27
PL_DDR4_DQS4_N IO_L4N_T0U_N7_DBC_AD7N_46 AL28
PL_DDR4_DQS5_P IO_L10P_T1U_N6_QBC_AD4P_46 AN29
PL_DDR4_DQS5_N IO_L10N_T1U_N7_QBC_AD4N_46 AP30
PL_DDR4_DQS6_P IO_L16P_T2U_N6_QBC_AD3P_46 AH33
PL_DDR4_DQS6_N IO_L16N_T2U_N7_QBC_AD3N_46 AJ33
PL_DDR4_DQS7_P IO_L22P_T3U_N6_DBC_AD0P_46 AN34
PL_DDR4_DQS7_N IO_L22N_T3U_N7_DBC_AD0N_46 AP34
PL_DDR4_A0 IO_L18N_T2U_N11_AD2N_45 AG14
PL_DDR4_A1 IO_L23N_T3U_N9_45 AF17
PL_DDR4_A2 IO_L20P_T3L_N2_AD1P_45 AF15
PL_DDR4_A3 IO_L16N_T2U_N7_QBC_AD3N_45 AJ14
PL_DDR4_A4 IO_L19N_T3L_N1_DBC_AD9N_45 AD18
PL_DDR4_A5 IO_L15P_T2L_N4_AD11P_45 AG17
PL_DDR4_A6 IO_L23P_T3U_N8_45 AE17
PL_DDR4_A7 IO_L11N_T1U_N9_GC_45 AK18
PL_DDR4_A8 IO_L24P_T3U_N10_45 AD16
PL_DDR4_A9 IO_L13P_T2L_N0_GC_QBC_45 AH18
PL_DDR4_A10 IO_L19P_T3L_N0_DBC_AD9P_45 AD19
PL_DDR4_A11 IO_L24N_T3U_N11_45 AD15
PL_DDR4_A12 IO_L14P_T2L_N2_GC_45 AH16
PL_DDR4_A13 IO_L10N_T1U_N7_QBC_AD4N_45 AL17
PL_DDR4_BA0 IO_L18P_T2U_N10_AD2P_45 AG15
PL_DDR4_BA1 IO_L10P_T1U_N6_QBC_AD4P_45 AL18
PL_DDR4_BG0 IO_L16P_T2U_N6_QBC_AD3P_45 AJ15
PL_DDR4_WE_B IO_L9N_T1L_N5_AD12N_45 AL15
PL_DDR4_RAS_B IO_L8N_T1L_N3_AD5N_45 AM19
PL_DDR4_CAS_B IO_L8P_T1L_N2_AD5P_45 AL19
PL_DDR4_CKE IO_L14N_T2L_N3_GC_45 AJ16
PL_DDR4_ACT_B IO_L21N_T3L_N5_AD8N_45 AF18
PL_DDR4_CLK_N IO_L22N_T3U_N7_DBC_AD0N_45 AE15
PL_DDR4_CLK_P IO_L22P_T3U_N6_DBC_AD0P_45 AE16
PL_DDR4_CS_B IO_L21P_T3L_N4_AD8P_45 AE18
PL_DDR4_OTD IO_L17P_T2U_N8_AD10P_45 AG19
PL_DDR4_PAR IO_L20N_T3L_N3_AD1N_45 AF14
PL_DDR4_RST IO_L15N_T2L_N5_AD11N_45 AG16
Position Model Capacity Factory
U14 N25Q128A 128Mbit Numonyx

Part 1.5: Clock configuration

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (5)

Signal Name FPGA Pin Name FPGA Pin
QSPI_CCLK CCLK_0 AA9
QSPI0_CS_B RDWR_FCS_B_0 U7
QSPI0_IO0 D00_MOSI_0 AC7
QSPI0_IO1 D01_DIN_0 AB7
QSPI0_IO2 D02_0 AA7
QSPI0_IO3 D03_0 Y7
Signal Name FPGA Pin Name FPGA Pin
QSPI_CCLK CCLK_0 AA9
QSPI1_CS_B IO_L2N_T0L_N3_FWE_FCS2_B_65 G26
QSPI1_IO0 IO_L22P_T3U_N6_DBC_AD0P_D04_65 M20
QSPI1_IO1 IO_L22N_T3U_N7_DBC_AD0N_D05_65 L20
QSPI1_IO2 IO_L21P_T3L_N4_AD8P_D06_65 R21
QSPI1_IO3 IO_L21N_T3L_N5_AD8N_D07_65 R22

200Mhz differential clock source A differential 200MHz clock source is provided on the FPGA development board to provide the system clock to the FPGA. The crystal differential output is connected to the FPGA BANK45, which can be used to drive the DDR controller operating clock and other user logic in the FPGA. The schematic diagram of the clock source is shown in Figure 1-5-1.

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (6)

System Clock pin assignments

Signal Name FPGA Pin
PL_CLK0_P AK17
PL_CLK0_N AK16

There are two red LEDs on the AXKU042 FPGA development board, one of which is the power indicator (PWR), and one is a DONE indicator. When the AXKU042 FPGA board is powered on, the power indicator and DONE indicator will light up; when the AXKU042 FPGA is configured, the DONE LED will light up; The LEDs hardware connection is shown in Figure 1-6-1.

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (7)

Part 1.7: Power Supply
The power input voltage of the AXKU042 FPGA development board is DC12V, and the power supply is provided by the carrier board. The power supply design diagram on the board is shown in Figure 1-7-1 below:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (7)

Figure 1-7-1 Power Supply schematic diagram
+12V generates+0.95V FPGA core power through the DCDC power chipcMYMGK1R820ERSR. The output current of the MYMGK1R820FRSR is as high as 20A, which far meets the core voltage current demand. Then + 12V power supply through the DCDC chip ETA1471 is generated four power supplies:+1.2V,+1.8V+3.3V, and MGTAVTT. The MGTAVCC used in the GTX transceiver is generated by the DCDC chip ETA8156, and an LDO chip SPX3819-1-8 is used to generate the auxiliary power supply of the GTX+1.8V. The VTT and VREF voltages of DDR4 are generated by TPS51200.

Part 1.8: Size Dimension

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (9)

Part 1.9: Board to Board Connectors pin assignment The core board expands a total of six high-speed expansion connectors, and uses four 120-pin inter-board connectors (J1,J3, J4,J5) and the two 80-pin inter-board connectors (J2,J6) to connect to the carrier board. The connector uses Panasonic’s AXK5A2137YG and AXK580137YG. The connectors of the corresponding carrier plates are AXK6A2337YG and AXK680337YG. J1 is connected to the IO of BANK66 and BANK68, and the power is 1.8V.

Pin assignment of J1 connector
J2 connector 80 Pin, connect the high-speed differential signal of transceiver BANK226~228.

J1 Pin Signal Name FPGA Pin J1 Pin Signal Name FPGA Pin
1 B66_L3_N C8 2 B66_L1_N E8
3 B66_L3_P D8 4 B66_L1_P F8
5 B66_L7_N K8 6 B66_L2_N A9
7 B66_L7_P L8 8 B66_L2_P B9
J1 Pin Signal Name FPGA Pin J1 Pin Signal Name FPGA Pin
1 B66_L3_N C8 2 B66_L1_N E8
3 B66_L3_P D8 4 B66_L1_P F8
5 B66_L7_N K8 6 B66_L2_N A9
7 B66_L7_P L8 8 B66_L2_P B9
79 GND 80 GND
81 B68_L16_N F19 82 B68_L10_N D18
83 B68_L16_P G19 84 B68_L10_P D19
85 B68_L18_N H18 86 B68_L1_N A14
87 B68_L18_P H19 88 B68_L1_P B14
89 GND 90 GND
91 B68_L22_N J18 92 B68_L3_N A15
93 B68_L22_P J19 94 B68_L3_P B15
95 B68_L24_N L18 96 B68_L5_N B16
97 B68_L24_P L19 98 B68_L5_P B17
99 GND 100 GND
101 B68_L13_N G16 102 B68_L7_N C14
103 B68_L13_P G17 104 B68_L7_P D14
105 B68_L14_N F17 106 B68_L6_N C17
107 B68_L14_P F18 108 B68_L6_P C18
109 GND 110 GND
111 B68_L12_N E17 112 B68_L2_N A18
113 B68_L12_P E18 114 B68_L2_P A19
115 B68_L17_N H16 116 B68_L4_N B19
117 B68_L17_P H17 118 B68_L4_P C19
119 GND 120 GND

Pin assignment of J2 connector
J3 is the high-speed difference signal of the transceiver BANK224~226 and the partial signal of BANK64, BANK65

