
Home » W&H » WH V3 Microprocessor User Manual  

Contents
1  WH V3 Microprocessor
2  Product Usage Instructions
3  Frequently Asked Questions
4  Overview
5  Features
6  Exception
7  PFIC and Interrupt Control
8  Physical Memory Protection
PMP
9  Debug Support
10  CSR Register List

10.1  User-defined CSR Register
11  Documents / Resources

11.1  References
12  Related Posts

WH V3 Microprocessor

 

Specifications

Microprocessor Model: QingKeV3

Version: V1.2

ISA Features:

Pipeline FPU

Branch prediction

Interrupt support

HPE Physical Memory Protection (PMP)

Low-power consumption mode

Extended Instruction Set Debug

Product Usage Instructions

Overview of QingKe V3 Microprocessor

Manuals+ —  User Manuals Simplified.

WH V3 Microprocessor User Manual

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/wh
https://manuals.plus/wh/v3-microprocessor-manual.pdf
https://manuals.plus/#wh_v3_microprocessor
https://manuals.plus/#product_usage_instructions
https://manuals.plus/#frequently_asked_questions
https://manuals.plus/#overview
https://manuals.plus/#features
https://manuals.plus/#exception
https://manuals.plus/#pfic_and_interrupt_control
https://manuals.plus/#physical_memory_protection_pmp
https://manuals.plus/#debug_support
https://manuals.plus/#csr_register_list
https://manuals.plus/#user-defined_csr_register
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts


The QingKe V3 series microprocessors include models V3A, V3B, and V3C. Each model has specific features and
differences based on its application.

Instruction Set

The RV32I instruction set includes 32 register sets from x0 to x31. The V3 series does not support the floating-
point extension (F). Each register is 32 bits in size.

Register Set

The RV32I register set consists of the following registers.

x0: Hardcoded 0

x1: Return address

x2: Stack pointer

x3: Global pointer

x4: Thread pointer

x5-x7: Temporary registers

x8: Save register/frame pointer

x9: Save register/function parameters/return values

x10-x11: Function parameters

x12-x17: Save registers

x18-x27: Temporary registers

x28-x31: Caller/Callee registers

Privilege Mode

The standard RISC-V architecture includes three privileged modes: Machine mode, Supervisor mode, and User
mode. QingKe V3 series microprocessors support Machine mode and Supervisor mode.

Frequently Asked Questions

Q: What are the different models in the QingKe V3 series microprocessors?

A: The QingKe V3 series includes models V3A, V3B, and V3C, each with specific features and differences
detailed in the user manual.

Q: How many register sets are available in the RV32I instruction set?

A: The RV32I instruction set provides 32 register sets from x0 to x31.

Q: Which privileged modes are supported by the QingKe V3 microprocessor?

A: The QingKe V3 series microprocessors support Machine mode and Supervisor mode as part of the RISC-V
architecture.



Overview

QingKe V3 series microprocessors are self-developed 32-bit general-purpose MCU microprocessors based on
standard RISC-V instruction set architecture. This series includes V3A, V3B and V3C, of which V3A supports
RV32IMAC standard instruction set extension and V3B/C supports RV32IMCB standard instruction set extension
and customized instruction set extension XW. Both of them support single-cycle multiplication and hardware
division, in addition to hardware pressure stack (HPE), table-free interrupt (VTF), streamlined 1- and 2-wire
debugging interfaces, “WFE” instructions, and other special features. In addition, it also supports Hardware
Prologue/Epilogue (HPE), Vector Table Free (VTF), streamlined 1-/2-wire debugging interface, and support for
“WFE” instruction.

Features

Features Description

ISA RV32IM[A]C[B]

Pipeline 3

FPU Not supported

Branch prediction Static branch prediction

Interrupt Support a total of 256 interrupts including exceptions, and supports VT
F

HPE Support 2 levels of HPE

Physical Memory Protection (PMP) Supported

Low-power consumption mode Support Sleep and Deep sleep modes, and support WFI and WFE sle
ep methods

Extended Instruction Set Supported

Debug 1/2-wire SDI, standard RISC-V debug

Overview

QingKe V3 series microprocessors include V3A, V3B, and V3C, there are some differences between the series
according to the application, the specific differences are detailed in Table 1-1.

Table 1-1 Overview of QingKe V3 microprocessor



Feature M
odel ISA

HPE num
ber of leve
ls

Interrupti
ons
nesting n
umber of l
evels

VTF nu
mber of
channe
ls

Pipeli
ne

Vector ta
ble
mode

Extended
Instructi
on (XW)

Number of me
mory protectio
n areas

V3A RV32IMA
C 2 2 4 3 Instructio

n × ×

V3B RV32IMC
B 2 2 4 3

Address/ 
Instructio
n

√ ×

V3C RV32IMC
B 2 2 4 3

Address/ 
Instructio
n

√ 4

Note: OS task switching generally uses stack push, which is not limited to the number of levels

Instruction Set

QingKe V3 series microprocessors follow the standard RISC-V Instruction Set Architecture (ISA). Detailed

documentation of the standard can be found in “The RISC-V Instruction Set Manual, Volume I: User-Level ISA,

Document Version 2.2” on the RISC-V International website. The RISC-V instruction set has a simple

architecture and supports a modular design, allowing for flexible combinations based on different needs, and

the V3 series supports the following instruction set extensions.

RV32: 32-bit architecture, general-purpose register bit width of 32 bits

I: Support shaping operation, with 32 shaping registers

M: Support shaping multiplication and division instructions

A: Support atomic commands

C: Support 16-bit compression instruction

B: Support for bit manipulation instructions

XW: 16-bit compression instructions for self-extending byte and half-word operations

Note:

The subset of instructions supported by different models may be different, please refer to Table 1-1 for details;

In order to further improve the code density, extend the XW subset, add the following compression instructions

c.lbu/c.lhu/c.sb/c.sh/c.lbusp/c.lhusp/c.sbsp/c.shop, the use of which needs to be based on the MRS compiler or

the toolchain it provides;

V3B supports extracting a word (32bit) instruction from a doubleword (64bit) and extracting a word (32bit)

instruction from a multiplication result (64bit). The specific usage method can refer to the library function and

cooperate with the MRS compiler or the toolchain provided by it;

V3B/C supports memory copy instruction. For specific usage, please refer to the library function and cooperate

with the MRS compiler or its toolchain.

Register Set



The RV32I has 32 register sets from x0-x31. The V3 series does not support the “F” extension, i.e., there is no
floating-point register set. In the RV32, each register is 32 bits. Table 1-2 below lists the registers of RV32I and
their descriptions.

Table 1-2 RISC-V registers

Register ABI Name Description Storer

x0 zero Hardcoded 0 –

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 GP Global pointer –

x4 tp Thread pointer –

x5-7 t0-2 Temporary register Caller

x8 s0/fp Save register/frame pointer Callee

x9 s1 Save register Callee

x10-11 a0-1 Function parameters/return values Caller

x12-17 a2-7 Function parameters Caller

x18-27 a2-11 Save register Callee

X28-31 t3-6 Temporary register Caller

The Caller attribute in the above table means that the called procedure does not save the register value, and the
Callee attribute means that the called procedure saves the register.

