

Zennio Lumento DX4 v2 4 Channel Constant Voltage PWM Dimmer in DIN Rail for DC LED Loads Installation Guide

Home » Zennio » Zennio Lumento DX4 v2 4 Channel Constant Voltage PWM Dimmer in DIN Rail for DC LED Loads Installation Guide ♣

Zennio Lumento DX4 v2 4 Channel Constant Voltage PWM Dimmer in DIN Rail for DC LED Loads
Installation Guide

Contents

- 1 INTRODUCTION
- **2 CONFIGURATION**
- **3 LED DIMMING**
- **4 MASTER LIGHT**
- **5 ANNEX I. COMMUNICATION OBJECTS**
- 6 25
- 7 1 Bit
- 8 C -- T -
- 9 DPT_Switch
- 10 0/1
- 11 [MLx] Courtesy Switch On: BinaryObject
- 12 Switch On Sending
- 13 26
- 14 1 Byte
- 15 C - T -
- 16 DPT_Scaling
- 17 0% 100%
- 18 [MLx] Courtesy Switch On: Scaling

```
19 0-100%
20 27
21 1 Byte
22 C -- T -
23 DPT SceneNumber
240 - 63
25 [MLx] Courtesy Switch On: Scene
26 Scene Sending
27 28
28 1 Byte
29 C -- T -
30 DPT_HVACMode
31 1=Confort 2=Standby 3=Económico4=Protección
32 [MLx] Courtesy Switch On: HVAC mode
33 Auto, Comfort, Standby, Economy, Building Protection
34 29, 30, 31, 32, 33,34, 35, 36, 37, 38,39, 40, 41, 42, 43,44, 45, 46, 47, 48,49, 50, 51, 52, 53,54, 55, 56, 57,
58,59,60
35 1 Bit
36 I
37 C - W - -
38 DPT_Bool
39 0/1
40 [LF] (1-Bit) Data Entry x
41 Binary Data Entry (0/1)
42 61, 62, 63, 64, 65,66, 67, 68, 69, 70,71, 72, 73, 74, 75, 76
43 1 Byte
44 I
45 C - W - -
46 DPT Value 1 Ucount
470 - 255
48 [LF] (1-Byte) Data Entry x
49 1-Byte Data Entry (0-255)
50 77, 78, 79, 80, 81,82, 83, 84, 85, 86,87, 88, 89, 90, 91, 92
51 2 Bytes
52 I
53 C - W - -
54 DPT Value 2 Ucount
55 0 - 65535
56 [LF] (2-Byte) Data Entry x
57 2-Byte Data Entry
58 93, 94, 95, 96, 97, 98, 99, 100
59 4 Bytes
60 I
61 C - W - -
62 DPT Value 4 Count
63 -2147483648 -2147483647
64 [LF] (4-Byte) Data Entry x
65 4-Byte Data Entry
66 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
67 1 Bit
68 O
69 CR-T-
70 DPT Bool
71 0/1
72 [LF] Function x - Result
73 (1-Bit) Boolean
74 1 Byte
75 O
76 CR-T-
77 DPT Value 1 Ucount
```

```
780 - 255
79 [LF] Function x - Result
80 (1-Byte) Unsigned
81 2 Bytes
82 O
83 C R - T -
84 DPT_Value_2_Ucount
85 0 - 65535
86 [LF] Function x - Result
87 (2-Byte) Unsigned
88 4 Bytes
89 O
90 CR-T-
91 DPT_Value_4_Count
92 -2147483648 -2147483647
93 [LF] Function x - Result
94 (4-Byte) Signed
95 1 Byte
96 O
97 CR-T-
98 DPT_Scaling
99 0% - 100%
100 [LF] Function x - Result
101 (1-Byte) Percentage
102 2 Bytes
103 O
104 C R - T -
105 DPT_Value_2_Count
106 -32768 - 32767
107 [LF] Function x - Result
108 (2-Byte) Signed
109 2 Bytes
110 O
111 CR-T-
112 9.xxx
113 -671088,64 -670433,28
114 [LF] Function x - Result
115 (2-Byte) Float
116 111
117 1 Bit
118 O
119 CR-T-
120 DPT_Alarm
121 0/1
122 Error: Overheating
123 0 = No Error; 1 = Error
124 112
125 1 Bit
126 C -- T -
127 DPT Start
128 0/1
129 Searching for Shortcircuit Error
130 0 = Stop; 1 = Start
131 113
132 1 Bit
133 O
134 CR-T-
135 DPT_Alarm
136 0/1
```

```
137 Error: External Voltage
138 0 = No Error; 1 = Error
139 114, 115, 116, 117
140 1 Bit
141 O
142 CR-T-
143 DPT_Alarm
144 0/1
145 [Cx] Error: Shortcircuit
146 0 = No Error; 1 = Error
147 114
148 1 Bit
149 O
150 CR-T-
151 DPT Alarm
152 0/1
153 [R] Error: Shortcircuit
154 0 = No Error; 1 = Error
155 114, 116
156 1 Bit
157 O
158 CR-T-
159 DPT Alarm
160 0/1
161 [CWx] Error: Shortcircuit
162 0 = No Error; 1 = Error
163 115
164 1 Bit
165 O
166 CR-T-
167 DPT Alarm
168 0/1
169 [G] Error: Shortcircuit
170 0 = No Error; 1 = Error
171 115, 117
172 1 Bit
173 O
174 CR-T-
175 DPT Alarm
176 0/1
177 [WWx] Error: Shortcircuit
178 0 = No Error; 1 = Error
179 116
180 1 Bit
181 O
182 CR-T-
183 DPT Alarm
184 0/1
185 [B] Error: Shortcircuit
186 0 = No Error; 1 = Error
187 117
188 1 Bit
189 O
190 CR-T-
191 DPT_Alarm
192 0/1
193 [W] Error: Shortcircuit
194 0 = No Error; 1 = Error
195 118
196 1 Ryte
```

```
100 I Dyte
197 I
198 C - W - -
199 DPT Scaling
200 0% - 100%
201 [RGB] Maximum Light Level
202 20 - 100%
203 1 Byte
204 I
205 C - W - -
206 DPT Scaling
207 0% - 100%
208 [RGBW] Maximum Light Level
209 20 - 100%
210 118, 149
211 1 Byte
212 I
213 C-W--
214 DPT_Scaling
215 0% - 100%
216 [TWx] Maximum Light Level
217 20 - 100%
218 118
219 1 Byte
220 I
221 C-W--
222 DPT_Scaling
223 0% - 100%
224 [TWx+TWx] Maximum Light Level
225 20 - 100%
226 119
227 1 Bit
228 I
229 C-W--
230 DPT Switch
231 0/1
232 [RGBW] Switch On/Off
233 0 = Off; 1 = On
234 1 Bit
235 I
236 C-W--
237 DPT_Switch
238 0/1
239 [RGB] Switch On/Off
240 0 = Off; 1 = On
241 119, 150
242 1 Bit
243 I
244 C - W - -
245 DPT_Switch
246 0/1
247 [TWx] Switch On/Off
248 0 = Off; 1 = On
249 119
250 1 Bit
251 I
252 C-W--
253 DPT_Switch
254 0/1
255 [TWx+TWx] Switch On/Off
```

```
256 0 = Off; 1 = On
257 120
258 4 Bit
259 I
260 C-W--
261 DPT Control Dimming
262 0x0 (Detener) 0x1 (Reducir 100%)...0x7 (Reducir 1%) 0x8 (Detener) 0x9 (Subir 100%)...0xF (Subir 1%)
263 [RGBW] Relative Dimming
264 4-Bit Dimmer Control
265 4 Bit
266 I
267 C-W--
268 DPT Control Dimming
269 [RGB] Relative Dimming
270 4-Bit Dimmer Control
271 120, 151
272 4 Bit
273 I
274 C - W - -
275 DPT Control Dimming
276 [TWx] Relative Dimming
277 4-Bit Dimmer Control
278 120
279 4 Bit
280 I
281 C-W--
282 DPT Control Dimming
283 [TWx+TWx] Relative Dimming
284 4-Bit Dimmer Control
285 121
286 1 Byte
287 I
288 C-W--
289 DPT_Scaling
290 0% - 100%
291 [RGBW] Absolute Dimming
292 1-Byte Dimmer Control
293 1 Byte
294 I
295 C - W - -
296 DPT_Scaling
297 0% - 100%
298 [RGB] Absolute Dimming
299 1-Byte Dimmer Control
300 121, 152
301 1 Byte
302 I
303 C - W - -
304 DPT_Scaling
305 0% - 100%
306 [TWx] Absolute Dimming
307 1-Byte Dimmer Control
308 121
309 1 Byte
310 I
311 C - W - -
312 DPT Scaling
313 0% - 100%
314 [TWx+TWx] Absolute Dimming
215 1 Puto Dimmor Control
```

```
313 I-Dyle Dilliller Collitor
316 122, 123, 124
317 2 Bytes
318 I
319 C - W - -
320 DPT TimePeriodSec
321 0 - 65535
322 [RGBW] Dimming Time x
323 Time in Seconds
324 2 Bytes
325 I
326 C-W--
327 DPT_TimePeriodSec
328 0 - 65535
329 [RGB] Dimming Time x
330 Time in Seconds
331 122, 123, 124, 153, 154, 155
332 2 Bytes
333 I
334 C - W - -
335 DPT_TimePeriodSec
336 0 - 65535
337 [TWx] Dimming Time x
338 Time in Seconds
339 122, 123, 124
340 2 Bytes
341 I
342 C - W - -
343 DPT_TimePeriodSec
344 0 - 65535
345 [TWx+TWx] Dimming Time x
346 Time in Seconds
347 125
348 3 Bytes
349 I
350 C - W - -
351 DPT_Colour_RGB
352 [0 - 255] * 3
353 [RGB] RGB Colour
354 3-Byte RGB Control
355 125, 156
356 2 Bytes
357 I
358 C - W - -
359 DPT_Absolute_Colour_Temperature
360 0 - 65535
361 [TWx] Colour Temperature
362 2-Byte Control (Kelvin)
363 125
364 3 Bytes
365 I
366 C-W--
367 DPT Colour RGB
368 [0 - 255] * 3
369 [RGBW] RGB Colour
370 3-Byte RGB Control
371 2 Bytes
372 I
373 C-W--
374 DPT_Absolute_Colour_Temperature
```

```
375 0 - 65535
376 [TWx+TWx] Colour Temperature
377 2-Byte Control (Kelvin)
378 126
379 6 Bytes
380 I
381 C-W--
382 DPT Colour RGBW
383 [0 -1] *4 - [0 - 255] *4
384 [RGBW] RGBW Colour
385 6-Byte RGBW Control
386 126, 157
387 6 Bytes
388 I
389 C - W - -
390 DPT_Brightness_Colour_Temperature_Transition
391 [0 - 255] * 6
392 [TWx] Colour Temperature and Luminosity Transition
393 6-Byte Control
394 126
395 6 Bytes
396 I
397 C - W - -
398 DPT Brightness Colour Temperature Transition
399 [0 - 255] * 6
400 [TWx+TWx] Colour Temperatureand Luminosity Transition
401 6-Byte Control
402 127
403 3 Bytes
404 I
405 C - W - -
406 1.xxx
407 [0 - 255] * 3
408 [RGB] HSV Colour
409 3-Byte HSV Control
410 127, 158
411 1 Bit
412 I
413 C - W - -
414 DPT_Switch
415 0/1
416 [TWx] HCL
417 0 = Deactivate; 1 = Activate
418 127
419 1 Bit
420 I
421 C - W - -
422 DPT Switch
423 0/1
424 [TWx+TWx] HCL
425 0 = Deactivate; 1 = Activate
426 128, 159
427 2 Bytes
428 I
429 C - W - -
430 DPT_Absolute_Colour_Temperature
431 0 - 65535
432 [TWx] HCL: Colour Temperature
433 Colour Temperature (Kelvin)
```

```
434 128
435 2 Bytes
436 I
437 C - W - -
438 DPT_Absolute_Colour_Temperature
439 0 - 65535
440 [TWx+TWx] HCL: ColourTemperature
441 Colour Temperature (Kelvin)
442 129
443 1 Byte
444 I
445 C - W - -
446 DPT SceneControl
447 0-63; 128-191
448 [RGBW] Direct Colour
449 Colour Number (Scene 1 – 22)
450 1 Byte
451 I
452 C - W - -
453 DPT SceneControl
454 0-63; 128-191
455 [RGB] Direct Colour
456 Colour Number (Scene 1 - 22)
457 129, 160
458 1 Byte
459 I
460 C - W - -
461 DPT_SceneControl
462 0-63; 128-191
463 [TWx] Direct Colour
464 Colour Number (Scene 1 – 6)
465 129
466 1 Byte
467 I
468 C - W - -
469 DPT_SceneControl
470 0-63; 128-191
471 [TWx+TWx] Direct Colour
472 Colour Number (Scene 1 – 6)
473 130
474 1 Bit
475 I
476 C - W - -
477 DPT Start
478 0/1
479 [RGBW] Colour Shift
480 0 = Stop; 1 = Start
481 1 Bit
482 I
483 C-W--
484 DPT_Start
485 0/1
486 [RGB] Colour Shift
487 0 = Stop; 1 = Start
488 130, 161
489 1 Bit
490 I
491 C - W - -
492 DPT_Start
493 0/1
```

```
494 [TWx] Colour Temperature Shift
495 0 = Stop; 1 = Start
496 130
497 1 Bit
498 I
499 C-W--
500 DPT Start
501 0/1
502 [TWx+TWx] Colour TemperatureShift
503 0 = Stop; 1 = Start
504 131
505 4 Bit
506 I
507 C-W--
508 DPT Control Dimming
509 0x0 (Detener) 0x1 (Reducir 100%)...0x7 (Reducir 1%) 0x8 (Detener) 0x9 (Subir 100%)...0xF (Subir 1%)
510 [RGBW] Colour Shift
511 4-Bit Colour Control
512 4 Bit
513 I
514 C - W - -
515 DPT Control Dimming
516 [RGB] Colour Shift
517 4-Bit Colour Control
518 131, 162
519 4 Bit
520 I
521 C-W--
522 DPT_Control_Dimming
523 [TWx] Colour Temperature Shift
524 4-Bit Colour Control
525 131
526 4 Bit
527 I
528 C-W--
529 DPT Control Dimming
530 [TWx+TWx] Colour Temperature Shift
531 4-Bit Colour Control
532 132
533 1 Byte
534 I
535 C-W--
536 DPT Scaling
537 0% - 100%
538 [RGBW] Memory Function: SwitchOn Value
539 0 - 100%
540 1 Byte
541 I
542 C - W - -
543 DPT Scaling
544 0% - 100%
545 [RGB] Memory Function: Switch On Value
546 0 - 100%
547 Documents / Resources
 547.1 References
548 Related Posts
```

