
Home » wizarpos » wizarPOS 2D Smart POS Instructions

Contents
1 wizarPOS 2D Smart POS
2 Introduction
3 Project Background
4 Interface and parameter
description
5 Usage
6 Appendix
7 Documents / Resources
8 Related Posts

wizarPOS 2D Smart POS Instructions

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/wizarpos
https://manuals.plus/wizarpos/2d-smart-pos-manual.pdf

wizarPOS 2D Smart POS

Introduction

Purpose

This document describes the instruction of using WizarPOS Scan Service, including interface description,
parameter description, and methods of calling the services.
User
The reader of this document is a developer who uses the WizarPOS Scan Service.

Project Background

Overview
The WizarPOS smart POS currently use an enhanced and customized Android system as the OS, and as for the
scan function, the Android system does not come with the barcode scan/2D barcode scan function, but use open
source services, such as Zxing/Zbar. Many of the Android Apps that are used on smart POS devices have already
realized a very quick scan function.
However, there are many other applications are developed based on smart POS, not ready-made commercial
applications. And many of the smart POS developers also have POS industry background, not professional
Android developers. So when they start developing applications, they want to be provided with a convenient scan
API by WizarPOS, instead of learning Zxing/Zbar themselves.
From the hardware point of view, the scan parts used on smart POS, are not necessarily the standard camera,
there will be some transformation. In some cases, the scan part will be required to be a specialized hardware.
Therefore, the direct use of Zxing /Zbar is not really applicable for WizarPOS smart POS, but need some
modification and customization.
For the reasons above, we consider developing WizarPOS Scan Services to facilitate the third-party developers in
developing applications with the scan functions.

Scan Service Usage
The scan service is an app and started by using AIDL. The third-party apps custom their UI through by transfer
some parameters.

Interface and parameter description

Interface description

 ScanBarcode

This interface is a synchronous call interface.

When the application calls the interface, the scan service opens the camera as defined by the scan parameter

and starts the scan. After the scan, the camera is turned off and the results are returned immediately

ScanResult scanBarcode(ScanParameter parameter);

Parameter:

ScanParameter

Return:

ScanResult

starts

This interface is an asynchronous call interface, indicating the continuous scan is started. When the application

calls this interface, the scan service opens the camera as defined by the scan parameter and starts the scan.

After each scan, the results will be returned during the callback. After each callback is done, the next scan

process starts. void startScan(ScanParameter parameter, IScanCallBack callBack); Parameter:

ScanParameter, IScanCallBack

Return:

FoundBarcode in IScanCallBack

When calling startScan(), the parameter IScanCallBack must be implemented. The caller can get the

ScanResult through this interface. When this interface is called, the scan service is in the pause state, and

after the call is returned, the next scan action will be continued. You can turn off the scan service that is in

pause with “stop scan”.

void found barcode(ScanResult result);

Parameter:

ScanResult

StopScan

Stop the continuous scan, and turn off the scan service’s UI. After stop, other callers can call startScan, or

scanBarcode interface.

Return: getScanType(int index)

Get scanner type.

String getScanType(int index); Parameter:

Int 0 or 1;

Return:

String “Scanner” or “Camera” or “Error”;

Parameter Description

ScanParameter

ScanParameter is a parameter object, it defines the parameters that need by the scanner service.

method: set(String key, String value) (Value Not case sensitive)

Key
Value

Type Value Description

window_top int
Default: 0,

Range: >0

The distance to the screen top. Effect in ove
rlay mode.

(dp)

window_left int
Default: 0,

Range: >0

The distance to the screen left. Effect in ove
rlay mode.

(dp)

window_width int

Default: scr
een width

Range: >0

Screen
mode.

(dp)
width. Effect in overlay

window_height int

Default: scr
een height

Range: >0

Screen height. Effect in overlay mode.