J2 Pin Signal Name FPGA Pin J2 Pin Signal Name FPGA Pin
1 GND 2 GND
3 226_TX2_N U3 4 226_RX2_N T1
5 226_TX2_P U4 6 226_RX2_P T2
7 GND 8 GND
9 226_TX3_N R3 10 226_RX3_N P1
11 226_TX3_P R4 12 226_RX3_P P2
13 GND 14 GND
15 226_CLK1_N T5 16 226_CLK0_N V5
17 226_CLK1_P T6 18 226_CLK0_P V6
19 GND 20 GND
21 227_TX0_P N4 22 227_RX0_P M2
23 227_TX0_N N3 24 227_RX0_N M1
25 GND 26 GND
27 227_TX1_P L4 28 227_RX1_P K2
29 227_TX1_N L3 30 227_RX1_N K1
31 GND 32 GND
33 227_TX2_P J4 34 227_RX2_P H2
35 227_TX2_N J3 36 227_RX2_N H1
37 GND 38 GND
39 227_TX3_P G4 40 227_RX3_P F2
41 227_TX3_N G3 42 227_RX3_N F1
43 GND 44 GND
45 227_CLK1_P M6 46 227_CLK0_P P6
47 227_CLK1_N M5 48 227_CLK0_N P5
49 GND 50 GND
51 228_TX0_P F6 52 228_RX0_P E4
53 228_TX0_N F5 54 228_RX0_N E3
55 GND 56 GND
57 228_TX1_P D6 58 228_RX1_P D2
59 228_TX1_N D5 60 228_RX1_N D1
61 GND 62 GND
63 228_TX2_P C4 64 228_RX2_P B2
65 228_TX2_N C3 66 228_RX2_N B1
67 GND 68 GND
69 228_TX3_P B6 70 228_RX3_P A4
71 228_TX3_N B5 72 228_RX3_N A3
73 GND 74 GND
75 228_CLK1_P H6 76 228_CLK0_P K6
77 228_CLK1_N H5 78 228_CLK0_N K5
79 GND 80 GND

Pin assignment of J3 connector

J3 Pin Signal Name FPGA Pin J3 Pin Signal Name FPGA Pin
1 B64_L7_N AF13 2 B64_L21_N AL9
3 B64_L7_P AE13 4 B64_L21_P AK10
5 B64_L11_N AH12 6 B64_L24_N AL8
7 B64_L11_P AG12 8 B64_L24_P AK8
9 GND L7 10 GND
11 B64_L9_N AF12 12 B64_L12_N AH11
13 B64_L9_P AE12 14 B64_L12_P AG11
15 B64_L13_N AG10 16 B64_L14_N AG9
17 B64_L13_P AF10 18 B64_L14_P AF9
19 GND L7 20 GND
21 B64_L10_N AE11 22 B64_L15_N AF8
23 B64_L10_P AD11 24 B64_L15_P AE8
25 B64_L18_N AH8 26 B64_L16_N AE10
27 B64_L18_P AH9 28 B64_L16_P AD10
29 GND L7 30 GND
31 B64_L17_N AD8 32 FPGA_TCK AC9
33 B64_L17_P AD9 34 FPGA_TDO U9
35 B64_L23_N AJ8 36 FPGA_TMS W9
37 B64_L23_P AJ9 38 FPGA_TDI V9
39 GND L7 40 GND
41 B65_T0U H23 42 B66_T3U E12
43 B65_T3U K22 44 B66_T2U F12
45 B65_T1U N23 46 B66_T1U L9
47 B65_T2U N27 48 NC
49 GND L7 50 GND
51 224_TX0_N AN3 52 224_RX0_N AP1
53 224_TX0_P AN4 54 224_RX0_P AP2
55 GND L7 56 GND
57 224_TX1_N AM5 58 224_RX1_N AM1
59 224_TX1_P AM6 60 224_RX1_P AM2
61 GND L7 62 GND
63 224_TX2_N AL3 64 224_RX2_N AK1
65 224_TX2_P AL4 66 224_RX2_P AK2
67 GND L7 68 GND
69 224_TX3_N AK5 70 224_RX3_N AJ3
71 224_TX3_P AK6 72 224_RX3_P AJ4
73 GND L7 74 GND
75 224_CLK1_N AD5 76 224_CLK0_N AF5
77 224_CLK1_P AD6 78 224_CLK0_P AF6
79 GND L7 80 GND
81 225_TX0_N AH5 82 225_RX0_N AH1
83 225_TX0_P AH6 84 225_RX0_P AH2
85 GND L7 86 GND
87 225_TX1_N AG3 88 225_RX1_N AF1
89 225_TX1_P AG4 90 225_RX1_P AF2
91 GND L7 92 GND
93 225_TX2_N AE3 94 225_RX2_N AD1
95 225_TX2_P AE4 96 225_RX2_P AD2
97 GND L7 98 GND
99 225_TX3_N AC3 100 225_RX3_N AB1
101 225_TX3_P AC4 102 225_RX3_P AB2
103 GND L7 104 GND
105 225_CLK1_N Y5 106 225_CLK0_N AB5
107 225_CLK1_P Y6 108 225_CLK0_P AB6
109 GND L7 110 GND
111 226_TX0_N AA3 112 226_RX0_N Y1
113 226_TX0_P AA4 114 226_RX0_P Y2
115 GND L7 116 GND
117 226_TX1_N W3 118 226_RX1_N V1
119 226_TX1_P W4 120 226_RX1_P V2

J4 connects the signal of BANK48 and the partial signal of BANK64. Pin assignment of J4 connector

J4 Pin Signal Name FPGA Pin J4 Pin Signal Name FPGA Pin
1 B48_L8_N AG34 2 B48_T2U AA33
3 B48_L8_P AF33 4 B48_T1U AE31
5 B48_L7_N AG32 6 B48_T3U V32
7 B48_L7_P AG31 8 B47_T3U U29
9 GND 10 GND
11 B48_L10_N AF34 12 B48_L18_N AD33
13 B48_L10_P AE33 14 B48_L18_P AC33
J4 Pin Signal Name FPGA Pin J4 Pin Signal Name FPGA Pin
1 B48_L8_N AG34 2 B48_T2U AA33
3 B48_L8_P AF33 4 B48_T1U AE31
5 B48_L7_N AG32 6 B48_T3U V32
7 B48_L7_P AG31 8 B47_T3U U29
9 GND 10 GND
11 B48_L10_N AF34 12 B48_L18_N AD33
13 B48_L10_P AE33 14 B48_L18_P AC33
85 NC 86 NC
87 NC 88 POWER_PG
89 GND 90 GND
91 B64_L8_N AJ13 92 B64_T1U AJ11
93 B64_L8_P AH13 94 B64_T3U AM9
95 B64_L6_N AL13 96 B64_T0U AK11
97 B64_L6_P AK13 98 B64_T2U AJ10
99 GND 100 GND
101 B64_L1_N AP10 102 B64_L2_N AP13
103 B64_L1_P AP11 104 B64_L2_P AN13
105 B64_L4_N AN12 106 B64_L22_N AP8
107 B64_L4_P AM12 108 B64_L22_P AN8
109 GND 110 GND
111 B64_L20_N AP9 112 B64_L19_N AM10
113 B64_L20_P AN9 114 B64_L19_P AL10
115 B64_L3_N AN11 116 B64_L5_N AL12
117 B64_L3_P AM11 118 B64_L5_P AK12
119 GND 120 GND

J5 connects the signal of BANK47 and the partial signal of BANK65. Pin assignment of J5 connector

J5 Pin Signal Name FPGA Pin J5 Pin Signal Name FPGA Pin
1 B65_L10_N K23 2 NC
3 B65_L10_P L22 4 NC
5 B65_L6_N H24 6 B65_L23_N M21
7 B65_L6_P J23 8 B65_L23_P N21
9 GND L7 10 GND
11 B65_L19_N M22 12 NC
13 B65_L19_P N22 14 B65_L2_P G25
15 B65_L9_N K25 16 B65_L1_N G27
17 B65_L9_P L25 18 B65_L1_P H27
19 GND L7 20 GND
21 B65_L24_N K21 22 B65_L5_N H26
23 B65_L24_P K20 24 B65_L5_P J26
25 B65_L12_N M24 26 B65_L4_N J25
27 B65_L12_P N24 28 B65_L4_P J24
29 GND L7 30 GND
31 B65_L20_N P21 32 B65_L3_N K27
33 B65_L20_P P20 34 B65_L3_P K26
35 B65_L7_N L27 36 B65_L11_N M26
37 B65_L7_P M27 38 B65_L11_P M25
39 GND L7 40 GND
41 B65_L13_N N26 42 B65_L18_N P23
43 B65_L13_P P26 44 B65_L18_P R23
45 B65_L14_N P25 46 B65_L15_N R27
47 B65_L14_P P24 48 B65_L15_P T27
49 GND 50 GND
51 B65_L8_N L24 52 B65_L17_N R26
53 B65_L8_P L23 54 B65_L17_P R25
55 NC 56 B65_L16_N T25
57 NC 58 B65_L16_P T24
59 GND L7 60 GND
61 B47_L11_N AA23 62 B47_L19_N V28
63 B47_L11_P Y23 64 B47_L19_P V27
65 B47_L14_N Y25 66 B47_L22_N U27
67 B47_L14_P W25 68 B47_L22_P U26
69 GND 70 GND
71 B47_L7_N AB22 72 B47_L20_N U25
73 B47_L7_P AA22 74 B47_L20_P U24
75 B47_L21_N Y28 76 B47_L17_N T23
77 B47_L21_P W28 78 B47_L17_P T22
79 GND 80 GND
81 B47_L3_N AC24 82 B47_L15_N U22
83 B47_L3_P AB24 84 B47_L15_P U21
85 B47_L23_N W29 86 B47_L24_N W26
87 B47_L23_P V29 88 B47_L24_P V26
89 GND 90 GND
91 B47_L10_N AC21 92 B47_L13_N W24
93 B47_L10_P AB21 94 B47_L13_P W23
95 B47_L5_N AB27 96 B47_L1_N Y27
97 B47_L5_P AA27 98 B47_L1_P Y26
99 GND 100 GND
101 B47_L9_N AB20 102 B47_L12_N AA25
103 B47_L9_P AA20 104 B47_L12_P AA24
105 B47_L4_N AC27 106 B47_L6_N AB26
107 B47_L4_P AC26 108 B47_L6_P AB25
109 GND 110 GND
111 B47_L8_N AC23 112 B47_L16_N V23
113 B47_L8_P AC22 114 B47_L16_P V22
115 B47_L2_N AD26 116 B47_L18_N W21
117 B47_L2_P AD25 118 B47_L18_P V21
119 GND 120 GND