INTRODUCTION

LUMENTO DX4 V2

Lumen to DX4 v2 constitutes the Zennor solution in DIN-rail format for light regulation in **constant-voltage** DC LED luminaires. It offers a wide variety of functions:

- output channels parametrizable for different output configurations, according to the LED module type:
 - Individual channels: allows independent and parallel control over the different output channels.
 - RGBW: allows a joint control over one four-color LED module. The output channel will be formed by the
 color components (R, G, B and W) of a sole module, being all of them controlled jointly but with
 differentiated luminosity levels.
 - RGB+W: allows controlling a three-colour LED module, plus an independent white channel (i.e., an RGB channel plus an individual channel for the connection of a white LED module).
- Tunable White: allows controlling up to two regulation channels for the white colour temperature
- Light regulation with customisable dimming limits and times.
- Scenes and sequences
- Timed actions: simple timers, flashing sequences and automatic switch-off.
- · Custom On/Off controls.
- Error detection and notification
- Power Supply Relay
- Master light control for an easy, out-of-the-box control of a set of luminaires (or functionally equivalent devices) one of which acts as a general lamp and the others as secondary lamps
- Manual operation / supervision of the four output channels, TW channel selection, colour shift (for RGB, RGBW and TW channels) and the power relay through the on-board pushbuttons and LEDs.
- Customisable, multi-operation logic functions.
- Heartbeat or periodical "still-alive" notification.
- KNX Security

CONFIGURATION

GENERAL

After importing the corresponding database in ETS and adding the device into the topology of the desired project, the configuration process begins by entering the Parameters tab of the device.

ETS PARAMETERISATION

The tab tree on the left shows the "General" tab in the first place, which contains the following parameters.

- **LED Dimming [enabled]** : always enabled; the related parameters are contained in the "LED Dimming" tab (see section 2.2).
- Master Light [disabled/enabled]: enables or disables the "Master Light" tab on the left menu (see section 2.3).
- Manual Control [disabled/enabled]: enables or disables the "Manual control" tab on the left menu (see section 2.4).
- Logic functions [disabled/enabled]: enables or disables the "Logic Functions" tab on the left menu (see section 2.5)The default values of each parameter will be highlighted in blue in this document, as follows:
- Heartbeat (Periodical Alive Notification) [disabled/enabled]: this parameter lets the integrator incorporate a one-bit object to the project ("[Heartbeat] Object to Send '1") that will be sent periodically with value "1" to notify that the device is still working (still alive).

Note: The first sending after download or bus failure takes place with a delay of up to 255 seconds, to prevent bus overload. The following sendings match the period set.

• Device Recovery Objects (Send 0 and 1) [disabled/enabled]: this parameter lets the integrator activate two new communication objects ("[Heatbeat] Device Recovery"), which will be sent to the KNX bus with values "0" and "1" respectively whenever the device begins operation (for example, after a bus power failure). It is possible to parameterize a certain delay [0...255] to this sending.

Note: after download or bus failure, the sending takes place with a delay of up to 6,35 seconds plus the parameterized delay, to prevent bus overload.

- Scenes after Download [Configured by Parameters / Keep Saved Scenes]: allows defining whether the
 value of the scenes is the configured by parameter or whether the previously saved value is kept after
 download.
- Note: if "Keep Saved Scenes" option has been configured, but it is the first download of the device or a
 different version from the current one, the values configured by parameter will be adopted. If new scenes are
 added in successive downloads, it will be necessary to perform a download by checking. the option
 "Configured by Parameters" to ensure the correct operation of these
 scenes.
- Advanced Configuration [disabled/enabled]: enables or disables the "Advanced Configuration" tab on the left menu (see section 2.1.1).

Power Supply Start-Up Time [4...255][ds]: allows parameterizing the waiting time to be applied from the time
the power supply relay closes until the channels are activated..

ERRORS

Lomenta is able to detect certain errors that may occur during normal operation, which will be indicated through communication objects and lighting sequences of the LEDs of the device. It should be noted that Lumen to does not report any of the other possible errors until it rules out or confirms that it is a lack of external power.

OVERHEATING

This error is activated in case that any of the NTC probes that the device has reaches a temperature that could be harmful.

The temperature is measured in each probe every 100ms and the corresponding action is taken if any temperature value is within these ranges:

- Preventive range (110°C < T < 115°C): when 110°C is exceeded, the lighting level of the loads is reduced to 30% if it is at a higher level. The values received by the bus during this mode are also limited to a maximum brightness of 30%.
- Cutt-off range (T > 115°C): when this temperature is exceeded, current is nolonger supplied to the outputs
- Lumento does not return to its normal state until the temperature is below 105°C.
 When the overheat error state starts, several actions are performed:
- Send of a '1' by the communication object "Error: overheating".
- Turn off the Power out led.
- Flashing of the status leds of the outputs belonging to a channel enabled by parameter. Each led blinks 2 consecutive times every 6 seconds (Ton = Toff = 0.5s). See Table 1. Visual notification in case of error detection. for more detail. When leaving the error state, the flashing of the leds stops, remaining on or off depending on the state of the corresponding output. In addition, the Power out led lights up and a '0' is sent by thementioned object. Some relevant consideration
- When the overheating error ends, the channels remain at the regulation level they are at that moment, a level higher than 30% is not recovered even if a certain channel had it before the error occurred.
- While the overheating state is active, Test On mode cannot be used. In case of being active when overheating is detected, it will exit said mode.