(dp)

enable_scan_sectio n boolean Default: true Range: t
rue/false

false: all the display window is the area for s
canner, remove the scanner frame.

true: customize the area of the scanner, has
a scanner frame, the other part is semitrans
parent, the scanner frame is in center, can a
djust the width or the height of the

scanner frame.

scan_section_width int
Default: 300dip

Range: >0 The width of the scanner frame.

scan_section_heigh

t int
Default: 300dip

Range: >0 The height of the scanner frame.

display_scan_line String Default: moving Rang
e: No/fixed/moving

Display the red line in scanner area.

NO: Not display Fixed: In center

Moving: Move up and down

enable_flash_icon boolean

W1 �

Default:true

Q1 �

Default:false

Whether to display the hover
button of controlling the flash.

 Range: true/false

enable_switch_icon boolean
Default: true

Range: true/false

Whether to display the hover

button of switching camera.

enable_indicator_lig boolean Default: false Whether to display the indicator

ht Range: true/false light buton, only supported in Q1.

decodeformat String

Default:
BARCODE_ALL

Range: Barcode For
mat

Decode format range. Default is BARCODE
_ALL, the formats are separated by “,”.

decoder_mode int Default: 2 Range: 0/1/
2

Decode mode: 0: mode1

1: mode2

2: mode3

enable_return_imag

e boolean
Default: false

Range: true/false

Whether

image. to return the scanned

camera_index int Default: 0 Range: 0/1/
2

0: main scanner(fixed camera).

1: second scanner(zomm camera). 2:custo
mer display camera.

scan_time_out long (ms)
Default: -1

Range: >0

<=0:scan forever

>0:scan with timeout, when timeout, return t
imeout error, only effected in synchronized i
nterface.

scan_section_bord

er_color int
Default:

Color.WHITE

The color of scan border, use

Color.argb

scan_section_corne r_co
lor int

Default: Color.argb(0x
FF, 0x21, 0xDB,

0xD5)
The color of the scan corner

scan_section_line_

color int
Default:

Color.RED The color of the scan line

scan_tip_text String

Default: auto scan wh
en grab the scanned

picture
The tip text under the scan border

scan_tip_textSize int Default: 15

The size of the tip text

Unit: sp

scan_tip_textColor int
Default:

Color.WHITE The color of the tip text

scan_tip_textMargi n int Default: 30

The distance between the tip text and the b
ottom of the screen

Unit: dp

flash_light_state boolean Default: false
Initial state of flash light true: opened

false: closed

indicator_light_state boolean Default: false
Initial state of indicator light true: opened

false: closed

scan_mode String Default: dialog

Scanner window mode

dialog: activity with specified UI overlay�only
has scanner window, without UI titles, UI
buttons, the scanner window on top of other
UI activities

scan_camera_expo sure int Default:0 Camera exposure compensation for zoom c
amera

scan_time_limit int Default:50 The max decode time

enable_mirror_scan boolean Default:true
Enable mirror scan

Default is true, opened

enable_hands_free boolean Default:true

Enable handsfree will start motion detecting
and motion illumination. Generally, when sc
an continually should enable it.

Only for Zebra scanner.

enable_ui_by_zebr a boolean Default:true

true: display UI, false: hide UI. If hide
UI, the speed of start scanner will faster.

Only for Zebra scanner.

enable_mobile_pho ne_s
creen_mode boolean Default:false

true: improves bar code reading
performance on mobile phones and electro
nic displays, but may increase decode

time.

So if don’t need to scan code from phone, pl
ease set it false.

Only for Zebra scanner.

enable_upca_count ry boolean Default:true

true: after UPC_A decoding, show country c
ode at the first place; false: after UPC_A de
coding, hide country code at the first place.

Only for Zebra scanner.

enable_decoding_ill umin
ation boolean Default:true

Enabling illumination usually results in supe
rior images. The effectiveness of illuminatio
n decreases as the

distance to the target increases. true: Enabl
e Decoding Illumination, the decoder turns
on illumination every image capture to

aid

decoding.

false: Disable Decoding Illumination, the de
coder does not use decoding illumination.