J6 connects 12V power, the signal of BANK66, and the partial signal of BANK68. Pin assignment of J6 connector

J6 Pin Signal Name FPGA Pin J6 Pin Signal Name FPGA Pin
1 +12V 2 +12V
3 +12V 4 +12V
5 +12V 6 +12V
7 +12V 8 +12V
9 +12V 10 +12V
11 GND 12 GND
13 B67_L17_N A20 14 B67_L8_N A25
15 B67_L17_P B20 16 B67_L8_P B25
17 B67_L16_N C22 18 B67_L6_N A28
19 B67_L16_P C21 20 B67_L6_P A27
21 GND 22 GND
23 B67_L15_N B22 24 B67_L13_N C23
25 B67_L15_P B21 26 B67_L13_P D23
27 B67_L11_N D25 28 B67_L12_N C24
29 B67_L11_P E25 30 B67_L12_P D24
31 GND 32 GND
33 B67_L18_N D21 34 B67_L4_N A29
35 B67_L18_P D20 36 B67_L4_P B29
37 B67_L20_N E21 38 B67_L2_N B27
39 B67_L20_P E20 40 B67_L2_P C27
41 GND 42 GND
43 B67_L14_N E23 44 B67_L1_N E27
45 B67_L14_P E22 46 B67_L1_P F27
47 B67_L22_N F20 48 B67_L10_N A24
49 B67_L22_P G20 50 B67_L10_P B24
51 GND 52 GND
53 B67_L19_N F25 54 B67_L9_N B26
55 B67_L19_P G24 56 B67_L9_P C26
57 B67_L24_N G21 58 B67_L5_N C28
59 B67_L24_P H21 60 B67_L5_P D28
61 GND 62 GND
63 B67_L21_N F24 64 B67_L3_N D29
65 B67_L21_P F23 66 B67_L3_P E28
67 B67_L23_N F22 68 B67_L7_N D26
69 B67_L23_P G22 70 B67_L7_P E26
71 GND 72 GND
73 B68_T1U C16 74 B67_T1U A23
75 B68_T2U H14 76 B67_T2U A22
77 B68_T3U L17 78 B67_T3U H22
79 NC 80 NC

Part 2: Carrier Board

Part 2.1: Introduction

Through the previous function introduction, you can understand the function of the carrier board part.

  • 2-channel fiber interface
  • 1-channel PCIEx8 interface
  • 1-channel USB UART interface
  • 1-channel Ethernet RJ45 interface
  • 3-Channel FMC interface
  • 1-channel Micro SD card slot
  • 2-channel SMA interface
  • EEPROM, temperature and humidity sensor
  • JTAG debugging interface
  • 7 LED lights
  • 2 Keys

Part 2.2: PCIE X8 interface
AXKU042 development board is equipped with a PCIe3.0 x 8 interface for connecting 8 pairs of transceivers to the PCIEx8 gold finger, it can realize the data communication of PCIEex8, PCIEex4, PCIex2, and PCIex1. The transmit and receive signals of the PCIe interface are directly connected to the GTP transceiver of the FPGA. The eight channels of TX and RX signals are connected to the FPGA in differential signals, and the single-channel communication rate can be up to 8Gbps bandwidth. The design diagram of the PCIe interface of the AXKU042 FPGA development board is shown in Figure 2-2-1, where the TX transmit signal and the reference clock CLK signal are connected in AC coupled mode.

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (10)

PCIe x8 Interface Pin Assignment

Signal Name FPGA Pin Name Pin

Number

Description
PCIE_RX0_N MGTHRXN3_225 AB1 PCIE channel 0 Data Transmit Negative
PCIE_RX0_P MGTHRXP3_225 AB2 PCIE channel 0 Data Transmit Positive
PCIE_RX1_N MGTHRXN2_225 AD1 PCIE channel 1 Data Transmit Negative
PCIE_RX1_P MGTHRXP2_225 AD2 PCIE channel 1 Data Transmit Positive
PCIE_RX2_N MGTHRXN1_225 AF1 PCIE channel 2 Data Transmit Negative
PCIE_RX2_P MGTHRXP1_225 AF2 PCIE channel 2 Data Transmit Positive
PCIE_RX3_N MGTHRXN0_225 AH1 PCIE channel 3 Data Transmit Negative
PCIE_RX3_P MGTHRXP0_225 AH2 PCIE channel 3 Data Transmit Positive
PCIE_RX4_N MGTHRXN3_224 AJ3 PCIE channel 4 Data Transmit Negative
PCIE_RX4_P MGTHRXP3_224 AJ4 PCIE channel 4 Data Transmit Positive
PCIE_RX5_N MGTHRXN2_224 AK1 PCIE channel 5 Data Transmit Negative
PCIE_RX5_P MGTHRXP2_224 AK2 PCIE channel 5 Data Transmit Positive
PCIE_RX6_N MGTHRXN1_224 AM1 PCIE channel 6 Data Transmit Negative
PCIE_RX6_P MGTHRXP1_224 AM2 PCIE channel 6 Data Transmit Positive
PCIE_RX7_N MGTHRXN0_224 AP1 PCIE channel 7 Data Transmit Negative
PCIE_RX7_P MGTHRXP0_224 AP2 PCIE channel 7 Data Transmit Positive
PCIE_TX0_N MGTHTXN3_225 AC3 PCIE channel 0 Data Transmit Negative
PCIE_TX0_P MGTHTXP3_225 AC4 PCIE channel 0 Data Transmit Positive
PCIE_TX1_N MGTHTXN2_225 AE3 PCIE channel 1 Data Transmit Negative
PCIE_TX1_P MGTHTXP2_225 AE4 PCIE channel 1 Data Transmit Positive
PCIE_TX2_N MGTHTXN1_225 AG3 PCIE channel 2 Data Transmit Negative
PCIE_TX2_P MGTHTXP1_225 AG4 PCIE channel 2 Data Transmit Positive
PCIE_TX3_N MGTHTXN0_225 AH5 PCIE channel 3 Data Transmit Negative
PCIE_TX3_P MGTHTXP0_225 AH6 PCIE channel 3 Data Transmit Positive
PCIE_TX4_N MGTHTXN3_224 AK5 PCIE channel 4 Data Transmit Negative
PCIE_TX4_P MGTHTXP3_224 AK6 PCIE channel 4 Data Transmit Positive
PCIE_TX5_N MGTHTXN2_224 AL3 PCIE channel 5 Data Transmit Negative
PCIE_TX5_P MGTHTXP2_224 AL4 PCIE channel 5 Data Transmit Positive
PCIE_TX6_N MGTHTXN1_224 AM5 PCIE channel 6 Data Transmit Negative
PCIE_TX6_P MGTHTXP1_224 AM6 PCIE channel 6 Data Transmit Positive
PCIE_TX7_N MGTHTXN0_224 AN3 PCIE channel 7 Data Transmit Negative
PCIE_TX7_P MGTHTXP0_224 AN4 PCIE channel 7 Data Transmit Positive
PCIE_CLK_N MGTREFCLK0N_225 AB5 PCIE channel Reference Clock Negative
PCIE_CLK_P MGTREFCLK0P_225 AB6 PCIE channel Reference Clock Positive
PCIE_PERST IO_T3U_N12_PERSTN0_65 K22 PCIE card Reset Signal

Part 2.3: SFP+ Optical fiber interface

AXKU042 FPGA development board has a two SFP interface. The Users can buy SFP optical modules (1.25G, 2.5G, 10G optical modules on the market) and insert them into these 2 optical fiber interfaces for optical fiber data communication. The 2 optical fiber interfaces are respectively connected with 2 RX/TX of FPGA BANK226 GTH transceiver. Both the TX signal and the RX signal are connected to the FPGA and the optical module through a DC blocking capacitor in a differential signal mode, and the data rate of each TX transmission and RX reception is as high as 16.3Gb/s. The reference clock of the GXH transceiver of BANK226 is provided by a differential crystal oscillator 156.25M.