EXTERNAL POWER SUPPLY

his error is activated in the following cases:

- No external power is connected.
- External power is reversed.
- The external power supply has a voltage greater than 40V.
 When entering this error state, the following actions are performed:
- Notification every 30 seconds by the communication object "Error: external voltage".
- Turn off the Power out led.
- Flashing of the status leds of the outputs belonging to a channel enabled by parameter. Each led flashes 4

consecutive times every 6 seconds (Ton = Toff = 0.5s). See Table 1. Visual notification in case of error detection. for more detail.

When leaving the error state, the flashing of the status leds stops, remaining on or off depending on the state of the corresponding output. In addition, the Power out led lights up and a '0' is sent by the mentioned object. The following issues should be mentioned:

- When the external power is recovered, if there is no other error that prevents the LEDs from lighting, the target value prior to the power failure is recovered. In case of external voltage recovery during a bus failure, the values configured in the custom initialization apply.
- While this error is present it is not possible to enter Test On mode. If it is active when external power problems
 are detected, this mode is abandoned.

SHORTCIRCUIT

Once the external power supply error has been ruled out, Lumen to detects if there is a short circuit error in a certain output or a false short circuit detection through the following procedure:

- When an error of this type is detected for the first time, all the outputs are turned off immediately. In addition,
 the communication object "Searching for short-circuits error" is sent with a value of '1' and the status LEDs of
 the outputs belonging to a channel enabled by parameter flash. Each led blinks 3 consecutive times every 6
 seconds. Furthermore, the Power out led turns off.
- Once the outputs are off, a 5 second wait will be forced to dissipate the excess temperature. During this time, all possible actions on the outputs are completely ignored (orders from objects or by pressing the buttons) as well as the programming button.
- Once the cooling time has elapsed, the short-circuit detection process begins through a scan of all the outputs
 of the device. This scan consists of turning on a single output each time for a limited time (~300ms)
- If a short-circuit is detected during the scan the following occurs:
 - The output that caused the error is turned off.
 - A '0' is sent by the "Searching for short-circuit error" object and the associated blinking stops.
 - A '1' is sent through the "[] Error: Short-circuit" object associated with the output that caused the error.
 - The Power out LED turns on.
 - The status led of the output in which the error is starts flashing. This led flashes 1 time every 6 seconds. See Table 1. Visual notification in case of error detection. for more detail
- Once the short-circuit has been solved, Lumen to leaves this error state if it
 receives any on/off or dimming order caused by the reception of a communication object or by pressing any of
 the buttons on the front panel in any of its modes. When leaving the error state, a '0' is sent by the "[] Error:
 Short-circuit" object and the associated flashing ends. If a short-circuit is not detected during the scan, Lumen
 to returns to the target value prior to the detection of the error and sends a '0' by the "Searching for short-circuit
 error" object.

If the error had not been corrected and occurred again immediately, the entire detection and notification process would begin again.

Some relevant considerations:

- If the error occurs while in Test On mode, Lumen to immediately exits it.
- Contrary to the rest of the errors, Test On mode can be entered while this error is active.
- The identification and notification of this error only takes place when the regulation level is different from 0%.
- There are situations where the regulation level is so low that no short-circuit error is detected (or produced).

 This depends on external factors such as the total

resistance of the LED strip, which not only varies according to its length but also with temperature.

ERROR NOTIFICATION

The detection of errors, as well as its notification through the corresponding LEDs, is always active, so if one or more of the indicated errors happens, it will be **visually reported**.

For notification via communication object, the Error objects parameter must be enabled.

External power problem (error)	Overheating	Shortcircuit	Nothing	Time						
Channel enabled LEC)s	Channel error LED		0.5s						
				1.0s						
				1.5s						
				2.0s						
				2.5s						
				3.0s						
				3.5s						
				4.0s						
				4.5s						
				5.0s						
				5.5s						
				6.0s						
	Power out LED									
				0-6s						

Table 1. Visual notification in case of error detection.

If there is more than one error simultaneously, only the one with the highest priority will be visually notified. If this one disappears while another one of lower priority is still active, the latter will be visually notified. The priority of the errors from highest to lowest is as follows:

- 1. External power supply failure.
- 2. Shortcircuit.
- 3. Overheating

LED DIMMING

The main functionality of Lumen to DX4 v2 consist of controlling LED luminaries, for which it has **4 configurable outputs** depending on the LED strips to be connected.

The different configurations available for these 4 outputs are:

- The different configurations available for these 4 outputs are: [Individual Channels]
- [4x Individual]
- [Channel 1+2+3+4 (Parallel)]
- [Channel 1+2+3 (Parallel); Channel 4 (Indep.)]

- Channel 1+2 (Parallel); Channel 3 and 4 (Indep.)]
- [Channel 1+2 (Parallel); Channel 3+4 (Parallel)]
- [RGBW]
- [RGB+W]
- [Tunable White]
 - 。[2x TW]
 - o [TW 1+2 (Parallel)]
 - [TW 1; Channel 3 and 4 (Indep.)]
 - [TW 1; Channel 3+4 (Parallel)

Please refer to the "LED Dimming Control" user manual, available under the Lumen to DX4 v2 product section at www.zennio.com for detailed information on the use of the LED Dimming Control and its parameterization in ETS.

MASTER LIGHT

Lumen to has the Master Light function, that brings the option to monitor the state of up to 12 light sources (or even more, if the Master Light controls from multiple Zennio devices are linked together) or of any other elements whose state is transmitted through a binary object and, depending on those states, perform a master order every time a certain trigger signal (again, a binary value) is received through a specific object. Such master order will consist in:

- A general switch-off order, if at least one of the up to twelve status objects is found to be on.
- A courtesy switch-on order, if none of the up to twelve status objects is found to be on.

Note that the above switch-off and switch-on orders are not necessarily a binary value being sent to the bus – it is up to the integrator the decision of what to send to the KNX bus in both cases: a shutter order, a thermostat setpoint or mode switch order, a constant value, a scene... Only the trigger object and the twelve status objects are required to be binary (on/off).

The most typical scenario for this Master Light control would be a hotel room with a master pushbutton next to the door. When leaving the room, the guest will have the possibility of pressing on the master pushbutton and make all the lamps turn off together. Afterwards, back on the room and with all the lamps off, pressing on the same master pushbutton will only make a particular lamp turn on (e.g., the closest lamp to the door) – this is the courtesy switch-on.

Besides, it is possible to concatenate two or more Master Light modules by means of a specific communication object which represents the general state of the light sources of each module. Thereby, it is possible to expand the number of light sources by considering the general state of one module as an additional light source for another

ETS PARAMETERISATION

Once the Master Light function has been enabled, a specific tab will be included in the menu on the left. This new parameter screen contains the following options:

- Number of State Objects [1...12]: defines the number of 1-bit status objects required. These objects are called "[ML] Status Object n." In addition, the general status object ("[ML] General status") will always be available in the project topology. It will be sent to the bus with a value of "1" whenever there is at least one of the above state objects with such value. Otherwise (i.e., if none of them has a value of "1"), it will be sent with a value of "0".
- Trigger Value [0 / 1 / 0/1]: sets the value that will trigger, when received through "[ML] Trigger", the master action (the general switch-off or the courtesy switch-on).
- · General Switch-Off:
 - Delay [0...255] [x 1 s]: defines a certain delay (once the trigger has been received) before the execution
 of the general switch-off. The allowed range is 0 to 255 seconds.
 - Binary Value [disabled/enabled]: if checked, object "[ML] General Switch-off: Binary Object" will be enabled, which will send one "0" whenever the general switch-off takes off.
 - Scaling [disabled/enabled]: if checked, object "[ML] General Switch-off: Scaling" will be enabled, which
 will send a percentage value (configurable in Value [0...100]) whenever the general switch-off takes off.
 - Scene [disabled/enabled]: if checked, object "[ML] General Switch-off: Scene" will be enabled, which will send a scene run / save order (configurable in Action [Run / Save] and Scene Number [1...64])
 whenever the general switch-off takes off
 - HVAC [disabled/enabled]: if checked, object "[ML] General Switch-off: HVAC mode" will be enabled, which will send an HVAC thermostat mode value (configurable in Value [Auto / Comfort / Standby / Economy / Building Protection) whenever the general switch-off takes off.

Note: the above options are not mutually exclusive; it is possible to send values of different nature together.

· Courtesy Switch-On:

The parameters available here are entirely analogous to those already mentioned for General Switch-Off. However, in this case the names of the objects start with "[ML] Courtesy Switch-On (...)." On the other hand, sending scene save orders is not possible for the courtesy switch-on (only orders to play scenes are allowed). **Note**: object "[ML] Courtesy Switch-On: Binary Object" sends the value "1" (when the courtesy switch-on takes place), in contrast to object "[ML] General Switch-Off: Binary Object", which sends the value "0" (during the general switch-off, as explained above)

MANUAL CONTROL

Element	Comment	Identifier	
Output control buttons	On/off and output dimming	R/1/CW1, G/2/W	
Output status LEDs	Shows if the output is on, off or with an error	W1, B/3/CW2, W/4/WW2	
Colour Shift Button	Exclusive use for RGB(W) and TW channels	COLOUR SHIFT	
Colour Shift LED	Exclusive use for RGB(W) channels. Shows the colour of the LED strip	RGBW	
Tunable White Selection Button	Exclusive use for TW channels	TW SELECT	
Tunable White LEDs	Exclusive use for TW channels. They will adopt the colour of the LED strips	TW1, TW2	
Open/Close Relay Button	External power supply dis/connection		
Relay Status LED	External power supply connected (On) or disconnected (Off)	R	
External Power Status LED	External power without error (On) or with error (Off)	POWER OUT	

Table 2. Front panel elements.Lumen to DX4 v2 allows manually switching the state of its channels through the respective pushbuttons on the top side of the device. Manual operation can be done in two different ways, named as Test On mode (for testing purposes during the configuration of the device) and Test Off mode (for a normal use, anytime). Whether both, only one, or none of these modes should be accessible needs to be parameterized in ETS. Moreover, it is possible to enable a specific binary object for locking and unlocking the manual control in runtime.