Privilege Mode

The standard RISC-V architecture includes three privileged modes: Machine mode, Supervisor mode, and User

mode, as shown in Table 1-3 below.

The machine mode is mandatory, and the other modes are optional. For details, you can refer to The RISC-V

Instruction Set Manual Volume II: Privileged Architecture”, which can be downloaded for free from the RISC-V

International website.

Table 1-3 RISC-V architecture privilege mode

Code Name Abbreviations

0b00 User Mode U

0b01 Supervisor Model S

0b10 Reserved Reserved

0b11 Machine mode M

QingKe V3 series microprocessors support two of these privileged modes.



Machine mode

Machine mode has the highest authority, the program in this mode can access all the Control and Status

Register (CSR), but also can access all the physical address areas.

The power-up default is in machine mode, when the execution of mret (Machine mode return instruction)

returns, according to the CSR register status (Machine mode status register) in the MPP bit, if MPP = 0b00,

then exit the Machine mode into the User mode, MPP = 0b11, then continue to retain the Machine mode.

User mode

User mode has the lowest privilege, and only limited CSR registers can be accessed in this mode. When an

exception or interrupt occurs, the microprocessor goes from User mode to Machine mode to handle exceptions

and interrupts.

CSR Register

A series of CSR registers are defined in the RISC-V architecture to control and record the operating state of the
microprocessor. These CSRs can be extended by 4096 registers using an internal dedicated 12-bit address coding
space. And use the high two CSR[11:10] to define the read/write permission of this register, 0b00, 0b01, 0b10 for
read/write allowed and 0b11 for read-only. Use the two bits CSR[9:8] to define the lowest privilege level that can
access this register, and the value corresponds to the privilege mode defined in Table 1-3. The CSR registers
implemented in the QingKe V3 microprocessor are detailed in Chapter 8.

Exception

Exception mechanism, which is a mechanism to intercept and handle “unusual operation events”. QingKe V3
series microprocessors are equipped with an exception response system that can handle up to 256 exceptions,
including interrupts. When an exception or interruption occurs, the microprocessor can quickly respond and handle
the exception and interruption events.

Exception Types

The hardware behavior of the microprocessor is the same whether an exception or an interrupt occurs. The
microprocessor suspends the current program, moves to the exception or interrupt handler, and returns to the
previously suspended program when processing is complete. Broadly speaking, interrupts are also part of the
exceptions. Whether exactly the current occurrence is an interrupt or an exception can be viewed through the
Machine mode exception cause register cause. The mcause[31] is the interrupt field, which is used to indicate
whether the cause of the exception is an interrupt or an exception. mcause[31]=1 means interrupt, mcause[31]=0
means exception. mcause[30:0] is the exception code, which is used to indicate the specific cause of the
exception or the interrupt number, as shown in the following table.

Table 2-1 V3 microprocessor exception codes



Interrupt Exception code
s

Synchronous / Asynchr
onous Reason for exception

1 0-1 – Reserved

1 2 Precise asynchronous NMI interrupts

1 3-11 – Reserved

1 12 Precise asynchronous SysTick interrupts

1 13 – Reserved

1 14 Synchronous Software interrupts

1 15 – Reserved

1 16-255 Precise asynchronous External interrupt 16-255

0 0 Synchronous Instruction address misalignment

0 1 Synchronous Fetch command access error

0 2 Synchronous Illegal instructions

0 3 Synchronous Breakpoints

0 4 Synchronous Load instruction access address misalignment

0 5 Non-precision asynchron
ous Load command access error

0 6 Synchronous Store/AMO instruction access address misalign
ment

0 7 Non-precision asynchron
ous Store/AMO command access error

0 8 Synchronous Environment call in User mode

0 11 Synchronous Environment call in Machine mode

Synchronous” in the table means that an instruction can be located exactly where it is executed, such as a

break or call instruction, and each execution of that instruction will trigger an exception. “Asynchronous” means

that it is not possible to pinpoint an instruction, and the instruction PC value may be different each time an

exception occurs. ” Precise asynchronous” means that an exception can be located exactly at the boundary of

an instruction, i.e., the state after the execution of an instruction, such as an external interrupt. “Non-precision

asynchronous” means that the boundary of an instruction cannot be precisely located, and maybe the state

after an instruction has been interrupted halfway through execution, such as a memory access error.

Access to memory takes time, and the microprocessor usually does not wait for the end of the access when



accessing memory but continues to execute the instruction, when the access error exception occurs again, the

microprocessor has already executed the subsequent instructions, and cannot be precisely located.

Entering Exception

When the program is in the process of normal operation if for some reason, triggers an exception or interrupt. The
hardware behavior of the microprocessor at this point can be summarized as follows.

1. Suspend the current program flow and move to the execution of exception or interrupt handling functions. The

entry base address and addressing mode of the exception or interrupt function are defined by the exception

entry base address register mtvec. mtvec[31:2] defines the base address of the exception or interrupt function.

mtvec[1:0] defines the addressing mode of the handler function. when mtvec[1:0]=0, all exceptions and

interrupts use a unified entry, i.e., when an exception or interrupt occurs, it turns to the mtvec[31:2] defines the

base address to execute. When mtvec[1:0]=1, exceptions and interrupts use vector table mode, i.e., each

exception and interrupt is numbered, and the address is offset according to interrupt number*4, and when an

exception or interrupt occurs, it is shifted to the base address defined by mtvec[31:2] + interrupt number*4

Execution. The interrupt vector table holds an instruction to jump to the interrupt handler function, or it can be

other instructions.

2. Update CSR register

When an exception or interrupt is entered, the microprocessor automatically updates the relevant CSR

registers, including the Machine mode exception cause register mcause, the Machine mode exception

pointer register mepc, the Machine mode exception value register metal, and the Machine mode status

register status.

Update mcause

As mentioned before, after entering an exception or interrupt, its value reflects the current exception type or
interrupt number, and the software can read this register value to check the cause of the exception or determine
the source of the interrupt, as detailed in Table 2-1.

Update mepc

The standard definition of the return address of the microprocessor after exiting an exception or interrupt is

stored in mepc.

So when an exception or interrupt occurs, the hardware automatically updates the mepc value to the current

instruction PC value when the exception is encountered, or the next pre-executed instruction PC value before

the interrupt.

After the exception or interrupt is processed, the microprocessor uses its saved value as the return address to

return to the location of the interrupt to continue execution.

However, it is worth noting that.

1. MEPC is a readable and writable register, and the software can also modify the value to modify the location of

the PC pointer running after the return.

2. When an interrupt occurs, i.e., when the exception cause registers mcause[31]=1, the value of maps is updated

to the PC value of the next unexecuted instruction at the time of the interrupt.