The design diagram of FPGA and SFP fiber is shown in Figure 2-3-1 below

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (11)

Figure 2-3-1 SFP Fiber schematic diagram
The 1st fiber interface FPGA pin assignment is as follows:

Signal Name FPGA Pin Description
SFP1_TX_P U4 SFP Optical Module Data Transmit Positive
SFP1_TX_N U3 SFP Optical Module Data Transmit Negative
SFP1_RX_P T2 SFP Optical Module Data Transmit Positive
SFP1_RX_N T1 SFP Optical Module Data Transmit Negative
SFP1_TX_DIS AN11 SFP optical module transfer Disable, active high
SFP1_LOSS AP9 SFP light optical LOSS,High level means no light signal is received

The 2nd fiber interface FPGA pin assignment is as follows

Signal Name FPGA Pin Description
SFP2_TX_P W4 SFP Optical Module Data Transmit Positive
SFP2_TX_N W3 SFP Optical Module Data Transmit Negative
SFP2_RX_P V2 SFP Optical Module Data Transmit Positive
SFP2_RX_N V1 SFP Optical Module Data Transmit Negative
SFP2_TX_DIS AM11 SFP optical module transfer Disable, active high
SFP2_LOSS AN9 SFP light optical LOSS,High level means no light signal is received


Part 2.4: Gigabit Ethernet Interface There is 1 Gigabit Ethernet port on the AXKU042 FPGA Development board. The GPHY chip uses Micrel’s KSZ9031RNX Ethernet PHY chip to provide users with network communication services. The KSZ9031RNX chip supports 10/100/1000 Mbps network transmission rate and communicates with the MAC layer of the system through the RGMII interface. KSZ9031RNX supports MDI/MDX adaptation, various speed adaptations, Master/Slave adaptation, and supports MDIO bus for PHY register management. When the KSZ9031RNX is powered on, it will detect the level status of some specific IOs to determine its own operating mode. Table 3-5-1 describes the default settings after the GPHY chip is powered on.

Configuration Pin Description Configuration value
PHYAD[2:0] MDIO/MDC mode PHY Address PHY Address 为 011
CLK125_EN Enable 125Mhz clock output selection Enable
LED_MODE LED light mode configuration Single LED light mode
MODE0~MODE3 Link     adaptation     and     full     duplex

configuration

10/100/1000 adaptive, compatible

with full-duplex, half-duplex

When the network is connected to Gigabit Ethernet, the data transmission of FPGA chip and PHY chip KSZ9031RNX is communicated through the RGMII bus, the transmission clock is 125Mhz, and the data is sampled on the rising edge and falling samples of the clock. When the network is connected to 100M Ethernet, the data transmission of the FPGA chip and PHY chip KSZ9031RNX is communicated through the RMII bus, and the transmission clock is 25Mhz. Data is sampled on the rising edge and falling samples of the clock. Ethernet PHY chip connection diagram as shown in Figure 2-4-1:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (12)

Figure 2-4-1 schematic diagram
The Gigabit Ethernet interface pin assignments are as follows:

Signal Name FPGA Pin Name Pin No. Description
PHY_GTXC B48_L21_N W34 Ethernet 1 Transmit Clock
PHY_TXD0 B48_L18_N AD33 Ethernet 1 Transmit Data bit0
PHY_TXD1 B48_L18_P AC33 Ethernet 1 Transmit Data bit1
PHY_TXD2 B48_L23_N V34 Ethernet 1 Transmit Data bit2
PHY_TXD3 B48_L23_P U34 Ethernet 1 Transmit Data bit3
PHY_TXEN B48_L21_P V33 Ethernet 1 Transmit Enable Signal
PHY_RXC B48_L12_P AC31 Ethernet 1 Receive Clock
PHY_RXD3 B48_L17_N AB34 Ethernet 1 Receive Data Bit0
PHY_RXD2 B48_L17_P AA34 Ethernet 1 Receive Data Bit1
PHY_RXD1 B48_L15_N AD34 Ethernet 1 Receive Data Bit2
PHY_RXD0 B48_L15_P AC34 Ethernet 1 Receive Data Bit3
PHY_RXDV B48_L12_N AC32 Ethernet 1 Receive Enable Signal
PHY_MDC B48_T2U AA33 Ethernet 1MDIO Management Clock
PHY_MDIO B48_T1U AE31 Ethernet 1MDIO Management Data
PHY_RESET B48_T3U V32 Ethernet Chip Reset

Part 2.5: USB to Serial Port
The AXKU042 FPGA development board is equipped with a UART to USB interface for serial communication and debugging of the development board. The conversion chip uses the USB-UAR chip of Silicon Labs CP2102GM. The CP2102 serial chip and the FPGA are connected by a level-shifting chip to adapt to different FPGA BANK voltages. The USB interface uses the MINI USB interface, which can be connected to the USB port of the upper PC for serial data communication on the FPGA development board with a USB cable. The schematic diagram of the USB Uart circuit design is shown below in Table 6-1:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (13)

Figure 2-5-1 USB to serial port schematic diagram USB to serial port pin assignment

Signal Name FPGA Pin Name Pin

Number

Description
UART_RXD B64_T1U AJ11 Uart Data Input
UART_TXD B64_T3U AM9 Uart Data Output

Part 2.6: FMC Expansion Port
The AXKU042 FPGA development board comes with two standard FMC LPC expansion ports and one standard FMC HPC expansion port that can be connected to various FMC modules of XILINX or ALINX (HDMI input and output modules, binocular camera modules, high-speed AD modules, etc.). The LPC FMC1 expansion port has 36 pairs of differential signals, which are respectively connected to the IO of BANK47 and BANK48 of the FPGA chip. The IO level of BANK47 and BANK48 is 1.8V and cannot be modified.

The 1-pair speed GTH transceiver signal is connected to BNAK226. The LPC FMC2 expansion port has 36 pairs of differential signals, which are respectively connected to the IO of the BANK64 and BANK65 of the FPGA chip. The level standard is determined by the voltage VADJ of the BANK, and the default is 3.3V. The FMC HPC expansion port contains 58 pairs of differential IO signals, which are respectively connected to FPGA chips BANK66, BANK67, and BANK68, and the voltage standard is 1.8V. 8 high-speed GTH transceiver signals are connected to the IO of the FPGA chip BANK227 and BANK228. The schematic diagrams of FPGA and FMC LPC connectors are shown in Figures 2-6-1, 2-6-2, and 2-6-3:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (14)ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (15)

Figure 2-6-3 HPC FMC3 schematic diagram
The 1st FMC LPC Connectors Pin Assignment