Notes

- The Test Off mode will be active (unless it has been disabled in parameters) after a download or a reset with no need of a specific activation the pushbuttons will respond to user presses from the start.
- On the contrary, switching to the Test On mode (unless disabled in parameters) needs to be done by long-pressing the Prog./Test button (for at least three seconds), until the LED is no longer red and turns yellow. From that moment, once the button is released, the LED light will remain green to confirm that the device has switched from the Test Off mode to the Test On mode. After that, an additional press will turn the LED yellow and then off, once the button is released. This way, the device leaves the Test On mode. Note that it will also leave this mode if a bus power failure takes place.
- When several outputs are parametrized in parallel as a single grouped channel, only pressing the first button in the group will have an effect.

Test Off

Under the Test Off Mode, the channels can be controlled through both their communication objects and the actual pushbuttons located on the top of the device. When any of these buttons is pressed, the corresponding channel will behave as if an order had been received through the analogous communication object.

· Output control buttons:

- A short press will be equivalent to receiving a switch order (either a switch-on or a switch-off this will alternate on every short press). The first time, it will always consist in a switch-on, unless the current level is already maximum (in such case, the regulation will be towards 0%). This regulation is subject to the "On/Off Dimming Time" (see "LED Dimming Control" user manual) for each channel.
- A long press will be equivalent to receiving a relative dimming command (see "LED Dimming Control" user manual). The dimming direction will be contrary to that of the previous regulation, although the first time the regulation will always be upwards (unless the current level is already the maximum one in such case the regulation will be towards 0%). The dimming speed will correspond to that defined in parameters for the relative dimming. Once the pushbutton is released, the regulation is interrupted.

Note: Both dimming and switch limits will be subject to the parameterisation (economical mode, characteristic curve, etc).

- Color shift buttons: offer the possibility to do a colour shift in both directions over the entire colour range provided by the LEDs connected to the outputs (only when the outputs are RGBW, RGB+W or TW).
 A long press will be equivalent to receiving a colour shift command (see "LED Dimming Control" user manual). If the LED strips are switched off the colour shift will start from white colour (in case the outputs are RGBW or RGB+W) or warm white (in case the outputs are TW). On the other hand, if the LED strips are switched on the colour shift will start from the current colour. Once the button is released, the regulation is interrupted.
- TW select: allows choosing which channel between TW1 and TW2 is controlled manually with the color shift buttons (only when both TW1 and TW2 outputs are enabled as independent). After downloading it will be OFF (and the LED also OFF). Pressing the button will change the group in an ascending and cyclical way. With TW1 the LED flashes at 500ms and with TW2 at 250ms.
- Relay: allows switching the status of the power supply relay when it is parametrized to be opened and closed by object. Otherwise, it will only open if all the outputs are at 0%.Regarding the rest of the functions, the device will behave under the Test Off mode as usual. As stated, button presses during this mode are entirely analogous to the reception of the corresponding orders from the KNX bus, thus the status objects will also be sent normally

Test On

After entering the Test On mode, it will only be possible to control the output channels through the on-board manual control pushbuttons.

Enabling the Test On mode allows the direct control of every channel with independence of the device parameterization – the output channels can be controlled in the Test On mode no matter if they have not been enabled in parameters:

The channel dimming through the buttons will be analogous to the one in Test Off mode, with the following particularities:

- Short press: will cause immediate regulations to 0% or to 100%.
- Long press: dimming period will be 10 seconds from 0% to 100%.
- Orders received through communication objects will be ignored. Moreover, the device will not send any status
 objects corresponding to the manual actions performed by the user. The only exception is the blocking objects,
 which will be taken into account when leaving Test On Mode.
- In case of an external power failure or shortcircuit, Lumento will automatically exit Test On mode.
- Color shift and TW select buttons are not used in this mode.

Test On mode will not be accessible during:

- An external power error.
- An overheating error.
- · The shortcircuit search analysis.

Important

the device is delivered from factory with both manual modes (Test Off and Test On) enabled, although with all channels disabled (thus, the Test Off mode will result functionless)

ETS PARAMETERISATION

After enabling "Manual Control" (enabled by default) in the General screen, a new tab will be incorporated into the tree on the left.

Figure 6. Manual Control.

This tab comprises the following parameters:

- Manual Control [Disabled / Only Test Off Mode", "Only Test On Mode / Test Off Mode + Test On Mode]:
 depending on the selection, the device will permit using the manual control under the Test Off, the Test On, or
 both modes. Note that, as stated before, using the Test Off mode does not require any special action, while
 switching to the Test On mode does require long-pressing the Prog./Test button.
- Manual Control Lock [Disabled / Enabled]: unless the above parameter has been disabled, the Lock Manual Control parameter provides an optional procedure for locking the manual control in runtime. When this checkbox is enabled, object "Manual Control Lock" turns visible, as well as two more parameters:
 - Value [0 = Unlock; 1 = Lock / 0 = Lock; 1 = Unlock]: defines whether the manual control lock/unlock should take place respectively upon the reception (through the aforementioned object) of values "0" and "1", or the opposite.
 - Initialization [Unlocked / Locked / Last Value (Before Bus Failure)]: sets how the lock state of the manual control should remain after the device startup (after an ETS download or a bus power failure)

LOGIC FUNCTIONS

This module makes it possible to perform numeric and binary operations to incoming values received from the KNX bus, and to send the results through other communication objects specifically enabled for this purpose. Up to 10 different and independent functions can be implemented, each of them entirely customizable and consisting in up to 4 consecutive operations each one.

The execution of each function can depend on a configurable condition, which will be evaluated every time the function is triggered through specific, parameterizable communication objects. The result after executing the operations of the function can also be evaluated according to certain conditions and afterwards sent (or not) to the KNX bus, which can be done every time the function is executed, periodically or only when the result differs from the last one.

Please refer to the "Logic Functions" user manual, available within the Lumen to DX4 v2 product section at the Zennio homepage, www.zennio.com, for detailed information about the functionality and the configuration of the

ANNEX I. COMMUNICATION OBJECTS

• "Functional range" shows the values that, with independence of any other values permitted by the bus according to the object size, may be of any use or have a particular meaning because of the specifications or restrictions from both the KNX standard or the application programmed itself.

Number	Si ze	I/ O	Flag s	Data type (DPT)	Functional Range	Name	Function
1	1 Bit	I	C – W – –	DPT_Enable	0/1	Lock Manual Cont	0 = Unlock; 1 = Lo ck
•	1 Bit	I	C – W – –	DPT_Enable	0/1	Lock Manual Cont rol	0 = Lock; 1 = Unlo ck
2	3 By tes	I	C – W T U	DPT_TimeOfDay	00:00:00 – 23:59:59	[General] Time of Day	Time of Day Exter nal Reference
3	3 By tes	I	C – W T U	DPT_Date	01/01/1990 - 31/12/2089	[General] Date	Date External Ref erence
4	1 Bit		C – – T –	DPT_Trigger	0/1	[Heartbeat] Object to Send '1'	Sending of '1' Per iodically
5	1 Bit		C – – T –	DPT_Trigger	0/1	[Heartbeat] Devic e Recovery	Send 0
6	1 Bit		C – – T –	DPT_Trigger	0/1	[Heartbeat] Devic e Recovery	Send 1
	1 Bit	I	C – W –	DPT_Trigger	0/1	[MLx] Trigger	Trigger the Master Light Function
7	1 Bit	I	C – W – –	DPT_Ack	0/1	[MLx] Trigger	0 = Nothing; 1 = T rigger theMaster Light Function
	1 Bit	I	C – W – –	DPT_Ack	0/1	[MLx] Trigger	1 = Nothing; 0 = T rigger the Master Light Function
8, 9, 10, 11 , 12, 13,14, 15, 16, 17, 18, 19	1 Bit	I	C – W –	DPT_Switch	0/1	[MLx] Status Obje ct x	Binary Status

20	1 Bit	0	C R - T -	DPT_Switch	0/1	[MLx] General Sta tus	Binary Status
21	1 Bit		C – – T –	DPT_Switch	0/1	[MLx] General Sw itch Off: Binary O bject	Switch Off Sendin g
22	1 By te		C – – T –	DPT_Scaling	0% – 100%	[MLx] General Sw itch Off: Scaling	0-100%
23	1 By te		C – – T –	DPT_SceneControl	0-63; 128-1 91	[MLx] General Sw itch Off: Scene	Scene Sending
24	1 By te		C – – T –	DPT_HVACMode	1=Confort 2 =Standby 3 =Económic o4=Protecci ón	[MLx] General Sw itch Off: HVAC mo de	Auto, Comfort, St andby, Economy, Building Protectio n

25	1 Bi t	C - - T -	DPT_Switch	0/1	[MLx] Courtes y Switch On: B inaryObject	Switch On Sen ding
26	1 B yt e	C - - T -	DPT_Scaling	0% – 100 %	[MLx] Courtes y Switch On: S caling	0-100%
27	1 B yt e	C - - T -	DPT_SceneNumber	0 – 63	[MLx] Courtes y Switch On: S cene	Scene Sending
28	1 B yt e	C - - T -	DPT_HVACMode	1=Confort 2=Standb y 3=Econ ómico4=P rotección	[MLx] Courtes y Switch On: H VAC mode	Auto, Comfort, Standby, Econ omy, Building Protection