When an exception occurs, the value of maps is updated to the instruction PC value of the current

exception when the exception causes register mcause[31]=0. So at this time when the exception returns,

if we return directly using the value of mepc, we continue to execute the instruction that generated the

exception before, and at this time, we will continue to enter the exception. Usually, after we handle the

exception, we can modify the value of mepc to the value of the next unexecuted instruction and then

return. For example, if we cause an exception due to call/break, after handling the exception, since

recall/break (c.ebreak is 2 bytes) is a 4-byte instruction, we only need the software to modify the value of

mepc to mepc+4 (c.ebreak is mepc+2) and then return.

Update mtval

When exceptions and interrupts are entered, the hardware will automatically update the value of mtval, which is
the value that caused the exception. The value is typically.

1. If an exception is caused by a memory access, the hardware will store the address of the memory access at the

time of the exception into mtval.

2. If the exception is caused by an illegal instruction, the hardware will store the instruction code of the instruction

into mtval.

3. If the exception is caused by a hardware breakpoint, the hardware will store the PC value at the breakpoint into

mtval.

4. For other exceptions, the hardware sets the value of mtval to 0, such as break, the exception caused by call

instruction.

5. When entering the interrupt, the hardware sets the value of mtval to 0.

Update mstatus

Upon entering exceptions and interrupts, the hardware updates certain bits in mstatus.

1. MPIE is updated to the MIE value before entering the exception or interrupt, and MPIE is used to restore the

MIE after the exception and interrupt are over.

2. MPP is updated to the privileged mode before entering exceptions and interrupts, and after the exceptions and

interrupts are over, MPP is used to restore the previous privileged mode.

3. QingKe V3 microprocessor supports interrupt nesting in Machine mode, and MIE will not be cleared after

entering exceptions and interrupts.

Update microprocessor privilege mode

When exceptions and interrupts occur, the privileged mode of the microprocessor is updated to Machine mode.

Exception Handling Functions

Upon entering an exception or interrupt, the microprocessor executes the program from the address and mode

defined by the mtvec register. When using the unified entry, the microprocessor takes a jump instruction from

the base address defined by mtvec[31:2] based on the value of mtvec[1], or gets the exception and interrupt

handling function entry address and goes to execute it instead. At this time, the exception and interrupt



handling function can determine whether the cause is an exception or an interrupt based on the value of

mcause[31], and the type and cause of the exception or the corresponding interrupt can be judged by the

exception code and handled accordingly.

When using the base address + interrupt number *4 for offset, the hardware automatically jumps to the vector

table to get the entry address of the exception or interrupt function based on the interrupt number and jumps to

execute it.

Exception Exit

After the exception or interrupt handler is completed, it is necessary to exit from the service program. After

entering exceptions and interrupts, the microprocessor enters Machine mode from User mode, and the

processing of exceptions and interrupts is also completed in Machine mode. When it is necessary to exit

exceptions and interrupts, it is necessary to use the mret instruction to return. At this time, the microprocessor

hardware will automatically perform the following operations.

The PC pointer is restored to the value of CSR register mepc, i.e., execution starts at the instruction address

saved by mepc. It is necessary to pay attention to the offset operation of mepc after the exception handling is

completed.

Update CSR register status, MIE is restored to MPIE, and MPP is used to restore the privileged mode of the

previous microprocessor.

The entire exception response process can be described by the following Figure 2-1.

PFIC and Interrupt Control

QingKe V3 microprocessor is designed with a Programmable Fast Interrupt Controller (PFIC) that can manage

up to 256 interrupts including exceptions.

The first 16 of them are fixed as internal interrupts of the microprocessor, and the rest are external interrupts,

i.e. the maximum number of external interrupts can be extended to 240. Its main features are as follows.

240 external interrupts, each interrupt request has independent trigger and mask control bits, with dedicated

status bits

Programmable interrupt priority supports 2 levels of nesting

Special fast interrupt in/out the mechanism, hardware automatic stacking, and recovery, maximum HPE depth

of 2 levels

Vector Table Free (VTF) interrupt response mechanism, 2-channel programmable direct access to interrupt

vector addresses

Note: The maximum nesting depth and HPE depth supported by interrupt controllers vary for different



microprocessor models, which can be found in Table 1-1.

The vector table of interrupts and exceptions is shown in Table 3-1 below.

Table 3-1 Exception and interrupt vector table

Number Priority Type Name Description

0 – – – –

1 – – – –

2 -5 Fixed NMI Non-maskable interrupt

3 -4 Fixed EXC Exception interrupt

4 – – – –

5 -3 Fixed ECALL-M Machine mode callback interrupt

6-7 – – – –

8 -2 Fixed ECALL-U User mode callback interrupt

9 -1 Fixed BREAKPOINT Breakpoint callback interrupt

10-11 – – – –

12 0 Programmable SysTick System timer interrupt

13 – – – –

14 1 Programmable SWI Software interrupt

15 – – – –

16-255 2-241 Programmable External Interrupt External interrupt 16-255

Note: ECALL-M, ECALL-U, and BREAKPOINT are all different types of exception EXC, which are independent in
V3B/C for ease of use, and the above 3 entry addresses are shared with EXC in V3A.

PFIC Register Set

Table 3-2 PFIC Registers

Name Access address Access Description Reset value

PFIC_ISRx
0xE000E000

-0xE000E01C RO Interrupt enable status register x 0x00000000

PFIC_IPRx
0xE000E020

-0xE000E03C RO Interrupt pending status register x 0x00000000



PFIC_ITHRESDR 0xE000E040 RW
Interrupt priority threshold configur
ation register 0x00000000

PFIC_VTFBADDRR 0xE000E044 RW
VTF base address register

Note: Valid only for V3A 0x00000000

PFIC_CFGR 0xE000E048 RW
Interrupt configuration register

Note: Valid only for V3A 0x00000000

PFIC_GISR 0xE000E04C RO Interrupt global status register 0x00000002

 

PFIC_VTFIDR

 

0xE000E050

 

RW

VTF interrupt ID configuration regi
ster

Note: Valid only for V3B/C.

 

0x00000000

PFIC_VTFADDRRx
0xE000E060

-0xE000E06C RW VTF x offset address register 0xXXXXXXXX

PFIC_IENRx
0xE000E100

-0xE000E11C WO Interrupt enable setting register x 0x00000000

PFIC_IRERx
0xE000E180

-0xE000E19C WO Interrupt enable clear register x 0x00000000

PFIC_IPSRx
0xE000E200

-0xE000E21C WO Interrupt pending setting register x 0x00000000

PFIC_IPRRx
0xE000E280

-0xE000E29C WO Interrupt pending clear register x 0x00000000

PFIC_IACTRx
0xE000E300

-0xE000E31C RO Interrupt activation status register 
x 0x00000000



PFIC_IPRIORx

0xE000E400

-0xE000E43C RW Interrupt priority configuration regi
ster 0x00000000

PFIC_SCTLR 0xE000ED10 RW System control register 0x00000000

Note:

1. NMI, EXC, ECALL-M, ECALL-U, and BREAKPOINT are always enabled by default.

2. ECALL-M, ECALL-U, and BREAKPOINT are a case of EXC.

3. NMI, EXC, ECALL-M, ECALL-U, and BREAKPOINT support interrupt pending clear and setting operation, but

not interrupt enable clear and setting operation.