Signal Name Pin Name Pin No. Description
FMC1_LPC_CLK0_N B47_L11_N AA23 FMC reference 1st reference Clock N
FMC1_LPC_CLK0_P B47_L11_P Y23 FMC reference 1st reference Clock P
FMC1_LPC_CLK1_N B48_L14_N AB31 FMC reference 2nd reference Clock N
FMC1_LPC_CLK1_P B48_L14_P AB30 FMC reference 2nd reference Clock P
FMC1_LPC_LA00_CC_N B47_L13_N W24 FMC reference 0th Data ( Clock ) N
FMC1_LPC_LA00_CC_P B47_L13_P W23 FMC reference 0th Data ( Clock ) P
FMC1_LPC_LA01_CC_N B47_L12_N AA25 FMC reference 1st Data ( Clock ) N
FMC1_LPC_LA01_CC_P B47_L12_P AA24 FMC reference 1st Data ( Clock ) P
FMC1_LPC_LA02_N B47_L18_N W21 FMC reference 2nd Data N
FMC1_LPC_LA02_P B47_L18_P V21 FMC reference 2nd Data P
FMC1_LPC_LA03_N B47_L16_N V23 FMC reference 3rd Data N
FMC1_LPC_LA03_P B47_L16_P V22 FMC reference 3rd Data P
FMC1_LPC_LA04_N B47_L6_N AB26 FMC reference 4th Data N
FMC1_LPC_LA04_P B47_L6_P AB25 FMC reference 4th Data P
FMC1_LPC_LA05_N B47_L23_N W29 FMC reference 5th Data N
FMC1_LPC_LA05_P B47_L23_P V29 FMC reference 5th Data P
FMC1_LPC_LA06_N B47_L1_N Y27 FMC reference 6th Data N
FMC1_LPC_LA06_P B47_L1_P Y26 FMC reference 6th Data P
FMC1_LPC_LA07_N B47_L15_N U22 FMC reference 7th Data N
FMC1_LPC_LA07_P B47_L15_P U21 FMC reference 7th Data P
FMC1_LPC_LA08_N B47_L24_N W26 FMC reference 8th Data N
FMC1_LPC_LA08_P B47_L24_P V26 FMC reference 8th Data P
FMC1_LPC_LA09_N B47_L17_N T23 FMC reference 9th Data N
FMC1_LPC_LA09_P B47_L17_P T22 FMC reference 9th Data P
FMC1_LPC_LA10_N B47_L20_N U25 FMC reference 10th Data N
FMC1_LPC_LA10_P B47_L20_P U24 FMC reference 10th Data P
FMC1_LPC_LA11_N B47_L3_N AC24 FMC reference 11th Data N
FMC1_LPC_LA11_P B47_L3_P AB24 FMC reference 11th Data P
FMC1_LPC_LA12_N B47_L22_N U27 FMC reference 12th Data N
FMC1_LPC_LA12_P B47_L22_P U26 FMC reference 12th Data P
FMC1_LPC_LA13_N B47_L21_N Y28 FMC reference 13th Data N
FMC1_LPC_LA13_P B47_L21_P W28 FMC reference 13th Data P
FMC1_LPC_LA14_N B47_L19_N V28 FMC reference 14th Data N
FMC1_LPC_LA14_P B47_L19_P V27 FMC reference 14th Data P
FMC1_LPC_LA15_N B47_L14_N Y25 FMC reference 15th Data N
FMC1_LPC_LA15_P B47_L14_P W25 FMC reference 15th Data P
FMC1_LPC_LA16_N B47_L7_N AB22 FMC reference 16th Data N
FMC1_LPC_LA16_P B47_L7_P AA22 FMC reference 16th Data P
FMC1_LPC_LA17_CC_N B48_L13_N AB32 FMC reference 17th Data(clock)N
FMC1_LPC_LA17_CC_P B48_L13_P AA32 FMC reference 17th Data(clock)P
FMC1_LPC_LA18_CC_N B48_L11_N AD31 FMC reference 18th Data(clock)N
FMC1_LPC_LA18_CC_P B48_L11_P AD30 FMC reference 18th Data(clock)P
FMC1_LPC_LA19_N B48_L16_N AB29 FMC reference 19th Data N
FMC1_LPC_LA19_P B48_L16_P AA29 FMC reference 19th Data P
FMC1_LPC_LA20_N B48_L24_N W31 FMC reference 20th Data N
FMC1_LPC_LA20_P B48_L24_P V31 FMC reference 20th Data P
FMC1_LPC_LA21_N B48_L6_N AG30 FMC reference 21st Data N
FMC1_LPC_LA21_P B48_L6_P AF30 FMC reference 21st Data P
FMC1_LPC_LA22_N B48_L5_N AE30 FMC reference 22nd Data N
FMC1_LPC_LA22_P B48_L5_P AD29 FMC reference 22nd Data P
FMC1_LPC_LA23_N B48_L8_N AG34 FMC     reference 23rd Data N
FMC1_LPC_LA23_P B48_L8_P AF33 FMC reference 23rd Data P
FMC1_LPC_LA24_N B48_L4_N AG29 FMC reference 24th Data N
FMC1_LPC_LA24_P B48_L4_P AF29 FMC reference 24th Data P
FMC1_LPC_LA25_N B48_L9_N AF32 FMC reference 25th Data N
FMC1_LPC_LA25_P B48_L9_P AE32 FMC reference 25th Data P
FMC1_LPC_LA26_N B48_L7_N AG32 FMC reference 26th Data N
FMC1_LPC_LA26_P B48_L7_P AG31 FMC reference 26th Data P
FMC1_LPC_LA27_N B48_L10_N AF34 FMC reference 27th Data N
FMC1_LPC_LA27_P B48_L10_P AE33 FMC reference 27th Data N
FMC1_LPC_LA28_N B48_L1_N AF27 FMC reference 28th Data N
FMC1_LPC_LA28_P B48_L1_P AE27 FMC reference 28th Data P
FMC1_LPC_LA29_N B48_L2_N AF28 FMC reference 29th Data N
FMC1_LPC_LA29_P B48_L2_P AE28 FMC reference 29th Data P
FMC1_LPC_LA30_N B48_L3_N AD28 FMC reference 30th Data N
FMC1_LPC_LA30_P B48_L3_P AC28 FMC reference 30th Data P
FMC1_LPC_LA31_N B48_L19_N Y33 FMC reference 31st Data N
FMC1_LPC_LA31_P B48_L19_P W33 FMC reference 31st Data P
FMC1_LPC_LA32_N B48_L22_N Y32 FMC reference 32nd Data N
FMC1_LPC_LA32_P B48_L22_P Y31 FMC reference 32nd Data P
FMC1_LPC_LA09_N B47_L17_N T23 FMC reference 9th Data N
FMC1_LPC_LA09_P B47_L17_P T22 FMC reference 9th Data P
FMC1_LPC_LA10_N B47_L20_N U25 FMC reference 10th Data N
FMC1_LPC_LA10_P B47_L20_P U24 FMC reference 10th Data P
FMC1_LPC_LA11_N B47_L3_N AC24 FMC reference 11th Data N
FMC1_LPC_LA11_P B47_L3_P AB24 FMC reference 11th Data P
FMC1_LPC_LA12_N B47_L22_N U27 FMC reference 12th Data N
FMC1_LPC_LA12_P B47_L22_P U26 FMC reference 12th Data P
FMC1_LPC_LA13_N B47_L21_N Y28 FMC reference 13th Data N
FMC1_LPC_LA13_P B47_L21_P W28 FMC reference 13th Data P
FMC1_LPC_LA14_N B47_L19_N V28 FMC reference 14th Data N
FMC1_LPC_LA14_P B47_L19_P V27 FMC reference 14th Data P
FMC1_LPC_LA15_N B47_L14_N Y25 FMC reference 15th Data N
FMC1_LPC_LA15_P B47_L14_P W25 FMC reference 15th Data P
FMC1_LPC_LA16_N B47_L7_N AB22 FMC reference 16th Data N
FMC1_LPC_LA16_P B47_L7_P AA22 FMC reference 16th Data P
FMC1_LPC_LA17_CC_N B48_L13_N AB32 FMC reference 17th Data(clock)N
FMC1_LPC_LA17_CC_P B48_L13_P AA32 FMC reference 17th Data(clock)P
FMC1_LPC_LA18_CC_N B48_L11_N AD31 FMC reference 18th Data(clock)N
FMC1_LPC_LA18_CC_P B48_L11_P AD30 FMC reference 18th Data(clock)P
FMC1_LPC_LA19_N B48_L16_N AB29 FMC reference 19th Data N
FMC1_LPC_LA19_P B48_L16_P AA29 FMC reference 19th Data P
FMC1_LPC_LA20_N B48_L24_N W31 FMC reference 20th Data N
FMC1_LPC_LA20_P B48_L24_P V31 FMC reference 20th Data P
FMC1_LPC_LA21_N B48_L6_N AG30 FMC reference 21st Data N
FMC1_LPC_LA21_P B48_L6_P AF30 FMC reference 21st Data P
FMC1_LPC_LA22_N B48_L5_N AE30 FMC reference 22nd Data N
FMC1_LPC_LA22_P B48_L5_P AD29 FMC reference 22nd Data P
FMC1_LPC_LA23_N B48_L8_N AG34 FMC     reference 23rd Data N
FMC1_LPC_LA23_P B48_L8_P AF33 FMC reference 23rd Data P
FMC1_LPC_LA24_N B48_L4_N AG29 FMC reference 24th Data N
FMC1_LPC_LA24_P B48_L4_P AF29 FMC reference 24th Data P
FMC1_LPC_LA25_N B48_L9_N AF32 FMC reference 25th Data N
FMC1_LPC_LA25_P B48_L9_P AE32 FMC reference 25th Data P
FMC1_LPC_LA26_N B48_L7_N AG32 FMC reference 26th Data N
FMC1_LPC_LA26_P B48_L7_P AG31 FMC reference 26th Data P
FMC1_LPC_LA27_N B48_L10_N AF34 FMC reference 27th Data N
FMC1_LPC_LA27_P B48_L10_P AE33 FMC reference 27th Data N
FMC1_LPC_LA28_N B48_L1_N AF27 FMC reference 28th Data N
FMC1_LPC_LA28_P B48_L1_P AE27 FMC reference 28th Data P
FMC1_LPC_LA29_N B48_L2_N AF28 FMC reference 29th Data N
FMC1_LPC_LA29_P B48_L2_P AE28 FMC reference 29th Data P
FMC1_LPC_LA30_N B48_L3_N AD28 FMC reference 30th Data N
FMC1_LPC_LA30_P B48_L3_P AC28 FMC reference 30th Data P
FMC1_LPC_LA31_N B48_L19_N Y33 FMC reference 31st Data N
FMC1_LPC_LA31_P B48_L19_P W33 FMC reference 31st Data P
FMC1_LPC_LA32_N B48_L22_N Y32 FMC reference 32nd Data N
FMC1_LPC_LA32_P B48_L22_P Y31 FMC reference 32nd Data P