				T .			
29, 30, 3 1, 32, 33, 34, 35, 3 6, 37, 38, 39, 40, 4 1, 42, 43, 44, 45, 4 6, 47, 48, 49, 50, 5 1, 52, 53, 54, 55, 5 6, 57, 58, 59, 60	1 Bi t	1	C - W - -	DPT_Bool	0/1	[LF] (1-Bit) Dat a Entry x	Binary Data En try (0/1)
61, 62, 6 3, 64, 65, 66, 67, 6 8, 69, 70, 71, 72, 7 3, 74, 75, 76	1 B yt e	I	C - W - -	DPT_Value_1_Ucoun t	0 – 255	[LF] (1-Byte) D ata Entry x	1-Byte Data En try (0-255)
77, 78, 7 9, 80, 81, 82, 83, 8 4, 85, 86, 87, 88, 8 9, 90, 91, 92	2 B yt es	I	C – W – –	DPT_Value_2_Ucoun t	0 – 65535	[LF] (2-Byte) D ata Entry x	2-Byte Data En try
93, 94, 9 5, 96, 97, 98, 99, 1 00	4 B yt es	I	C - W - -	DPT_Value_4_Count	-2147483 648 -2147 483647	[LF] (4-Byte) D ata Entry x	4-Byte Data En try
	1 Bi t	0	CR -T	DPT_Bool	0/1	[LF] Function x – Result	(1-Bit) Boolean
	1 B yt e	O	CR -T	DPT_Value_1_Ucoun t	0 – 255	[LF] Function x – Result	(1-Byte) Unsig ned
			1		1	1	

101 102	2 B yt es	0	C R - T -	DPT_Value_2_Ucoun t	0 – 65535	[LF] Function x – Result	(2-Byte) Unsig ned
101, 102, 103, 104, 105, 106, 107, 108, 109, 110	4 B yt es	O	C R - T -	DPT_Value_4_Count	-2147483 648 -2147 483647	[LF] Function x – Result	(4-Byte) Signe d
	1 B yt e	0	CR -T	DPT_Scaling	0% – 100 %	[LF] Function x – Result	(1-Byte) Perce ntage
	2 B yt es	O	CR -T	DPT_Value_2_Count	-32768 – 32767	[LF] Function x – Result	(2-Byte) Signe d
	2 B yt es	0	CR -T	9.xxx	-671088,6 4 -670433 ,28	[LF] Function x – Result	(2-Byte) Float
111	1 Bi t	0	CR -T	DPT_Alarm	0/1	Error: Overhea ting	0 = No Error; 1 = Error
112	1 Bi t		C – – T –	DPT_Start	0/1	Searching for Shortcircuit Er ror	0 = Stop; 1 = S tart
113	1 Bi t	0	C R - T -	DPT_Alarm	0/1	Error: External Voltage	0 = No Error; 1 = Error

114, 115, 116, 117	1 Bi t	O	C R - T -	DPT_Alarm	0/1	[Cx] Error: Sho rtcircuit	0 = No Error; 1 = Error
114	1 Bi t	o	C R - T -	DPT_Alarm	0/1	[R] Error: Shor tcircuit	0 = No Error; 1 = Error
114, 116	1 Bi t	o	CR -T	DPT_Alarm	0/1	[CWx] Error: S hortcircuit	0 = No Error; 1 = Error
115	1 Bi t	0	C R - T -	DPT_Alarm	0/1	[G] Error: Shor tcircuit	0 = No Error; 1 = Error
115, 117	1 Bi t	o	CR -T	DPT_Alarm	0/1	[WWx] Error: S hortcircuit	0 = No Error; 1 = Error
116	1 Bi t	0	CR -T	DPT_Alarm	0/1	[B] Error: Shor tcircuit	0 = No Error; 1 = Error
117	1 Bi t	0	CR -T	DPT_Alarm	0/1	[W] Error: Sho rtcircuit	0 = No Error; 1 = Error
	1 B yt e	I	C - W - -	DPT_Scaling	0% – 100 %	[RGB] Maximu m Light Level	20 – 100%
118	1 B yt e	I	C – W –	DPT_Scaling	0% – 100 %	[RGBW] Maxim um Light Level	20 – 100%
		<u> </u>	<u> </u>	I	l		

118, 149	1 B yt e	I	C – W – –	DPT_Scaling	0% – 100 %	[TWx] Maximu m Light Level	20 – 100%
118	1 B yt e	I	C – W – –	DPT_Scaling	0% – 100 %	[TWx+TWx] Ma ximum Light L evel	20 – 100%
119	1 Bi t	I	C - W - -	DPT_Switch	0/1	[RGBW] Switc h On/Off	0 = Off; 1 = On
	1 Bi t	I	C – W – –	DPT_Switch	0/1	[RGB] Switch On/Off	0 = Off; 1 = On
119, 150	1 Bi t	I	C – W – –	DPT_Switch	0/1	[TWx] Switch On/Off	0 = Off; 1 = On
119	1 Bi t	I	C – W – –	DPT_Switch	0/1	[TWx+TWx] Sw itch On/Off	0 = Off; 1 = On
100	4 Bi t	I	C – W – –	DPT_Control_Dimmi		[RGBW] Relati ve Dimming	4-Bit Dimmer Control
120	4 Bi t	I	C – W – –	DPT_Control_Dimmi	0x0 (Dete ner) 0x1 (Reducir 1 00%)0x 7 (Reduci r 1%) 0x8 (Detener) 0x9 (Subi r 100%)	[RGB] Relative Dimming	4-Bit Dimmer Control
120, 151	4 Bi t	I	C – W – –	DPT_Control_Dimmi		[TWx] Relative Dimming	4-Bit Dimmer Control
					0xF (Subi r 1%)		

120	4 Bi t	I	C – W –	DPT_Control_Dimmi		[TWx+TWx] Re lative Dimming	4-Bit Dimmer Control
101	1 B yt e	I	C - W -	DPT_Scaling	0% – 100 %	[RGBW] Absol ute Dimming	1-Byte Dimmer Control
121	1 B yt e	I	C - W -	DPT_Scaling	0% – 100 %	[RGB] Absolut e Dimming	1-Byte Dimmer Control
121, 152	1 B yt e	I	C - W -	DPT_Scaling	0% – 100 %	[TWx] Absolut e Dimming	1-Byte Dimmer Control
121	1 B yt e	I	C - W - -	DPT_Scaling	0% – 100 %	[TWx+TWx] Ab solute Dimmin g	1-Byte Dimmer Control
122, 123,	2 B yt es	I	C - W -	DPT_TimePeriodSec	0 – 65535	[RGBW] Dimmi ng Time x	Time in Secon
124	2 B yt es	I	C - W - -	DPT_TimePeriodSec	0 – 65535	[RGB] Dimmin g Time x	Time in Secon
122, 123, 124, 153, 154, 155	2 B yt es	I	C - W - -	DPT_TimePeriodSec	0 – 65535	[TWx] Dimmin g Time x	Time in Secon ds

122, 123, 124	2 B yt es	I	C - W - -	DPT_TimePeriodSec	0 – 65535	[TWx+TWx] Di mming Time x	Time in Secon ds
125	3 B yt es	I	C - W - -	DPT_Colour_RGB	[0 – 255] * 3	[RGB] RGB Co lour	3-Byte RGB C ontrol
125, 156	2 B yt es	I	C - W - -	DPT_Absolute_Colou r_Temperature	0 – 65535	[TWx] Colour T emperature	2-Byte Control (Kelvin)

125	3 By te s	I	C - W - -	DPT_Colour_RGB	[0 – 255] * 3	[RGBW] RGB Colour	3-Byte RGB Co
	2 By te s	I	C - W - -	DPT_Absolute_Colou r_Temperature	0 – 65535	[TWx+TWx] Co lour Temperatu re	2-Byte Control (Kelvin)
126	6 By te s	1	C – W – –	DPT_Colour_RGBW	[0 -1] *4 – [0 – 255] * 4	[RGBW] RGBW Colour	6-Byte RGBW Control
126, 157	6 By te s	I	C – W – –	DPT_Brightness_Col our_Temperature_Tra nsition	[0 – 255] * 6	[TWx] Colour T emperature an d Luminosity T ransition	6-Byte Control

126	6 By te s	I	C - W - -	DPT_Brightness_Col our_Temperature_Tra nsition	[0 – 255] * 6	[TWx+TWx] Co lour Temperatu reand Luminos ity Transition	6-Byte Control
127	3 By te s	I	C - W - -	1.xxx	[0 – 255] * 3	[RGB] HSV Col our	3-Byte HSV Co
127, 158	1 Bi t	I	C - W - -	DPT_Switch	0/1	[TWx] HCL	0 = Deactivate; 1 = Activate
127	1 Bi t	I	C – W –	DPT_Switch	0/1	[TWx+TWx] HC L	0 = Deactivate; 1 = Activate
128, 159	2 By te s	I	C - W - -	DPT_Absolute_Colou r_Temperature	0 – 65535	[TWx] HCL: Co lour Temperatu re	Colour Temper ature (Kelvin)
128	2 By te s	I	C - W - -	DPT_Absolute_Colou r_Temperature	0 – 65535	[TWx+TWx] HC L: ColourTemp erature	Colour Temper ature (Kelvin)
	1 By te	I	C – W –	DPT_SceneControl	0-63; 128- 191	[RGBW] Direct Colour	Colour Number (Scene 1 – 22)
129	1 By te	I	C – W –	DPT_SceneControl	0-63; 128- 191	[RGB] Direct C olour	Colour Number (Scene 1 – 22)
			ı	1	1	1	1