Each register is described as follows:

Interrupt enable status and interrupt pending status registers (PFIC_ISR<0-7>/PFIC_IPR<0-7>)

Name Access address Access Description Reset value

 PFIC_ISR0  0xE000E000  RO

Interrupt 0-31 enables status regist
er, a total of 32 status bits [n], indic
ating #n interrupt enables status

Note: NMI and EXC are enabled by
default

 For V3A: 0x000
0000C

For V3B/C: 0x0
000032C

PFIC_ISR1 0xE000E004 RO Interrupt  32-63  enable  status regi
ster, a total of 32 status bits 0x00000000

… … … … …

PFIC_ISR7 0xE000E01C RO Interrupt 224-255 enable status reg
ister, a total of 32 status bits 0x00000000

PFIC_IPR0 0xE000E020 RO Interrupt 0-31 pending status 0x00000000



   
register, a total of 32 status bits [n], 
indicating the pending status of inte
rrupt #n

 

PFIC_IPR1 0xE000E024 RO Interrupt 32-63 pending status
registers, 32 status bits in total 0x00000000

… … … … …

PFIC_IPR7 0xE000E03C RO Interrupt 244-255 pending status re
gister, 32 status bits in total 0x00000000

Two sets of registers are used to enable and de-enable the corresponding interrupts.

Interrupt enable setting and clear registers (PFIC_IENR<0-7>/PFIC_IRER<0-7>)3



Name Access address Access Description Reset value

PFIC_IENR0 0xE000E100 WO

Interrupt 0-31 enables setting regis
ter, a total of 32 setting bits [n], for i
nterrupt #n enable setting

Note: NMI and EXC are enabled b
y default

 

 

 

0x00000000

PFIC_IENR1 0xE000E104 WO Interrupt 32-63 to enable the settin
g register, a total of 32 setting bits 0x00000000

… … … … …

PFIC_IENR7 0xE000E11C WO
Interrupt 224-255 enable setting

register, a total of 32 setting bits 0x00000000

– – – – –

 PFIC_IRER0  0xE000E180  WO

Interrupts 0-31 enable clear registe
r, a total of 32 clear bits [n], for inte
rrupt #n enable clear Note: NMI an
d EXC cannot be operated

 

 

0x00000000

PFIC_IRER1 0xE000E184 WO Interrupt  32-63 enables a clear re
gister, a total of 32 clear bits 0x00000000

… … … … …

PFIC_IRER7 0xE000E19C WO Interrupt 244-255 enables a clear r
egister, a total of 32 clear bits 0x00000000

Two sets of registers are used to enable and de-enable the corresponding interrupts.

Interrupt pending setting and clear registers (PFIC_IPSR<0-7>/PFIC_IPRR<0-7>)

Name Access address Access Description Reset value

 

PFIC_IPSR0

 

0xE000E200

 

WO

Interrupt 0-31 pending setting register, 32

setting bits [n], for interrupt #n pending settin
g

 

0x00000000

PFIC_IPSR1 0xE000E204 WO
Interrupt 32-63 pending setup register,

total 32 setup bits 0x00000000

… … … … …



PFIC_IPSR7 0xE000E21C WO
Interrupt    224-255     pending     setting

register, 32 setting bits in total 0x00000000

– – – – –

 

PFIC_IPRR0

 

0xE000E280

 

WO

Interrupt 0-31 pending clear register, a total 
of 32 clear bits [n], for interrupt #n

pending clear

 

0x00000000

PFIC_IPRR1 0xE000E284 WO
Interrupt 32-63 pending clear register,

total 32 clear bits 0x00000000

… … … … …

PFIC_IPRR7 0xE000E29C WO
Interrupt 244-255 pending clear register,

total 32 clear bits 0x00000000

When the microprocessor enables an interrupt, it can be set directly through the interrupt pending register to
trigger the interrupt. Use the interrupt pending clear register to clear the pending trigger.

Interrupt activation status register (PFIC_IACTR<0-7>)

Name Access address Access Description Reset value

 PFIC_IACTR0  0xE000E300  RO

Interrupt 0-31 activates the status
register with 32 status bits  [n],  in
dicating  that interrupt #n is being 
executed

 0x00000000

 PFIC_IACTR1  0xE000E304  RO

Interrupt     32-63     activation sta
tus registers, 32 status bits in

total

 

0x00000000

… … … … …

 PFIC_IACTR7  0xE000E31C  RO
Interrupt 224-255 activation statu
s registers, a total of 32 status bit
s

 0x00000000

Each interrupt has an active status bit that is set up when the interrupt is entered and cleared by hardware when
the market returns.



Interrupt priority and priority threshold registers (PFIC_IPRIOR<0-7>/PFIC_ITHRESDR)

Name Access address Access Description Reset value

PFIC_IPRIOR0 0xE000E400 RW

Interrupt 0 priority configuration. V3
A: [7:4]: Priority control bits If the co
nfiguration is not nested, no
preemption bit If nesting is configure
d, bit7 is the preempted bit. [3:0]: Re
served, fixed to 0  V3B: [7:6]: Priorit
y control bits If the configuration is n
ot nested, no preemptive bits config
ured nested, all bits are preempted, 
but up to two levels of interrupts are 
allowed to occur [5:0]: Reserved, fix
ed to 0
V3C:
[7:5]: Priority control bits
If the configuration is not nested, no 
preemptive bits
If configured nested, all bits are pree
mpted, but up to two levels of interru
pts are allowed to occur [4:0]: Reser
ved, fixed to 0 Note: The smaller the
priority value, the higher the priority. 
If the same preemption priority interr
upt hangs at the same time, the inte
rrupt with the higher priority will be e
xecuted first.

0x00

PFIC_IPRIOR1 0xE000E401 RW Interrupt 1 priority setting, same
function as PFIC_IPRIOR0 0x00

PFIC_IPRIOR2 0xE000E402 RW Interrupt 2 priority setting, same
function as PFIC_IPRIOR0  

… … … … …

PFIC_IPRIOR254 0xE000E4FE RW Interrupt  254  priority  setting, same
function as PFIC_IPRIOR0 0x00

PFIC_IPRIOR255 0xE000E4FF RW Interrupt 255 priority setting, same f
unction as PFIC_IPRIOR0 0x00



– – – – –

PFIC_ITHRESDR 0xE000E040 RW

Interrupt priority threshold setting

V3A:

[31:8]: Reserved, fixed to 0 [7:4]: Pri
ority threshold [3:0]: Reserved, fixed
to 0

 V3B:

[31:8]: Reserved, fixed to 0 [7:5]: Pri
ority threshold [4:0]: Reserved, fixed
to 0

 V3C:

[31:8]: Reserved, fixed to 0 [7:5]: Pri
ority threshold [4:0]: Reserved, fixed
to 0

Note: For interrupts with priority
value ≥ threshold, the interrupt servi
ce function is not executed when a h
ang occurs, and when this register i
s 0, it means the threshold register i
s invalid.