The 2nd FMC LPC connector pin assignment is as follows

Signal Name Pin Name Pin No. Description
FMC2_LPC_CLK0_N B65_L13_N N26 FMC reference 1st reference Clock N
FMC2_LPC_CLK0_P B65_L13_P P26 FMC reference 1st reference Clock P
FMC2_LPC_CLK1_N B64_L11_N AH12 FMC reference 2nd reference Clock N
FMC2_LPC_CLK1_P B64_L11_P AG12 FMC reference 2nd reference Clock P
FMC2_LPC_LA00_CC_N B65_L14_N P25 FMC reference 0th Data ( Clock ) N
FMC2_LPC_LA00_CC_P B65_L14_P P24 FMC reference 0th Data ( Clock ) P
FMC2_LPC_LA01_CC_N B65_L11_N M26 FMC reference 1st Data ( Clock ) N
FMC2_LPC_LA01_CC_P B65_L11_P M25 FMC reference 1st Data ( Clock ) P
FMC2_LPC_LA02_N B65_L17_N R26 FMC reference 2nd Data N
FMC2_LPC_LA02_P B65_L17_P R25 FMC reference 2nd Data P
FMC2_LPC_LA03_N B65_L7_N L27 FMC reference 3rd Data N
FMC2_LPC_LA03_P B65_L7_P M27 FMC reference 3rd Data P
FMC2_LPC_LA04_N B65_L15_N R27 FMC reference 4th Data N
FMC2_LPC_LA04_P B65_L15_P T27 FMC reference 4th Data P
FMC2_LPC_LA05_N B65_L4_N J25 FMC reference 5th Data N
FMC2_LPC_LA05_P B65_L4_P J24 FMC reference 5th Data P
FMC2_LPC_LA06_N B65_L3_N K27 FMC reference 6th Data N
FMC2_LPC_LA06_P B65_L3_P K26 FMC reference 6th Data P
FMC2_LPC_LA07_N B65_L5_N H26 FMC reference 7th Data N
FMC2_LPC_LA07_P B65_L5_P J26 FMC reference 7th Data P
FMC2_LPC_LA08_N B65_L18_N P23 FMC reference 8th Data N
FMC2_LPC_LA08_P B65_L18_P R23 FMC reference 8th Data P
FMC2_LPC_LA09_N B65_L1_N G27 FMC reference 9th Data N
FMC2_LPC_LA09_P B65_L1_P H27 FMC reference 9th Data P
FMC2_LPC_LA10_N B65_L20_N P21 FMC reference 10th Data N
FMC2_LPC_LA10_P B65_L20_P P20 FMC reference 10th Data P
FMC2_LPC_LA11_N B65_L9_N K25 FMC reference 11th Data N
FMC2_LPC_LA11_P B65_L9_P L25 FMC reference 11th Data P
FMC2_LPC_LA12_N B65_L12_N M24 FMC reference 12th Data N
FMC2_LPC_LA12_P B65_L12_P N24 FMC reference 12th Data P
FMC2_LPC_LA13_N B65_L19_N M22 FMC reference 13th Data N
FMC2_LPC_LA13_P B65_L19_P N22 FMC reference 13th Data P
FMC2_LPC_LA14_N B65_L23_N M21 FMC reference 14th Data N
FMC2_LPC_LA14_P B65_L23_P N21 FMC reference 14th Data P
FMC2_LPC_LA15_N B65_L10_N K23 FMC reference 15th Data N
FMC2_LPC_LA15_P B65_L10_P L22 FMC reference 15th Data P
FMC2_LPC_LA16_N B65_L6_N H24 FMC reference 16th Data N
FMC2_LPC_LA16_P B65_L6_P J23 FMC reference 16th Data P
FMC2_LPC_LA17_CC_N B64_L13_N AG10 FMC reference 17th Data(clock)N
FMC2_LPC_LA17_CC_P B64_L13_P AF10 FMC reference 17th Data(clock)P
FMC2_LPC_LA18_CC_N B64_L12_N AH11 FMC reference 18th Data(clock)N
FMC2_LPC_LA18_CC_P B64_L12_P AG11 FMC reference 18th Data(clock)P
FMC2_LPC_LA19_N B64_L17_N AD8 FMC reference19th Data N
FMC2_LPC_LA19_P B64_L17_P AD9 FMC reference19th Data P
FMC2_LPC_LA20_N B64_L23_N AJ8 FMC reference 20th Data N
FMC2_LPC_LA20_P B64_L23_P AJ9 FMC reference 20th Data P
FMC2_LPC_LA21_N B64_L14_N AG9 FMC reference 21st Data N
FMC2_LPC_LA21_P B64_L14_P AF9 FMC reference 21st Data P
FMC2_LPC_LA22_N B64_L15_N AF8 FMC reference 22nd Data N
FMC2_LPC_LA22_P B64_L15_P AE8 FMC reference 22nd Data P
FMC2_LPC_LA23_N B64_L16_N AE10 FMC reference 23rd Data N
FMC2_LPC_LA23_P B64_L16_P AD10 FMC reference 23rd Data P
FMC2_LPC_LA24_N B64_L1_N AP10 FMC reference 24th Data N
FMC2_LPC_LA24_P B64_L1_P AP11 FMC reference 24th Data P
FMC2_LPC_LA25_N B64_L4_N AN12 FMC reference 25th Data N
FMC2_LPC_LA25_P B64_L4_P AM12 FMC reference 25th Data P
FMC2_LPC_LA26_N B64_L21_N AL9 FMC reference 26th Data N
FMC2_LPC_LA26_P B64_L21_P AK10 FMC reference 26th Data P
FMC2_LPC_LA27_N B64_L24_N AL8 FMC reference 27th Data N
FMC2_LPC_LA27_P B64_L24_P AK8 FMC reference 27th Data P
FMC2_LPC_LA28_N B64_L18_N AH8 FMC reference 28th Data N
FMC2_LPC_LA28_P B64_L18_P AH9 FMC reference 28th Data P
FMC2_LPC_LA29_N B64_L6_N AL13 FMC reference 29th Data N
FMC2_LPC_LA29_P B64_L6_P AK13 FMC reference 29th Data P
FMC2_LPC_LA30_N B64_L8_N AJ13 FMC reference 30th Data N
FMC2_LPC_LA30_P B64_L8_P AH13 FMC reference 30th Data P
FMC2_LPC_LA31_N B64_L10_N AE11 FMC reference 31st Data N
FMC2_LPC_LA31_P B64_L10_P AD11 FMC reference 31st Data P
FMC2_LPC_LA32_N B64_L7_N AF13 FMC reference 32nd Data N
FMC2_LPC_LA32_P B64_L7_P AE13 FMC reference 32nd Data P
FMC2_LPC_LA33_N B64_L9_N AF12 FMC reference 33rd Data N
FMC2_LPC_LA33_P B64_L9_P AE12 FMC reference 33rd Data P
FMC2_LPC_SCL B65_L24_N K21 FMC I2C Bus Clock
FMC2_LPC_SDA B65_L24_P K20 FMC I2C Bus Data