129, 160	1 By te	1	C - W -	DPT_SceneControl	0-63; 128- 191	[TWx] Direct C olour	Colour Number (Scene 1 – 6)
129	1 By te	I	C – W –	DPT_SceneControl	0-63; 128- 191	[TWx+TWx] Dir ect Colour	Colour Number (Scene 1 – 6)
130	1 Bi t	I	C - W - -	DPT_Start	0/1	[RGBW] Colou r Shift	0 = Stop; 1 = S tart
	1 Bi t	I	C – W –	DPT_Start	0/1	[RGB] Colour Shift	0 = Stop; 1 = S tart
130, 161	1 Bi t	I	C – W –	DPT_Start	0/1	[TWx] Colour T emperature Sh ift	0 = Stop; 1 = S tart
130	1 Bi t	I	C – W –	DPT_Start	0/1	[TWx+TWx] Co lour Temperatu reShift	0 = Stop; 1 = S tart
101	4 Bi t	I	C – W –	DPT_Control_Dimmin g		[RGBW] Colou r Shift	4-Bit Colour C ontrol
131	4 Bi t	I	C – W –	DPT_Control_Dimmin g	0x0 (Dete ner) 0x1 ([RGB] Colour Shift	4-Bit Colour C ontrol
131, 162	4 Bi t	I	C – W –	DPT_Control_Dimmin g	Reducir 1 00%)0x 7 (Reduci r 1%) 0x8 (Detener) 0x9 (Subir	[TWx] Colour T emperature Sh ift	4-Bit Colour C ontrol
					100%)0 xF (Subir 1%)		

131	4 Bi t	I	C – W – –	DPT_Control_Dimmin g		[TWx+TWx] Co lour Temperatu re Shift	4-Bit Colour C ontrol
100	1 By te	I	C – W – –	DPT_Scaling	0% – 100 %	[RGBW] Memo ry Function: S witchOn Value	0 – 100%
132	1 By te	I	C – W – –	DPT_Scaling	0% – 100 %	[RGB] Memory Function: Swit ch On Value	0 – 100%
				I	T	I	
132, 163	By te	I	W –	DPT_Scaling	0% – 100%	[TWx] Memory Fu nction: SwitchOn Value	0 – 100%
132	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[TWx+TWx] Mem ory Function: Swit ch On Value	0 – 100%
133	1 Bit	ı	C – W –	DPT_Start	0/1	[RGBW] Simple Ti mer	0 = Deactivate; 1 = Activate
133	1 Bit	ı	C – W –	DPT_Start	0/1	[RGB] Simple Tim	0 = Deactivate; 1 = Activate
133, 164	1 Bit	ı	C – W –	DPT_Start	0/1	[TWx] Simple Tim er	0 = Deactivate; 1 = Activate
133	1 Bit	I	C – W –	DPT_Start	0/1	[TWx+TWx] Simpl e Timer	0 = Deactivate; 1 = Activate
134	1 Bit	0	C R - T -	DPT_Bool	0/1	[RGBW] Warning Time (Status)	0 = Deactivated; 1 = Activated
104	1 Bit	0	C R - T -	DPT_Bool	0/1	[RGB] Warning Ti me (Status)	0 = Deactivated; 1 = Activated
134, 165	1 Bit	0	C R - T -	DPT_Bool	0/1	[TWx] Warning Ti me (Status)	0 = Deactivated; 1 = Activated
134	1 Bit	0	CR -T	DPT_Bool	0/1	[TWx+TWx] Warni ng Time (Status)	0 = Deactivated; 1 = Activated

105	1 Bit	I	C – W –	DPT_Start	0/1	[RGBW] Flashing	0 = Deactivate; 1 = Activate
135	1 Bit	I	C – W –	DPT_Start	0/1	[RGB] Flashing	0 = Deactivate; 1 = Activate
135, 166	1 Bit	I	C – W –	DPT_Start	0/1	[TWx] Flashing	0 = Deactivate; 1 = Activate
135	1 Bit	I	C – W –	DPT_Start	0/1	[TWx+TWx] Flash ing	0 = Deactivate; 1 = Activate
136	1 By te	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[RGBW] Scenes/Sequence s	Scene/Sequence Number
100	1 By te	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[RGB] Scenes/Se quences	Scene/Sequence Number
136, 167	1 By te	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[TWx] Scenes/Sequence s	Scene/Sequence Number
136	1 By te	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[TWx+TWx] Scen es/Sequences	Scene/Sequence Number
137	1 Bit	I	C – W –	DPT_Start	0/1	[RGBW] Start/Sto p Sequence	0 = Stop; 1 = Start
107	1 Bit	I	C – W –	DPT_Start	0/1	[RGB] Start/Stop Sequence	0 = Stop; 1 = Start
137, 168	1 Bit	I	C – W – –	DPT_Start	0/1	[TWx] Start/Stop Sequence	0 = Stop; 1 = Start
137	1 Bit	ı	C – W –	DPT_Start	0/1	[TWx+TWx] Start/ Stop Sequence	0 = Stop; 1 = Start
138	1 Bit	I	C – W –	DPT_Switch	0/1	[RGBW] Custom On/Off 1	0 = Off; 1 = On
100	1 Bit	I	C – W –	DPT_Switch	0/1	[RGB] Custom On /Off 1	0 = Off; 1 = On
138, 169	1 Bit	I	C – W –	DPT_Switch	0/1	[TWx] Custom On /Off 1	0 = Off; 1 = On

138	1 Bit	ı	C – W –	DPT_Switch	0/1	[TWx+TWx] Custom On/Off 1	0 = Off; 1 = On
120	1 Bit	I	C – W –	DPT_Switch	0/1	[RGBW] Custom On/Off 2	0 = Off; 1 = On
139	1 Bit	I	C – W –	DPT_Switch	0/1	[RGB] Custom On /Off 2	0 = Off; 1 = On
139, 170	1 Bit	ı	C – W –	DPT_Switch	0/1	[TWx] Custom On /Off 2	0 = Off; 1 = On
139	1 Bit	1	C – W –	DPT_Switch	0/1	[TWx+TWx] Custom On/Off 2	0 = Off; 1 = On
140	1 Bit	ı	C – W –	DPT_Switch	0/1	[RGBW] Custom On/Off 3	0 = Off; 1 = On
140	1 Bit	I	C – W –	DPT_Switch	0/1	[RGB] Custom On /Off 3	0 = Off; 1 = On
140, 171	1 Bit	I	C – W –	DPT_Switch	0/1	[TWx] Custom On /Off 3	0 = Off; 1 = On
140	1 Bit	ı	C – W –	DPT_Switch	0/1	[TWx+TWx] Custom On/Off 3	0 = Off; 1 = On
141	1 Bit	I	C – W –	DPT_Switch	0/1	[RGBW] Custom On/Off 4	0 = Off; 1 = On
141	1 Bit	I	C – W –	DPT_Switch	0/1	[RGB] Custom On /Off 4	0 = Off; 1 = On
141, 172	1 Bit	I	C – W –	DPT_Switch	0/1	[TWx] Custom On /Off 4	0 = Off; 1 = On
141	1 Bit	I	C – W –	DPT_Switch	0/1	[TWx+TWx] Custom On/Off 4	0 = Off; 1 = On
	1 Bit	I	C – W –	DPT_Enable	0/1	[RGBW] Lock	0 = Unlock; 1 = Lo ck
	1 Bit	ı	C – W –	DPT_Enable	0/1	[RGB] Lock	0 = Unlock; 1 = Lo ck
142		<u> </u>	<u> </u>	<u> </u>	1	I	I

	1 Bit	I	C – W –	DPT_Enable	0/1	[RGBW] Lock	0 = Lock; 1 = Unlo
	1 Bit	I	C – W –	DPT_Enable	0/1	[RGB] Lock	0 = Lock; 1 = Unlo ck
142, 173	1 Bit	I	C – W –	DPT_Enable	0/1	[TWx] Lock	0 = Unlock; 1 = Lo ck
142, 173	1 Bit	I	C – W –	DPT_Enable	0/1	[TWx] Lock	0 = Lock; 1 = Unlo ck
142	1 Bit	I	C – W –	DPT_Enable	0/1	[TWx+TWx] Lock	0 = Unlock; 1 = Lo ck
	1 Bit	I	C – W –	DPT_Enable	0/1	[TWx+TWx] Lock	0 = Lock; 1 = Unlo ck
143, 174	1 Bit	I	C – W –	DPT_Trigger	0/1	[RGBW] White Ba	0 = 1 = Save RGB components
140, 174	1 Bit	I	C – W –	DPT_Trigger	0/1	[RGB] White Bala	0 = 1 = Save RGB components
144	1 Bit	0	C R – T –	DPT_Switch	0/1	[RGBW] On/Off (Status)	0 = Off; 1 = On
	1 Bit	0	C R – T –	DPT_Switch	0/1	[RGB] On/Off (Status)	0 = Off; 1 = On
144, 175	1 Bit	0	C R – T –	DPT_Switch	0/1	[TWx] On/Off (Status)	0 = Off; 1 = On
144	1 Bit	0	C R - T -	DPT_Switch	0/1	[TWx+TWx] On/O ff (Status)	0 = Off; 1 = On
145	1 By te	0	C R - T -	DPT_Scaling	0% – 100%	[RGBW] Dimming Value (Status)	0 – 100%
	1 By te	0	C R – T –	DPT_Scaling	0% – 100%	[RGB] Dimming V alue (Status)	0 – 100%
145, 176	1 By te	0	C R – T –	DPT_Scaling	0% – 100%	[TWx] Dimming V alue (Status)	0 – 100%

145	1 By te	0	C R – T –	DPT_Scaling	0% – 100%	[TWx+TWx] Dim ming Value (Statu s)	0 – 100%
146	3 By tes	0	C R - T -	DPT_Colour_RGB	[0 – 255] * 3	[RGB] RGB Dimm ing Values(Status)	3-Byte Status
146, 177	2 By tes	0	C R - T -	DPT_Absolute_Colour_Te mperature	0 – 65535	[TWx] Colour Tem perature Value (St atus)	Colour Temperatu re (Kelvin)
146	3 By tes	0	C R - T -	DPT_Colour_RGB	[0 – 255] * 3	[RGBW] RGB Di mming Values(Status)	3-Byte Status