0x00

Interrupt configuration register (PFIC_CFGR)

Name Access address Access Description Reset value

PFIC_CFGR 0xE000E048 RW Interrupt configuration register 0x00000000

This register is valid only for V3A, its bits are defined as:



Bit Name Access Description Reset value

[31:16] KEYCODE WO

Corresponding to different target control bits, the corr
esponding security access identification data needs t
o be written simultaneously in order to be modified,
and the readout data is fixed to 0. KEY1 = 0xFA05� K
EY2 = 0xBCAF� KEY3 = 0xBEEF�

0

[15:8] Reserved RO Reserved 0

7 SYSRESET WO

System reset (simultaneous writing to KEY3). Auto cle
ar 0.

Writing 1 is valid, writing 0 is invalid.

Note: Same function as the PFIC_SCTLR register SY
SRESET bit.

0

6 PFICRESET WO
PFIC module reset. Auto clear 0.

Writing 1 is valid, writing 0 is invalid. 0

5 EXPRESS WO

Exception interrupt pending clear (simultaneous writin
g to KEY2)

Writing 1 is valid, writing 0 is invalid.
0

4 EXCSET WO

Exception interrupt pending setting (simultaneous writ
ing to KEY2)

Writing 1 is valid, writing 0 is invalid.
0

3 NMIRESET WO

NMI interrupt pending clear (simultaneous writing to K
EY2)

Writing 1 is valid, writing 0 is invalid.
0

2 NMISET WO

NMI interrupt pending setting (Simultaneous writing to
KEY2)

Writing 1 is valid, writing 0 is invalid.
0

1 NESTCTRL RW
Interrupt nesting enables control.

1: off; 0: on (synchronous writing to KEY1) 0

0 HWSTKCTRL RW
HPE enable control

1: off; 0: on (synchronous writing to KEY1) 0

Interrupt global status register (PFIC_GISR)

Name Access address Access Description Reset value

PFIC_GISR 0xE000E04C RO Interrupt global status register 0x00000000



Its folks are defined as

Bit Name Access Description Reset value

[31:14] Reserved RO Reserved 0

 

 

13

 

 

LOCKSTA

 

 

RO

Whether the processor is currently in a locked state:

1: Locked state;

0: Non-locked state.

Note: This bit is only valid for the V3B/C.

 

 

0

 

 

12

 

 

DBGMODE

 

 

RO

Whether the processor is currently in debug state: 1: 
Debug state;

0: Non-debug state.

Note: This bit is only valid for the V3B/C.

 

 

0

 

 

11

 

 

GLOBLIE

 

 

RO

Global interrupt enable:

1: Enable interrupt;

0: Disable interrupt.

Note: This bit is only valid for the V3B/C.

 

10 Reserved RO Reserved 0

9 GPENDSTA RO
Whether an interrupt is currently pending.

1: Yes;         0: No. 0

8 GACTSTA RO
Whether an interrupt is currently being executed.

1: Yes;         0: No. 0

 

 

[7:0]

 

 

NESTSTA

 

 

RO

Current interrupt nesting status. 0x03: in level 2 interr
upt.

0x01: in level 1 interrupt. 0x00: no interrupts occur.

Other: Impossible situation.

 

 

0

VTF ID base address and offset address registers (PFIC_VTFBADDRR/PFIC_VTFADDRR<0-3>)



Name Access address Access Description Reset value

 

 

PFIC_VTFBADDRR

 

 

0xE000E044

 

 

RW

[31:28]: High 4 bits of the target 
address of VTF [27:0]:
Reserved

This register is valid only for V3
A.

 

 

0x00000000

 

 

 

PFIC_VTFIDR

 

 

 

0xE000E050

 

 

 

RW

[31:24]: Number of VTF 3 [23:16
]: Number of VTF 2 [15:8]: Num
ber of VTF 1 [7:0]: Number of V
TF 0

This register is valid only for V3
B/C.

 

 

 

0x00000000

– – – – –

 

 

 

 

 

 

 

 

PFIC_VTFADDRR0

 0xE000E060  RW

V3A: [31:24]: VTF 0 interrupt nu
mber [23:0]: the low 24 bits of th
e VTF target address, of which t
he low 20 bits are configured to 
be valid, and [23:20] is fixed to 0
.

 V3B/C:

[31:1]: VTF 0 address, 2-byte ali
gned [0]:

1: Enable VTF 0 channel

0: Disable

 

 

 

 

 

 

 

For V3A: 0x00000
000

For V3B/C: 0xXXX
XXXXX



 

 

 

 

 

 

 

 

PFIC_VTFADDRR1

 

 

 

 

 

 

 

 

0xE000E064

 

 

 

 

 

 

 

 

RW

V3A: [31:24]: VTF 1 interrupt nu
mber [23:0]: The low 24 bits of t
he VTF target address, of which
the low 20 bits are configured to
be valid and [23:20] is fixed to 0.

 

V3B/C:

[31:1]: VTF 1 address, 2-byte ali
gned [0]:

1: Enable VTF 1 channel

0: Disable

 

 

 

 

 

 

 

For V3A: 0x00000
000

For V3B/C: 0xXXX
XXXXX

 

 

 

 

 

 

 

 

PFIC_VTFADDRR2

 

 

 

 

 

 

 

 

0xE000E068

 

 

 

 

 

 

 

 

RW

V3A: [31:24]: VTF 2 interrupt nu
mber [23:0]: the low 24 bits of th
e VTF target address, of which t
he low 20 bits are configured to 
be valid, and [23:20] is fixed to 0
.

 

V3B/C:

[31:1]: VTF 2 address, 2-byte ali
gned [0]:

1: Enable VTF 2 channel

0: Disable

 

 

 

 

 

 

 

For V3A: 0x00000
000

For V3B/C: 0xXXX
XXXXX

PFIC_VTFADDRR3 0xE000E06C RW V3A: For V3A:



[31:24]: VTF 3 interrupt number [23:0]: the low 24 bits of the VTF tar
get address, of which the low 20 bits are configured to be valid, and [
23:20] is fixed to 0.

 V3B/C:

[31:1]: VTF 3 address, 2-byte aligned [0]:

1: Enable VTF 3 channel

0: Disable

0x00000000

For V3B/C: 0xXXXXXXXX

System control register (PFIC_SCTLR)

Name Access address Access Description Reset value

PFIC_SCTLR 0xE000ED10 RW System control register 0x00000000

Each of them is defined as follows.



Bit Name Access Description Reset value

31 SYSRESET WO

System reset, auto clear 0. Write 1 is valid,
and write 0 is invalid.