Only for Zebra scanner.

enable_motion_illu minati
on boolean Default:false

true: turns on motion illumination in hands-fr
ee and auto aim trigger modes.

false: turns off motion illumination. This par
ameter only applies to hands-free mode.

Only for Zebra scanner.

Scanner mode
In dialog mode, the scanner UI has drawed by the camera scanner service, the third app don’t need to consider

about the UI.
In overlay mode, the camera scanner service only provide the scanner window, the window will display on top of
the third app UI. So the third app can draw the UI by itself, such as the title, the buttons. In this mode, if the app
need to switch the camera, the flash light, the indicator light, it must use the broadcast like belows:

Camera:
Broadcast Action : com.wizarpos.scanner.setcamera
Broadcast Key: overlay_config
value: 0 Fixed camera;1 zoom camera; 2 customer display camera

Flash light:
Broadcast Action : com.wizarpos.scanner.setflashlight
Broadcast Key: overlay_config
Value: true opened; false closed

Indicator light:
Broadcast Action : com.wizarpos.scanner.setindicator
Broadcast Key : overlay_config
Value: true opened; false closed

Sample Code: // open the flash light

Intent intent=new Intent();
intent.setAction(ScanParameter.BROADCAST_SET_FLASHLIGHT);
intent.putExtra(ScanParameter.BROADCAST_VALUE, sendBroadcast(intent);

Zebra Scanner

Zebra scan requires the following conditions:

1. Exist Zebra imager.

2. Set the parameter “camera_index” to 0- main scanner.

3. When screen black, the imager can not work.

4. Set the parameter “enable_ui_by_zebra” to false- hide the default UI from the system.

ScanResult

Field Type Description

resultCode Int

>=0: Success

<0: Failure

See also Error Code

text String

The text result, return null when err
or occurred, the format of the text is
UTF-8, if need the other format, ple
ase get the raw buffer

and change by yourself.

rawBuffer Byte[] The raw buffer

bitmap Bitmap

The scanned image, it will return
when set the parameter enab
le_return_image is

true.

barcodeFormat String
barcodeFormat, see

Appendix

Error Code

Value Description

1 Success

0 Cancel

2 The scan UI fully display

-1 The service has been occupied

-2 Can not open the camera

-3 Scan timeout

-4 Illegal parameter

Usage

Scanner service integration
The scanner service use AIDL, so the third-party apps must include the AIDL files(get from \source\aidl from
barcode SDK package) which provided by WizarPOS. The follows are described the methods of integrating in
Eclipse and Android Studio.
The files include:

In Eclipse, put all the files into the package: com. clouds.scan server. said.
In Android Studio, firstly put the AIDL files in the package(com. cloud pos. scan server.aidl) , the package is in
folder (src—main—aildl), if the package and the folders have not existed, please make them first.

And then, put the package(com. cloud pos.scan server.and), two the java files package in the folder(src—main–
java), if the package and the folders are not existed, please make them first.

clean project, if compiled success in folder: build—generated—source—aidl—debug, then the app can call the
scanner service successfully.

Bind service
We have provided the API for bind service. Put the interface and the implement in any package. Get from
\source\aidlControl from barcode SDK package.

1. Use the follow method to bind service:

AidlController.getInstance().startScanService(this, this);

2. Implement the interface IAIDLListener. Get the scanner service, use the service to call the functions.

Use this function to unbind service.

Please see also the demo project for detail.

Appendix

Barcode Format
Example:

Documents / Resources

wizarPOS 2D Smart POS [pdf] Instructions
2D Smart POS, 2D, Smart POS

Manuals+,

https://manuals.plus/m/c43a76dfbf54cce4b34f7480bb1a447881deba7d7cffd0301ec60cd034175d33
https://manuals.plus/m/c43a76dfbf54cce4b34f7480bb1a447881deba7d7cffd0301ec60cd034175d33_optim.pdf
https://manuals.plus/

	wizarPOS 2D Smart POS Instructions
	wizarPOS 2D Smart POS
	Introduction
	Project Background
	Interface and parameter description
	Usage
	Appendix
	Documents / Resources