	2 By tes	0	C R – T –	DPT_Absolute_Colour_Te mperature	0 – 65535	[TWx+TWx] Colour Temperatu reValue (Status)	Colour Temperatu re (Kelvin)
147, 178	6 By tes	0	C R - T -	DPT_Colour_RGBW	[0 -1] *4 – [0 – 255] *4	[RGBW] RGBW D imming Values (St atus)	6-Byte Status
148	3 By tes	0	C R - T -	1.xxx	[0 – 255] * 3	[RGB] HSV Dimmi ng Values(Status)	3-Byte Status
148, 179	1 Bit	0	C R - T -	DPT_Switch	0/1	[TWx] HCL (Statu s)	0 = Deactivated; 1 = Activated
148	1 Bit	0	C R – T –	DPT_Switch	0/1	[TWx+TWx] HCL (Status)	0 = Deactivated; 1 = Activated
180, 200, 2 20, 240	1 By te	I	C – W – –	DPT_Scaling	0% – 100%	[Cx] Maximum Lig ht Level	20 – 100%
180	1 By te	1	C – W – –	DPT_Scaling	0% – 100%	[Cx+Cx+Cx] Maxi mum Light Level	20 – 100%
100	1 By te	I	C – W – –	DPT_Scaling	0% – 100%	[Cx+Cx+Cx+Cx] Maximum LightLe vel	20 – 100%
180, 220	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[Cx+Cx] Maximu m Light Level	20 – 100%
181, 201, 2 21, 241	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx] Switch On/Of	0 = Off; 1 = On
	1 Bit	1	C – W –	DPT_Switch	0/1	[R] Switch On/Off	0 = Off; 1 = On

181	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx+Cx] Switch On/Off	0 = Off; 1 = On
	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx] Switc h On/Off	0 = Off; 1 = On
181, 221	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx] Switch O n/Off	0 = Off; 1 = On
182, 202, 2 22, 242	4 Bit	I	C – W –	DPT_Control_Dimming		[Cx] Relative Dim ming	4-Bit Dimmer Con trol
	4 Bit	ı	C – W –	DPT_Control_Dimming	0x0 (Detener) 0 x1 (Reducir	[R] Relative Dimm ing	4-Bit Dimmer Con trol
182	4 Bit	I	C – W –	DPT_Control_Dimming	100%)0x 7 (Reducir 1%) 0x8 (D etener) 0x9	[Cx+Cx+Cx+Cx] Relative Dimming	4-Bit Dimmer Con trol
	4 Bit	1	C – W –	DPT_Control_Dimming	(Subir 100 %)0xF (S ubir 1%)	[Cx+Cx+Cx] Relat ive Dimming	4-Bit Dimmer Con trol
182, 222	4 Bit	I	C – W –	DPT_Control_Dimming		[Cx+Cx] Relative Dimming	4-Bit Dimmer Con trol
183, 203, 2 23, 243	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[Cx] Absolute Dim ming	1-Byte Dimmer C ontrol
183	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[R] Absolute Dim ming	1-Byte Dimmer C ontrol
183, 223	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[Cx+Cx] Absolute Dimming	1-Byte Dimmer C ontrol
183	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[Cx+Cx+Cx] Absolute Dimming	1-Byte Dimmer C ontrol
103	1 By te	ı	C – W –	DPT_Scaling	0% – 100%	[Cx+Cx+Cx+Cx] AbsoluteDimming	1-Byte Dimmer C ontrol
184, 185, 1 86, 204,20 5, 206, 224 , 225,226, 244, 245, 2 46	2 B yt es	I	C – W – –	DPT_TimePeriodSec	0 – 65535	[Cx] Dimming Tim e x	Time in Seconds

184, 185, 1	2 B yt es	I	C – W –	DPT_TimePeriodSec	0 – 65535	[Cx+Cx+Cx] Dim ming Time x	Time in Seconds
86	2 B yt es	I	C – W – –	DPT_TimePeriodSec	0 – 65535	[Cx+Cx+Cx+Cx] D imming Time x	Time in Seconds
184, 185, 1 86, 224,22 5, 226	2 B yt es	I	C – W –	DPT_TimePeriodSec	0 – 65535	[Cx+Cx] Dimming Time x	Time in Seconds
187, 207, 2 27, 247	1 B yt e	I	C – W –	DPT_Scaling	0% – 100%	[Cx] Memory Func tion: Switch On Va lue	0 – 100%
187	1 B yt e	I	C – W –	DPT_Scaling	0% – 100%	[Cx+Cx+Cx] Mem ory Function:Switc h On Value	0 – 100%
107	1 B yt e	I	C – W –	DPT_Scaling	0% – 100%	[Cx+Cx+Cx+Cx] Memory Function: Switch On Value	0 – 100%
187, 227	1 B yt e	I	C – W –	DPT_Scaling	0% – 100%	[Cx+Cx] Memory Function: SwitchO n Value	0 – 100%
188, 208, 2 28, 248	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx] Simple Timer	0 = Deactivate; 1 = Activate
188	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx+Cx+Cx+Cx] S imple Timer	0 = Deactivate; 1 = Activate
100	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx+Cx+Cx] Simpl e Timer	0 = Deactivate; 1 = Activate
188, 228	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx+Cx] Simple Ti mer	0 = Deactivate; 1 = Activate
189, 209, 2 29, 249	1 Bi t	0	C R – T –	DPT_Bool	0/1	[Cx] Warning Time (Status)	0 = Deactivated; 1 = Activated
	1 Bi t	0	C R – T –	DPT_Bool	0/1	[Cx+Cx+Cx+Cx] Warning Time(Sta tus)	0 = Deactivated; 1 = Activated

	1 Bi t	0	C R - T -	DPT_Bool	0/1	[Cx+Cx+Cx] Warni ng Time(Status)	0 = Deactivated; 1 = Activated
189, 229	1 Bi t	0	C R - T -	DPT_Bool	0/1	[Cx+Cx] Warning Time (Status)	0 = Deactivated; 1 = Activated
190, 210, 2 30, 250	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx] Flashing	0 = Deactivate; 1 = Activate
190	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx+Cx+Cx+Cx] F lashing	0 = Deactivate; 1 = Activate
190, 230	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx+Cx] Flashing	0 = Deactivate; 1 = Activate
190	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx+Cx+Cx] Flash ing	0 = Deactivate; 1 = Activate
191, 211, 2 31, 251	1 B yt e	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[Cx] Scenes/Sequ ences	Scene/Sequence Number
101	1 B yt e	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[Cx+Cx+Cx+Cx] S cenes/Sequences	Scene/Sequence Number
191	1 B yt e	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[Cx+Cx+Cx] Scen es/Sequences	Scene/Sequence Number
191, 231	1 B yt e	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[Cx+Cx] Scenes/S equences	Scene/Sequence Number
192, 212, 2 32, 252	1 Bi t	I	C – W –	DPT_Start	0/1	[Cx] Start/Stop Se quence	0 = Stop; 1 = Start
		T					

192	1 Bit	I	C – W –	DPT_Start	0/1	[Cx+Cx+Cx+Cx] S tart/StopSequence	0 = Stop; 1 = Start
	1 Bit	I	C – W –	DPT_Start	0/1	[Cx+Cx+Cx] Start/ Stop Sequence	0 = Stop; 1 = Start
192, 232	1 Bit	I	C – W –	DPT_Start	0/1	[Cx+Cx] Start/Sto p Sequence	0 = Stop; 1 = Start

193, 213, 2 33, 253	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx] Custom On/O ff 1	0 = Off; 1 = On
193	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx+Cx] C ustom On/Off 1	0 = Off; 1 = On
193	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx] Custom On/Off 1	0 = Off; 1 = On
193, 233	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx] Custom On/Off 1	0 = Off; 1 = On
194, 214, 2 34, 254	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx] Custom On/O ff 2	0 = Off; 1 = On
194	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx+Cx] C ustom On/Off 2	0 = Off; 1 = On
194	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx] Custom On/Off 2	0 = Off; 1 = On
194, 234	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx] Custom On/Off 2	0 = Off; 1 = On
195, 215, 2 35, 255	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx] Custom On/O ff 3	0 = Off; 1 = On
195	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx+Cx] C ustom On/Off 3	0 = Off; 1 = On
193	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx] Custom On/Off 3	0 = Off; 1 = On
195, 235	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx] Custom On/Off 3	0 = Off; 1 = On
196, 216, 2 36, 256	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx] Custom On/O ff 4	0 = Off; 1 = On
	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx+Cx] C ustom On/Off 4	0 = Off; 1 = On
196	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx+Cx] Custom On/Off 4	0 = Off; 1 = On
		<u> </u>	ı	I	1	1	

196, 236	1 Bit	I	C – W –	DPT_Switch	0/1	[Cx+Cx] Custom On/Off 4	0 = Off; 1 = On
197, 217, 2 37, 257	1 Bit	I	C – W – –	DPT_Enable	0/1	[Cx] Lock	0 = Unlock; 1 = Lo ck
	1 Bit	I	C – W –	DPT_Enable	0/1	[Cx] Lock	0 = Lock; 1 = Unlo ck
197	1 Bit	I	C – W –	DPT_Enable	0/1	[Cx+Cx+Cx+Cx] L ock	0 = Lock; 1 = Unlo ck
	1 Bit	I	C – W – –	DPT_Enable	0/1	[Cx+Cx+Cx+Cx] L ock	0 = Unlock; 1 = Lo ck

	1 Bit	I	C – W –	DPT_Enable	0/1	[Cx+Cx+Cx] Lock	0 = Unlock; 1 = Lo ck
	1 Bit	I	C – W –	DPT_Enable	0/1	[Cx+Cx+Cx] Lock	0 = Lock; 1 = Unlo ck
197, 237	1 Bit	I	C – W –	DPT_Enable	0/1	[Cx+Cx] Lock	0 = Unlock; 1 = Lo ck
107, 207	1 Bit	I	C – W –	DPT_Enable	0/1	[Cx+Cx] Lock	0 = Lock; 1 = Unlo ck
198, 218, 2 38, 258	1 Bit	0	C R – T –	DPT_Switch	0/1	[Cx] On/Off (Status)	0 = Off; 1 = On
	1 Bit	0	C R - T -	DPT_Switch	0/1	[R] On/Off (Status	0 = Off; 1 = On
198	1 Bit	0	C R - T -	DPT_Switch	0/1	[Cx+Cx+Cx] On/O ff (Status)	0 = Off; 1 = On
	1 Bit	0	C R - T -	DPT_Switch	0/1	[Cx+Cx+Cx+Cx] On/Off (Status)	0 = Off; 1 = On
198, 238	1 Bit	0	C R - T -	DPT_Switch	0/1	[Cx+Cx] On/Off (S tatus)	0 = Off; 1 = On
199, 219, 2 39, 259	1 By te	0	C R - T -	DPT_Scaling	0% – 100%	[Cx] Dimming Value (Status)	0 – 100%