Note: This bit is only valid for V3B/C
0

[30:6] Reserved RO Reserved 0

5 SETEVENT WO Set the event to wake up the WFE case. 0

 

4 SEVONPEND RW

When an event occurs or interrupts a pendi
ng state, the system can be woken up after
the WFE instruction, or if the WFE instructi
on is not executed, the system will be
woken up immediately after the next execu
tion of the instruction.

1: Enabled events and all interrupts (Includ
ing unenabled interrupts) can wake up the 
system.

0: Only enabled events and enabled

interrupts can wake up the system.

 

 

 

0

3 WFITOWFE RW

Execute the WFI command as if it were a 
WFE.

1: Treat the subsequent WFI instruction as 
a WFE instruction.

0: No effect.

0

2 SLEEPDEEP RW Low power mode of the control system. 0

   1: deepsleep 0: sleep  

1 SLEEPONEXI T RW

System status after control leaves the inter
rupt service program.

1: The system enters low-power mode.

0: The system enters the main program.

0

0 Reserved RO Reserved 0

Interrupt-related CSR Registers

In addition, the following CSR registers also have a significant impact on the processing of interrupts. Interrupt
system control register (intsyscr)



This register is not valid for V3A only:

Name CSR Address Access Description Reset value

intsyscr 0x804 URW Interrupt system control register 0x0000E002

Its folks are defined as:

Bit Name Access Description Reset value

 

 

 

31

 

 

 

LOCK

 

 

 

URO

0: This register can be read and written in 
user mode;

1: This register can only be read and writte
n in machine mode.

Note: This configuration bit is valid from

version 1.0 onwards.

 

 

 

0

[30:6] Reserved URO Reserved 0x380

 

 

 

 

 

5

 

 

 

 

 

GIHWSTKNEN

 

 

 

 

 

URW1

Global interrupt and hardware stack
shutdown are enabled.

Note: This bit is often used in real-time ope
rating systems. When the context is switch
ed during an interrupt, setting this bit can tu
rn off the global interrupt and push the
hardware stack. When the context switch i
s completed and the interrupt returns, the h
ardware will

automatically clear this bit.

 

 

 

 

 

0

4 Reserved URO Reserved 0

[3:2] PMTCFG URW

Configuration of priority preemption bits:

00: The number of preemption bits is 0; 01:
The number of preemption bits is 1; 10: Th
e number of preemption bits is 2; 11: The n
umber of preemption bits is 3; Note: This c
onfiguration bit is valid after 1.0.

0

1 LISTEN URW The interrupt nesting function is enabled, a
nd the fixed value is 1: 1



   

0: Disable;

1: Enable.

Note: 1. The actual nesting level is controll
ed by NEST_LVL in CSR 0xBC1;

2. Only versions after 1.0 can be

written.

 

0 HWSTKEN URW

Hardware stack enable:

0: Hardware stack pressing function is disa
bled;

1: The hardware stack pressing function is 
enabled.

0

Machine mode exception base address register (mtvec)

Name CSR Address Access Description Reset value

mtvec 0x305 MRW Exception base address register 0x00000000

Its folks are defined as

Bit Name Access Description Reset value

[31:2] BASEADDR[31:2] MRW
Interrupt vector table base address, where

bits [9:2] are fixed to 0. 0

1 MODE1
 

MRO

Interrupt vector table recognition mode: 0: Id
entify by jump instruction, with limited scope,
and support non-jump instruction;

1: Identify by absolute address, support full r
ange, but must jump.

Note: This bit is only valid for V3B/C.

0

0 MODE0 MRW

Interrupt or exception entry address mode s
election.

0: Use of the uniform entry address.

1: Address offset based on interrupt number 
*4.

0



For MCUs with V3 series microprocessors, MODE0 is configured to be 1 by default in the startup file, and the
entries for exceptions or interrupts are offset according to the interrupt number *4. Note that the V3A
microprocessor stores a jump instruction at the vector table, while the V3B/C microprocessor can either a jump
instruction or use the absolute address of the interrupt function, which is configured as an absolute address in the
default startup file.

Microprocessor configuration register (corrector)

This register is invalid for V3A:

Name CSR Address Access Description Reset value

corecfgr 0xBC0 MRW Microprocessor configuration register 0x00000001

Its folks are defined as

Bit Name Access Description Reset value

[31:8] Reserved MRO Reserved 0

 

 

7

 

 

CSTA_FAULT_IE

 

 

MRW

Core status error interrupt enable:

0: On status error, no NMI interrupt is gener
ated;

1: On status error, NMI interrupt is

generated.

 

 

0

6 Reserved MRO Keep it 0. 0

5 IE_REMAP_EN MRW

MIE register mapping enables:

0: CSR address 0x800 is a read-only registe
r and the return value is the value of STATU
S;

1: Bits 3 and 7 of CSR address 0x800 are m
apped to bit MIE of the STATUS register and
bit MPIE of the STATUS register, respectivel
y.

 

 

 

 

0

4 Reserved MRO Reserved 0



3 ROM_LOOP_ACC MRW

ROM area instruction loop acceleration ena
ble:

0: Turn off the cyclic acceleration function in 
the ROM area;

1: Continuous instructions with a loop body 
within 128 bytes will be fully accelerated, wh
ile those with a loop body within 256 bytes 
will be partially accelerated;

0

2 ROM_JUMP_ACC MRW

ROM area instruction jump acceleration ena
bled:

0: Disable ROM area instruction jump
acceleration;

1: Enable instruction jump acceleration in th
e ROM area.

0

[1:0] FETCH_MODE MRW

Fetching mode:

00: Prefetch is off. The instruction prefetch f
unction is turned off to avoid invalid instructi
on fetching operations, and there is at most 
one valid instruction on the CPU pipeline. Th
is model has the lowest power consumption,
and its performance drops by about 2 ~ 3 ti
mes. 01: Prefetch Mode 1. When the instruc
tion prefetch function is turned on, the CPU 
will continue to access the instruction memo
ry until the number of instructions to be exec
uted in the internal instruction buffer exceed
s a certain number, or the instruction buffer i
s full, and instruction fetching will be suspen
ded; (Failure of CPU prediction will lead to r
edundant fetch operation, and in some case
s, the execution unit will introduce 0 ~ 2 cycl
es of bubbles, and the performance of most 
programs will not decrease obviously); 10: R
eserved;
11: Prefetch Mode 2. When the instruction p
refetch function is turned on, the CPU will co
ntinue to access the instruction memory, an
d if the instruction buffer is full, the CPU will 
continue to retry the address. This mode ha
s the highest performance and power consu
mption. CPU prediction failure and retry will i
ntroduce redundant fetch operations and m
ay continue to occupy memory bandwidth. (
For the ROM area, retry means
discontinuous address access, so it is reco
mmended to turn on ROM_ACC_EN).

0x1

Interrupt nested control register (inestcr)



This register is invalid only for V3A:

Name CSR Address Access Description Reset value

investor 0xBC1 MRW Interrupt nested control register 0x00000000

Its folks are defined as

Bit Name Access Description Reset value

31 Reserved MRO Reserved 0

30 NEST_OV MRW

Interrupt/exception nested overflow flag bit, 
write 1 to clear:

0: Interrupt did not overflow; 1: Interrupt ove
rflow flag.