The 3rd FMC LPC connector pin assignment is as follows

Signal Name Pin Name Pin No. Description
FMC_HPC_CLK0_M2C_N B67_L11_N D25 FMC 0th Input reference ( Clock ) N
FMC_HPC_CLK0_M2C_P B67_L11_P E25 FMC 0th Input reference ( Clock ) P
FMC_HPC_CLK1_M2C_N B66_L13_N G11 FMC 1st Input reference ( Clock ) N
FMC_HPC_CLK1_M2C_P B66_L13_P H11 FMC 1st Input reference ( Clock ) P
FMC_HPC_LA00_CC_N B67_L14_N E23 FMC LA 0th Data ( Clock ) N
FMC_HPC_LA00_CC_P B67_L14_P E22 FMC LA 0th Data ( Clock ) P
FMC_HPC_LA01_CC_N B67_L13_N C23 FMC LA 1st Data ( Clock ) N
FMC_HPC_LA01_CC_P B67_L13_P D23 FMC LA 1st Data ( Clock ) P
FMC_HPC_LA02_N B67_L8_N A25 FMC LA 2nd Data N
FMC_HPC_LA02_P B67_L8_P B25 FMC LA 2nd Data P
FMC_HPC_LA03_N B67_L6_N A28 FMC LA 3rd Data N
FMC_HPC_LA03_P B67_L6_P A27 FMC LA 3rd Data P
FMC_HPC_LA04_N B67_L2_N B27 FMC LA 4th Data N
FMC_HPC_LA04_P B67_L2_P C27 FMC LA 4th Data P
FMC_HPC_LA05_N B67_L12_N C24 FMC LA 5th Data N
FMC_HPC_LA05_P B67_L12_P D24 FMC LA 5th Data P
FMC_HPC_LA06_N B67_L4_N A29 FMC LA 6th Data P
FMC_HPC_LA06_P B67_L4_P B29 FMC LA 6th Data P
FMC_HPC_LA07_N B67_L5_N C28 FMC LA 7th Data N
FMC_HPC_LA07_P B67_L5_P D28 FMC LA 7th Data P
FMC_HPC_LA08_N B67_L1_N E27 FMC LA 8th Data N
FMC_HPC_LA08_P B67_L1_P F27 FMC LA 8th Data P
FMC_HPC_LA09_N B67_L9_N B26 FMC LA 9th Data N
FMC_HPC_LA09_P B67_L9_P C26 FMC LA 9th Data P
FMC_HPC_LA10_N B67_L10_N A24 FMC LA 10th Data N
FMC_HPC_LA10_P B67_L10_P B24 FMC LA 10th Data P
FMC_HPC_LA11_N B67_L7_N D26 FMC LA 11th Data N
FMC_HPC_LA11_P B67_L7_P E26 FMC LA 11th Data P
FMC_HPC_LA12_N B67_L3_N D29 FMC LA 12th Data N
FMC_HPC_LA12_P B67_L3_P E28 FMC LA 12th Data P
FMC_HPC_LA13_N B67_L15_N B22 FMC LA 13th Data N
FMC_HPC_LA13_P B67_L15_P B21 FMC LA 13th Data P
FMC_HPC_LA14_N B67_L18_N D21 FMC LA 14th Data N
FMC_HPC_LA14_P B67_L18_P D20 FMC LA 14th Data P
FMC_HPC_LA15_N B67_L17_N A20 FMC LA 15th Data N
FMC_HPC_LA15_P B67_L17_P B20 FMC LA 15th Data P
FMC_HPC_LA16_N B67_L16_N C22 FMC LA 16th Data N
FMC_HPC_LA16_P B67_L16_P C21 FMC LA 16th Data P
FMC_HPC_LA17_CC_N B66_L11_N F9 FMC LA 17th Data(clock)N
FMC_HPC_LA17_CC_P B66_L11_P G9 FMC LA 17th Data(clock)P
FMC_HPC_LA18_CC_N B66_L12_N F10 FMC LA 18th Data(clock)N
FMC_HPC_LA18_CC_P B66_L12_P G10 FMC LA 18th Data(clock)P
FMC_HPC_LA19_N B66_L21_N B11 FMC LA 19th Data N
FMC_HPC_LA19_P B66_L21_P C11 FMC LA 19th Data P
FMC_HPC_LA20_N B66_L23_N A12 FMC LA 20th Data N
FMC_HPC_LA20_P B66_L23_P A13 FMC LA 20th Data P
FMC_HPC_LA21_N B66_L15_N J11 FMC LA 21st Data N
FMC_HPC_LA21_P B66_L15_P K11 FMC LA 21st Data P
FMC_HPC_LA22_N B66_L19_N D11 FMC LA 22nd Data N
FMC_HPC_LA22_P B66_L19_P E11 FMC LA 22nd Data P
FMC_HPC_LA23_N B66_L18_N H13 FMC LA 23rd Data N
FMC_HPC_LA23_P B66_L18_P J13 FMC LA 23rd Data P
FMC_HPC_LA24_N B66_L8_N H9 FMC LA 24th Data N
FMC_HPC_LA24_P B66_L8_P J9 FMC LA 24th Data P
FMC_HPC_LA25_N B66_L10_N J10 FMC LA 25th Data N
FMC_HPC_LA25_P B66_L10_P K10 FMC LA 25th Data P
FMC_HPC_LA26_N B66_L6_N D10 FMC LA 26th Data N
FMC_HPC_LA26_P B66_L6_P E10 FMC LA 26th Data P
FMC_HPC_LA27_N B66_L5_N C9 FMC LA 27th Data N
FMC_HPC_LA27_P B66_L5_P D9 FMC LA 27th Data P
FMC_HPC_LA28_N B66_L2_N A9 FMC LA 28th Data N
FMC_HPC_LA28_P B66_L2_P B9 FMC LA 28th Data P
FMC_HPC_LA29_N B66_L4_N A10 FMC LA 29th Data N
FMC_HPC_LA29_P B66_L4_P B10 FMC LA 29th Data P
FMC_HPC_LA30_N B66_L9_N H8 FMC LA 30th Data N
FMC_HPC_LA30_P B66_L9_P J8 FMC LA 30th Data P
FMC_HPC_LA31_N B66_L1_N E8 FMC LA 31st Data N
FMC_HPC_LA31_P B66_L1_P F8 FMC LA 31st Data P
FMC_HPC_LA32_N B66_L3_N C8 FMC LA 32nd Data N
FMC_HPC_LA32_P B66_L3_P D8 FMC LA 32nd Data P
FMC_HPC_LA33_N B66_L7_N K8 FMC LA 33rd Data N
FMC_HPC_LA33_P B66_L7_P L8 FMC LA 33rd Data P
FMC_HPC_HA00_CC_N B68_L14_N F17 FMC HA 0th Data(clock)N
FMC_HPC_HA00_CC_P B68_L14_P F18 FMC HA 0th Data(clock)P
FMC_HPC_HA01_CC_N B68_L12_N E17 FMC HA 1st Data(clock)N
FMC_HPC_HA01_CC_P B68_L12_P E18 FMC HA 1st Data(clock)P
FMC_HPC_HA02_N B68_L17_N H16 FMC HA 2nd Data N
FMC_HPC_HA02_P B68_L17_P H17 FMC HA 2nd Data P
FMC_HPC_HA03_N B68_L24_N L18 FMC HA 3rd Data N
FMC_HPC_HA03_P B68_L24_P L19 FMC HA 3rd Data N
FMC_HPC_HA04_N B68_L6_N C17 FMC HA 4th Data N
FMC_HPC_HA04_P B68_L6_P C18 FMC HA 4th Data P
FMC_HPC_HA05_N B68_L2_N A18 FMC HA 5th Data N
FMC_HPC_HA05_P B68_L2_P A19 FMC HA 5th Data P
FMC_HPC_HA06_N B68_L22_N J18 FMC HA 6th Data N
FMC_HPC_HA06_P B68_L22_P J19 FMC HA 6th Data P
FMC_HPC_HA07_N B68_L4_N B19 FMC HA 7th Data N
FMC_HPC_HA07_P B68_L4_P C19 FMC HA 7th Data P
FMC_HPC_HA08_N B68_L18_N H18 FMC HA 8th Data N
FMC_HPC_HA08_P B68_L18_P H19 FMC HA 8th Data P
FMC_HPC_HA09_N B68_L7_N C14 FMC HA 9th Data N
FMC_HPC_HA09_P B68_L7_P D14 FMC HA 9th Data P
FMC_HPC_HA10_N B68_L1_N A14 FMC HA 10th Data N
FMC_HPC_HA10_P B68_L1_P B14 FMC HA 10th Data P
FMC_HPC_HA11_N B68_L5_N B16 FMC HA 11th Data N
FMC_HPC_HA11_P B68_L5_P B17 FMC HA 11th Data P
FMC_HPC_HA12_N B68_L16_N F19 FMC HA 12th Data N
FMC_HPC_HA12_P B68_L16_P G19 FMC HA 12th Data P
FMC_HPC_HA13_N B68_L3_N A15 FMC HA 13th Data N
FMC_HPC_HA13_P B68_L3_P B15 FMC HA 13th Data P
FMC_HPC_HA14_N B68_L23_N J16 FMC HA 14th Data N
FMC_HPC_HA14_P B68_L23_P K16 FMC HA 14th Data P
FMC_HPC_HA15_N B68_L20_N K17 FMC HA 15th Data N
FMC_HPC_HA15_P B68_L20_P K18 FMC HA 15th Data P
FMC_HPC_HA16_N B68_L10_N D18 FMC HA 16th Data N
FMC_HPC_HA16_P B68_L10_P D19 FMC HA 16th Data P
FMC_HPC_HA17_CC_N B68_L13_N G16 FMC HA 17th Data(clock)N
FMC_HPC_HA17_CC_P B68_L13_P G17 FMC HA 17th Data(clock)P
FMC_HPC_HA18_N B68_L21_N K15 FMC HA 18th Data N
FMC_HPC_HA18_P B68_L21_P L15 FMC HA 18th Data P
FMC_HPC_HA19_N B68_L15_N G14 FMC HA 19th Data N
FMC_HPC_HA19_P B68_L15_P G15 FMC HA 19th Data P
FMC_HPC_HA20_N B68_L11_N D16 FMC HA 20th Data N
FMC_HPC_HA20_P B68_L11_P E16 FMC HA 20th Data P
FMC_HPC_HA21_N B68_L19_N J14 FMC HA 21st Data N
FMC_HPC_HA21_P B68_L19_P J15 FMC HA 21st Data P
FMC_HPC_HA22_N B68_L8_N D15 FMC HA 22nd Data N
FMC_HPC_HA22_P B68_L8_P E15 FMC HA 22nd Data P
FMC_HPC_HA23_N B68_L9_N F14 FMC HA 23rd Data N
FMC_HPC_HA23_P B68_L9_P F15 FMC HA 23rd Data P
FMC_HPC_SCL B66_L17_N K12 FMC I2C Bus Data
FMC_HPC_SDA B66_L17_P L12 FMC I2C Bus Data
FMC_GBTCLK0_M2C_P 227_CLK1_P M6 Transceiver Reference Clock 0 input P
FMC_GBTCLK0_M2C_N 227_CLK1_N M5 Transceiver Reference Clock 0 input N
FMC_GBTCLK1_M2C_P 228_CLK1_P H6 Transceiver Reference Clock 1 input P
FMC_GBTCLK1_M2C_N 228_CLK1_N H5 Transceiver Reference Clock 1 input N
FMC_DP0_M2C_P 227_RX0_P M2 Transceiver Data 0 Input P
FMC_DP0_M2C_N 227_RX0_N M1 Transceiver Data 0 Input N
FMC_DP1_M2C_P 227_RX1_P K2 Transceiver Data 1 Input P
FMC_DP1_M2C_N 227_RX1_N K1 Transceiver Data 1 Input N
FMC_DP2_M2C_P 227_RX2_P H2 Transceiver Data 2 Input P
FMC_DP2_M2C_N 227_RX2_N H1 Transceiver Data 2 Input N
FMC_DP3_M2C_P 227_RX3_P F2 Transceiver Data 3 Input P
FMC_DP3_M2C_N 227_RX3_N F1 Transceiver Data 3 Input N
FMC_DP4_M2C_P 228_RX1_P D2 Transceiver Data 4 Input P
FMC_DP4_M2C_N 228_RX1_N D1 Transceiver Data 4 Input N
FMC_DP5_M2C_P 228_RX3_P A4 Transceiver Data 5 Input P
FMC_DP5_M2C_N 228_RX3_N A3 Transceiver Data 5 Input N
FMC_DP6_M2C_P 228_RX2_P B2 Transceiver Data 6 Input P
FMC_DP6_M2C_N 228_RX2_N B1 Transceiver Data 6 Input N
FMC_DP7_M2C_P 228_RX0_P E4 Transceiver Data 7 Input P
FMC_DP7_M2C_N 228_RX0_N E3 Transceiver Data 7 Input N
FMC_DP0_C2M_P 227_TX0_P N4 Transceiver Data 0 Output P
FMC_DP0_C2M_N 227_TX0_N N3 Transceiver Data 0 Output N
FMC_DP1_C2M_P 227_TX1_P L4 Transceiver Data 1 Output P
FMC_DP1_C2M_N 227_TX1_N L3 Transceiver Data 1 Output N
FMC_DP2_C2M_P 227_TX2_P J4 Transceiver Data 2 Output P
FMC_DP2_C2M_N 227_TX2_N J3 Transceiver Data 2 Output N
FMC_DP3_C2M_P 227_TX3_P G4 Transceiver Data 3 Output P
FMC_DP3_C2M_N 227_TX3_N G3 Transceiver Data 3 Output N
FMC_DP4_C2M_P 228_TX1_P D6 Transceiver Data 4 Output P
FMC_DP4_C2M_N 228_TX1_N D5 Transceiver Data 4 Output N
FMC_DP5_C2M_P 228_TX3_P B6 Transceiver Data 5 Output P
FMC_DP5_C2M_N 228_TX3_N B5 Transceiver Data 5 Output N
FMC_DP6_C2M_P 228_TX2_P C4 Transceiver Data 6 Output P
FMC_DP6_C2M_N 228_TX2_N C3 Transceiver Data 6 Output N
FMC_DP7_C2M_P 228_TX0_P F6 Transceiver Data 7 Output P
FMC_DP7_C2M_N 228_TX0_N F5 Transceiver Data 7 Output N