_	DPT_Scaling	0% – 100%	[R] Dimming Valu e (Status)	0 – 100%
C R - T -	DPT_Scaling	0% – 100%	[Cx+Cx+Cx] Dim ming Value (Statu s)	0 – 100%
C R – T –	DPT_Scaling	0% – 100%	[Cx+Cx+Cx+Cx] Dimming Value(St atus)	0 – 100%
C R – T –	DPT_Scaling	0% – 100%	[Cx+Cx] Dimming Value (Status)	0 – 100%
C – W –	DPT_Switch	0/1	[G] Switch On/Off	0 = Off; 1 = On
C – W – –	DPT_Control_Dimming	0x0 (Detener) 0 x1 (Reducir 100%)0x 7 (Reducir 1%) 0x8 (D etener) 0x9 (Subir 100 %)0xF (S ubir 1%)	[G] Relative Dimming	4-Bit Dimmer Con trol
C – W –	DPT_Scaling	0% – 100%	[G] Absolute Dim ming	1-Byte Dimmer C ontrol
C R - T -	DPT_Switch	0/1	[G] On/Off (Status	0 = Off; 1 = On
C R – T –	DPT_Scaling	0% – 100%	[G] Dimming Valu e (Status)	0 – 100%
	- CR - T - C - W CR - T - CR	CR -T DPT_Scaling - DPT_Scaling - DPT_Switch - DPT_Control_Dimming - DPT_Scaling - DPT_Scaling - DPT_Scaling - DPT_Scaling - DPT_Scaling - DPT_Scaling - CR -T DPT_Switch - CR	C R T DPT_Scaling 0% - 100% C R T DPT_Scaling 0% - 100% C - W - DPT_Switch 0/1 C - W - DPT_Switch 0/1 C - W - DPT_Control_Dimming 0x0 (Detener) 0 x1 (Reducir 100%)0x 7 (Reducir 1%) 0x8 (Detener) 0x9 (Subir 100 %)0xF (Subir 100 %)0xF (Subir 100 %)0xF (Subir 1%) C - W - DPT_Scaling 0% - 100% C R T DPT_Switch 0/1 C R T DPT_Switch 0/1	C R

221	1 Bit	I	C – W –	DPT_Switch	0/1	[B] Switch On/Off	0 = Off; 1 = On
222	4 Bit	I	C - W - -	DPT_Control_Dimming	0x0 (Detener) 0 x1 (Reducir 100%)0x 7 (Reducir 1%) 0x8 (D etener) 0x9 (Subir 100 %)0xF (S ubir 1%)	[B] Relative Dimming	4-Bit Dimmer Con trol

223	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[B] Absolute Dim ming	1-Byte Dimmer C ontrol
238	1 Bit	0	C R – T –	DPT_Switch	0/1	[B] On/Off (Status	0 = Off; 1 = On
239	1 By te	0	C R – T –	DPT_Scaling	0% – 100%	[B] Dimming Valu e (Status)	0 – 100%
240	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[W] Maximum Lig ht Level	20 – 100%
241	1 Bit	I	C – W –	DPT_Switch	0/1	[W] Switch On/Off	0 = Off; 1 = On
242	4 Bit	I	C – W – –	DPT_Control_Dimming	0x0 (Detener) 0 x1 (Reducir 100%)0x 7 (Reducir 1%) 0x8 (D etener) 0x9 (Subir 100 %)0xF (S ubir 1%)	[W] Relative Dim ming	4-Bit Dimmer Con trol
243	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[W] Absolute Dim ming	1-Byte Dimmer C ontrol
244, 245, 2 46	2 By tes	I	C – W –	DPT_TimePeriodSec	0 – 65535	[W] Dimming Tim	Time in Seconds
247	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[W] Memory Funct ion: Switch OnVal ue	0 – 100%
248	1 Bit	I	C – W –	DPT_Start	0/1	[W] Simple Timer	0 = Deactivate; 1 = Activate
249	1 Bit	0	C R – T –	DPT_Bool	0/1	[W] Warning Time (Status)	0 = Deactivated; 1 = Activated
250	1 Bit	I	C – W – –	DPT_Start	0/1	[W] Flashing	0 = Deactivate; 1 = Activate
251	1 By te	I	C – W –	DPT_SceneControl	0-63; 128-1 91	[W] Scenes/Sequence s	Scene/Sequence Number

252	1 Bit	I	C – W –	DPT_Start	0/1	[W] Start/Stop Se quence	0 = Stop; 1 = Start
253	1 Bit	I	C – W –	DPT_Switch	0/1	[W] Custom On/O ff 1	0 = Off; 1 = On
254	1 Bit	I	C – W –	DPT_Switch	0/1	[W] Custom On/O ff 2	0 = Off; 1 = On
255	1 Bit	I	C – W –	DPT_Switch	0/1	[W] Custom On/O ff 3	0 = Off; 1 = On
256	1 Bit	I	C – W –	DPT_Switch	0/1	[W] Custom On/O ff 4	0 = Off; 1 = On
257	1 Bit	I	C – W –	DPT_Enable	0/1	[W] Lock	0 = Unlock; 1 = Lo ck
257	1 Bit	I	C – W –	DPT_Enable	0/1	[W] Lock	0 = Lock; 1 = Unlo ck
258	1 Bit	0	C R – T –	DPT_Switch	0/1	[W] On/Off (Status)	0 = Off; 1 = On
259	1 By te	0	C R – T –	DPT_Scaling	0% – 100%	[W] Dimming Value (Status)	0 – 100%
260	4 Bit	I	C – W –	DPT_Control_Dimming	0x0 (Detener) 0 x1 (Reducir	[H] Relative Dimm	4-Bit Dimmer Con trol
260, 266, 2 69	4 Bit	I	C – W –	DPT_Control_Dimming	100%)0x 7 (Reducir 1%) 0x8 (D	[TWx] Colour Tem perature Relative Dimming	4-Bit Dimmer Con trol (0% = Warm, 100% = Cold)
260	4 Bit	I	C – W – –	DPT_Control_Dimming	etener) 0x9 (Subir 100 %)0xF (S ubir 1%)	[TWx+TWx] Colour Temperatu re Relative Dimmi ng	4-Bit Dimmer Con trol (0% = Warm, 100% = Cold)
261	1 By te	1	C – W –	DPT_Angle	0 – 360°	[H] Absolute Dim ming	1-Byte Dimmer C ontrol
261, 267, 2 70	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[TWx] Colour Tem perature Absolute Dimming	1-Byte Dimmer C ontrol (0% = War m, 100% = Cold)

261	1 By te	I	C – W – –	DPT_Scaling	0% – 100%	[TWx+TWx] Colour Temperatu reAbsolute Dimmi ng	1-Byte Dimmer C ontrol (0% =Warm , 100% = Cold)
262	1 By te	0	C R - T -	DPT_Angle	0 – 360°	[H] Dimming Valu e (Status)	0 – 360°
262, 268, 2 71	1 By te	0	C R - T -	DPT_Scaling	0% – 100%	[TWx] Colour Tem perature Dimming Value (Status)	Colour Temperatu re (0% = Warm, 1 00% = Cold)
262	1 By te	0	CR -T	DPT_Scaling	0% – 100%	[TWx+TWx] Colour Temperatu reDimming Value (Status)	Colour Temperatu re (0% = Warm,10 0% = Cold)

263	4 Bit	I	C - W - -	DPT_Control_Dimming	0x0 (Detener) 0 x1 (Reducir 100%)0x 7 (Reducir 1%) 0x8 (D etener) 0x9 (Subir 100 %)0xF (S ubir 1%)	[S] Relative Dimming	4-Bit Dimmer Con trol
264	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[S] Absolute Dim ming	1-Byte Dimmer C ontrol
265	1 By te	0	C R - T -	DPT_Scaling	0% – 100%	[S] Dimming Valu e (Status)	0 – 100 %
266, 269	4 Bit	I	C - W - -	DPT_Control_Dimming	0x0 (Detener) 0 x1 (Reducir 100%)0x 7 (Reducir 1%) 0x8 (D etener) 0x9 (Subir 100 %)0xF (S ubir 1%)	[V] Relative Dimming	4-Bit Dimmer Con trol
267, 270	1 By te	I	C – W –	DPT_Scaling	0% – 100%	[V] Absolute Dim ming	1-Byte Dimmer C ontrol
268, 271	1 By te	0	C R - T -	DPT_Scaling	0% – 100%	[V] Dimming Valu e (Status)	0 – 100%
272	1 Bit	I	C – W – –	DPT_Switch	0/1	[Power Supply Re lay] Switch On/Off	0 = Off; 1 = On
273	1 Bit	0	C R - T -	DPT_Switch	0/1	[Power Supply Re lay] On/Off(Status)	0 = Off; 1 = On

Join and send us your inquiries about Zennio devices: https://support.zennio.com

Documents / Resources

Zennio Lumento DX4 v2 4 Channel Constant Voltage PWM Dimmer in DIN Rail for DC LE D Loads [pdf] Installation Guide

Lumento DX4 v2 4 Channel Constant Voltage PWM Dimmer in DIN Rail for DC LED Loads, Lumento DX4, v2 4 Channel Constant Voltage PWM Dimmer in DIN Rail for DC LED Loads, Voltage PWM Dimmer in DIN Rail for DC LED Loads, DIN Rail for DC LED Loads

References

• User Manual

Manuals+,