Note: Interrupt overflow will only occur when
executing the secondary interrupt service fu
nction to generate an instruction exception o
r NMI interrupt. At this time, the exception
and NMI interrupt enter normally, but the CP
U stack overflows, so you cannot exit from t
his exception and

NMI interrupt.

0

[29:12] Reserved MRO Reserved 0

[11:8] NEST_STA MRO

Nested status flag bit:

0000: No interrupt;

0001: Level 1 interrupt;

0011: level 2 interrupt (1-level nesting);

0



   
0111: Level 3 interrupt (overflow);

1111: Level 4 interrupt (overflow).  

[7:2] Reserved MRO Reserved 0

[1:0] NEST_LVL MRW

Nesting level:

00: Nesting is prohibited and the nesting fun
ction is turned off;

01: First-level nesting, which turns on the ne
sting function;

Other: Invalid.

Note: Write 10 or 11 to this field, and the fiel
d will be set to 01. When writing 11 to this fie
ld, read this register to get the highest nestin
g level of the chip.

0

User mode global interrupt enable register (intern)

This register is invalid only for V3A:

Name CSR Address Access Description Reset value

gintenr 0x800 URW Global interrupt enable register 0x00000000

This register is used to control the enable and mask of global interrupt. The enable and mask of global interrupt in
machine mode can be controlled by the MIE and MPIE bits in status, but this register cannot be operated in user
mode.
The global interrupt enable register gintenr is the mapping of MIE and MPIE in mstatus, and can be used to set
and clear MIE and MPIE by operating gintenr in user mode.

Each of them is defined as:



Bit Name Access Description Reset value

[31:13] Reserved URO Reserved 0

[12:11] MPP URO Enter privileged mode before interruption. 0

[10:8] Reserved URO Reserved 0

7 MPIE URW
When 0xBC0(CSR)bit5 is enabled, this bit

can be read and written in user mode. 0

[6:4] Reserved URO Reserved 0

3 MIE URW
When 0xBC0(CSR)bit5 is enabled, this bit

can be read and written in user mode. 0

[1:0] Reserved URO Reserved 0

Interrupt Nesting

In conjunction with the interrupt, configuration register PFIC_CFGR and the interrupt priority register
PFIC_IPRIOR, nesting of interrupts can be allowed to occur. Enable nesting in the interrupt configuration register
(Nesting is turned on by default for V3 series microprocessors) and configure the priority of the corresponding
interrupt. The smaller the priority value, the higher the priority. The smaller the value of the preemption bit, the
higher the preemption priority. If there are interrupts hanging at the same time under the same preemption priority,
the microprocessor responds to the interrupt with the lower priority value (higher priority) first.

Hardware Prologue/Epilogue (HPE)

When an exception or interrupt occurs, the microprocessor stops the current program flow and shifts to the

execution of the exception or interrupt handling function, the site of the current program flow needs to be

saved. After the exception or interrupt returns, it is necessary to restore the site and continue the execution of

the stopped program flow. For V3 series microprocessors, the “site” here refers to all the Caller Saved registers

in Table 1-2.

The V3 series microprocessors support hardware single-cycle automatic saving of 16 of the shaped caller-

saved registers to an internal stack area that is not visible to the user. When an exception or interrupt returns,

the hardware single cycle automatically restores the data from the internal stack area to the 16-shaped

registers. HPE supports nesting up to 2 levels deep.

A schematic of the microprocessor pressure stack is shown in the following figure.



Note:

1. Interrupt functions using the HPE need to be compiled using MRS or its provided toolchain and the interrupt

function needs to be declared with __attribute__((interrupt(“WCH-Interrupt-fast”))).

2. The interrupt function using stack push is declared by __attribute__((interrupt())).

Vector Table Free (VTF)

The Programmable Fast Interrupt Controller (PFIC) provides 4 VTF channels, i.e., direct access to the interrupt

function entry without going through the interrupt vector table lookup process.

The VTF channel can be enabled by writing its interrupt number, interrupt service function base address, and

offset address into the corresponding PFIC controller register while configuring an interrupt function normally.

The PFIC response process for fast and table-free interrupts is shown in Figure 3-2 below.

Physical Memory Protection PMP

In order to improve the security of the system, the physical memory protection (PMP) module is designed

according to the RISC-V architecture standard for the V3 series microprocessors of highland barley. Access

rights management of up to 4 physical regions is supported. Permissions include read (R), write (W), and

execute (X) attributes, and the length of the protected area can be set to 4 bytes at least. PMP module always

takes effect in user mode, but it can take effect optionally by locking the (L) attribute in machine mode.

If the access violates the current permission limit, it will trigger an abnormal interrupt. The PMP module includes

four groups of 8-bit configuration registers (One group of 32-bit) and four groups of address registers, all of

which need to be accessed in machine mode by CSR instruction.

Note: The number of protected areas supported by PMP in different models of microprocessors may be

different, and the number supported by pmpcfg and pmpaddr registers is also different. See Table 1-1 for



details.

PMP Register Set

The list of CSR registers supported by the PMP module of the V3 microprocessor is shown in Table 4-1 below.

Table 4-1 PMP module register set

Name CSR address Access Description Reset value

pmpcfg0 0x3A0 MRW PMP configuration register 0 0x00000000

pmpaddr0 0x3B0 MRW PMP address register 0 0xXXXXXXXX

pmpaddr1 0x3B1 MRW PMP address register 1 0xXXXXXXXX

pmpaddr2 0x3B2 MRW PMP address register 2 0xXXXXXXXX

pmpaddr3 0x3B3 MRW PMP address register 3 0xXXXXXXXX

pmp<i>cfg Register

pmpcfg is the configuration register of the PMP unit, and each register contains four 8-bit pumping fields,
corresponding to the configuration of four regions, and pumping represents the configuration value of region i. Its
format is shown in the following table 4-2.

Table 4-2 pmpcfg0 register

pmpcfg is used to configure area I and its bit definition is described in the following table 4-3.

Table 4-3 pmp<i>cfg register

Bit Name Description

7 L
Locking is enabled and can be unlocked in machine mode. 0: Not locked;

1: Lock the relevant register.

[6:5] – Reserved

[4:3] A

Address alignment and protection area range selection. 00: OFF (PMP off)

01: TOR (Top alignment protection) 10: NA4 (Fixed four-byte protection)

11: NAPOT (2(G+2) Byte protection, G≥1)

2 X Executable attribute.



  
0: No execute permission;

1: Execute permission.

 

1

 

W

Writeable attribute.

0: No write permission 1: Write permission.

 

0

 

R

Readable attribute

0: No read permission 1: Read permission.

pmpaddr<i> Register

The pmpaddr register is used to configure the address of area I. The standard definition is under RV32
architecture, which is the encoding of the upper 32 bits of a 34-bit physical address, and its format is shown in the
following table 4-4.
The whole physical address space of the V3 microprocessor is 4G, so the upper two bits of this register are not
used.