Part 2.7: SD Card Slot
The AXKU042 FPGA development board includes a Micro SD card interface to provide users with access to SD card memory for storing pictures, music or other user data files. The signal is linked to the IO signal of the BANK64 of FPGA, and the schematic of the FPGA and SD card connector is shown in Figure 2-7-1

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (16)

Figure 2-7-1 SD Card Slot schematic diagram SD Card Slot pin assignment

Signal Name FPGA Pin Name Pin Number Description
SD_CLK B64_L22_P AN8 SD Clock Signal
SD_CMD B64_L19_N AM10 SD Command Signal
SD_D0 B64_L5_N AL12 SD Data 0
SD_D1 B64_L19_P AL10 SD Data 1
SD_D2 B64_L2_P AN13 SD Data 2
SD_D3 B64_L2_N AP13 SD Data 3
SD_CD B64_L22_N AP8 SD card insertion signal

Part 2.8: SMA Interface The AXKU042 FPGA development board is designed with 2 SMA interfaces, and the differential signal is connected to the BANK66 ordinary clock IO port, providing customers with an external clock interface or according to the ordinary IO port, the interface level is 1.8V. The schematic diagram of the FPGA and SMA interface connection is shown in Figure 2-8-1.

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (17)

SMA Interface pin assignment

Signal Name FPGA Pin Name Pin Number Description
SMA_CLKIN_N B66_L14_N G12 Transceiver Clock Signal N
SMA_CLKIN_P B66_L14_P H12 Transceiver Clock Signal P

Part 2.9: Temperature Sensor and EEPROM

A high-precision, low-power, digital temperature sensor chip is mounted on the AXKU042 FPGA development board, and the model is LM75A of ON Semiconductor. The temperature accuracy of the LM75A chip is 0.5 degrees. The sensor and FPGA are directly connected to the I2C digital interface. The FPGA reads the temperature near the current FPGA development board through the I2C interface.The model of the EEPROM is 24LC04, and the capacity is: 4Kbit, which is connected to the PS terminal through the I2C bus.

Figure 2-9-1 below shows the design of the LM75 sensor and EEPROM chip

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (17)

Pin Name FPGA Pin Name FPGA Pin
I2C_SDA B66_L16_N K13
I2C_SCL B66_L16_P L13

Figure 2-9-1 I2C Connection schematic diagram I2C Sensor Pin Assignment

Part 2.10: LED Light There are Seven red LEDs on the AXKU042 FPGA carrier board, one of which is the power indicator (PWR), four are control indicators, two are panel indicators. When the AXKU042 FPGA board is powered on, the power indicator will light up, 4 user LEDs and two-panel indicators are connected to the IO of the FPGA BANK65 and BANK66, the user can control the lighting and extinction through the program. When the IO voltage connected to the user LED is configured low level, the user LED lights up. When the connected IO voltage is configured as high level, the user LED will be extinguished.

The LED hardware connection is shown in Figure 2-10-1

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (21)Figure 2-10-2 panel indicator LED

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (22)
Pin assignment of user LED lights

Signal Name FPGA Pin Name Pin Number Description
LED1 B66_T3U E12 User-defined indicator light
LED2 B66_T2U F12 User-defined indicator light
LED3 B66_T1U L9 User-defined indicator light
LED4 B65_T0U H23 User-defined indicator light
TEST_LED1 B66_L22_N E13 panel indicator
TEST_LED2 B66_L22_P F13 panel indicator

Part 2.11: Keys

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (23)

The AXKU062 FPGA development board contains two user Keys and 1 reset key. One user key are connected to the IO of FPGA BANK65. The user key is active at a low level to realize some functions of the board for customers; The reset key is used for system reset. The circuit of the user key part is shown in Figure 2-11-1:

Keys Pin Assignment

Signal Name FPGA Pin Name Pin Number Description
KEY1 B65_T1U N23 User Key Input
FPGA_RSETN B65_T2U N27 System Reset

Part 2.12: JTAG Interface

The JTAG interface is reserved on the AXKU042 development board for downloading FPGA programs or firmware programs to FLASH. In order to not damage the FPGA chip by plugging and unplugging under power, we added a protection diode to the JTAG signal to ensure that the signal voltage is within the range accepted by the FPGA and avoid damage to the FPGA chip. JTAG schematic diagram is shown in Figure 2-12-1:

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (24)

Part 2.13: Power Supply

The power input voltage of the AXKU042 development board is DC12V, with an external+12V power supply or power supplied to the board through PCIE. When using an external power supply, please use the power supply provided by the development board, and do not use other specifications of the power supply to avoid damaging the development board. The schematic diagram of the power supply design on the board is shown in Figure 2-13-1

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (25)

Part 2.14: Fan

Because FPGA generates a lot of heat when it works normally, we add a heat sink and fan to the chip on the board to prevent the chip from overheating. The control of the fan is controlled by the FPGA chip. The control pin is connected to the IO of the BANK48. If the IO level output is high, the MOSFET is turned on and the fan is working. If the IO level output is low, the fan stops. The fan design on the board is shown in Figure 2-14-1.

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (26)

Fan Pin Assignment

Signal Name FPGA Pin Name Pin Number Description
FAN_PWM B64_T0U AK11 Fan control pin

Part 2.15:Size Dimension

ALINX-AXKU042-KINTEX-UltraScale-FPGA-Development-Board-fig- (27)

http://www.alinx.com

Documents / Resources

ALINX AXKU042 KINTEX UltraScale FPGA Development Board [pdf] User Manual
AXKU042 KINTEX UltraScale FPGA Development Board, AXKU042, KINTEX UltraScale FPGA Development Board, UltraScale FPGA Development Board, FPGA Development Board, Development Board, Board

References

Leave a comment

Your email address will not be published. Required fields are marked *