Table 4-4 pmpaddr<i> register

When NAPOT is selected, the low bit of the address register is also used to indicate the size of the current
protection area, as shown in the following table, where ‘y’ is a bit of the register.
Table 4-5 Relationship table between PMP configuration and address register and protected area.

pmpaddr pmpcfg. A Matching base address and size

yyyy…yyyy NA4 With ‘yy…yyyy00’ as the base address, the 4-byte area is protected.

yyyy…yyy0 NAPOT With ‘yy…yyy000’ as the base address, the 8-byte area is protected.

yyyy…yy01 NAPOT With ‘yy…yy0000’ as the base address, the 16-byte area is protected.

yyyy…y011 NAPOT With ‘yy…y00000’ as the base address, the 16-byte area is protected.

… … …

yyy01…111 NAPOT With ‘y0…000000’ as the base address, the 231-byte area is protecte
d.

yy011…111 NAPOT Protect the entire 232-byte area.

Protection Mechanism

X/W/R in pmpcfg is used to set the protection authority of area I, and violation of relevant authority will cause a
corresponding exception:

1. When trying to fetch instructions in the PMP area without execution authority, it will cause an instruction fetch

access error exception (mcause=1).



2. When trying to write data in the PMP area without written permission, it will cause an error exception

(mcause=7) in the store instruction access.

3. When trying to read data in the PMP area without read permission, it will cause an abnormal memory access

error (mcause=5) for the load instruction.

A in pmpcfg is used to set the protection range and address alignment of the region I, and to protect the memory
of A_ADDR ≤ region < i > < B_ADDR (both A_ADDR and B_ADDR are required to be aligned in 4 bytes):

1. If B _ ADDR–A_ADDR = = 22, NA4 mode is adopted;

2. If B _ ADDR–A_ADDR = = 2(G+2), G≥1, and a _ address is 2(g+2), the NAPOT method is adopted;

3. Otherwise, the TOP mode is adopted.

Table 4-6 PMP address matching methods

A value Name Description

0b00 OFF No area to protect

0b01 TOR

Top Aligned Area Protection.

Under pmp<i>cfg, pmpaddri-1≤ region<i> <pmpaddri� pmpaddri-1 = A_ADDR >> 2;

pmpaddri = B_ADDR >> 2.

Note: If area 0 of PMP is configured as TOR mode (i=0), the lower boundary of the protecti
on area is 0 address, i.e. 0 ≤ addr < pmpaddr0, all within the matching range.

0b10 NA4
Fixed 4-byte area protection.

pmp<i>cfg under pmpaddri as the starting address of the 4-byte pmpaddri = A_ADDR>>2.

0b11 NAPOT Protect the 2(G+2) region with G ≥ 1, when A_ADDR is 2(G+2) aligned. pmpaddri = ((A_A
DDR|(2(G+2)-1)) &~(1<<G+1))>>2.

The L bit in pmp<i>cfg is used to lock the PMP entry. After locking, the configuration register pmp<i>cfg and the

address register pmpaddr<i> will not be able to be modified. If A in pmp<i>cfg is set to TOR mode, pmpaddr<i-

1> will also not be modified. when L is set, the X/W/R permissions defined in pmp<i>cfg are also valid for

machine mode, and when L is cleared, X/W/R is only valid for user mode, and L is cleared only after system

reset.

QingKe V3 series microprocessors support the protection of multiple zones. When the same operation matches

multiple zones at the same time, the zone with the smaller number is matched first.

System Timer (SysTick)

QingKe V3 series microprocessor is designed with a 32-bit or 64-bit counter (SysTick) inside. Its clock source is

the system clock or its 8-frequency division, and V3A only supports 8-frequency division.

It can provide a time base, timing, and measuring time for a real-time operating system. Different types of

registers involved in the timer have different mapping addresses, as shown in the following tables 5-1 and 5-2.



Table 5-1 V3A SysTick register list

Name Access address Description Reset value

STK_CTLR 0xE000F000 System counter control register 0x00000000

STK_CNTL 0xE000F004 System counter low register 0xXXXXXXXX

STK_CNTH 0xE000F008
System counter high register

Note: Only valid for V3A. 0xXXXXXXXX

STK_CMPLR 0xE000F00C System count comparison value low register 0xXXXXXXXX

STK_CMPHR 0xE000F010
System count comparison value high register

Note: Only valid for V3A. 0xXXXXXXXX

Table 5-2 V3 SysTick register list of other models

Name Access address Description Reset value

STK_CTLR 0xE000F000 System counter control register 0x00000000

STK_SR 0xE000F004 System counter status register 0x00000000

STK_CNTL 0xE000F008 The low register of the system counter 0xXXXXXXXX

STK_CMPLR 0xE000F010 Count comparison value low register 0xXXXXXXXX

Each register is described in detail as follows.

System counter control register (STK_CTLR)

Table 5-3 SysTick control registers



Bit Name Acces
s Description Reset valu

e

[31:5] Reserved RO Reserved 0

 

 

4

 

 

MODE

 

 

RW

Counting mode: 1: Count down;

0: Count up.

Note: Invalid for V3A.

 

 

0

 

 

 

3

 

 

 

STRE

 

 

 

RW

Automatic reload count enable bit:

1: Count from 0 again after counting up to the comp
arison value, and count from the comparison value 
again after counting down to 0;

0: Continue counting up/down.

Note: Invalid for V3A.

 

 

 

0

 

 

2

 

 

STCLK

 

 

RW

Counterclock source selection bit:

1: HCLK as time base; 0: HCLK/8 as time base.

Note: It is invalid for V3A, which only supports

HCLK/8 as time base.

 

 

0

1 SITE RW Counter interrupt enable control bits: 0

   

1: Enable counter interrupt; 0: Disable counter interr
upt.

Note: Invalid for V3A.
 

0 STE RW

The system counter enables a control bit. 1: Enable 
system counter STK;

0: Disable the system counter STK and the counter 
stops counting.

0

System counter status register (STK_SR)

This register does not apply to V3A.

Table 5-4 SysTick counter low register



Bit Name Acces
s Description Reset valu

e

 

 

31

 

 

SWIE

 

 

RW

Software interrupt trigger enable (SWI): 1: Trigger s
oftware interrupt;

0: Turn off the trigger.

Note: This bit must be cleared after entering the soft
ware interrupt, otherwise it will always trigger.

 

 

0

[30:1] Reserved RO Reserved 0

 

 

0

 

 

CNTIF

 

 

RW

Count comparison flag, write 0 clearly, write 1 is inv
alid:

1: Count up to the comparison value and count dow
n to 0;

0: The comparison value is not reached.

 

 

0

System counter low register (STK_CNTL)

Table 5-5 SysTick counter low register

Bit Name Acces
s Description Reset valu

e

[31:0] CNTL RW

The current counter count value is 32 bits lower. For
V3A, this register can be read as 8-bit /16-bit

/32-bit, but can only be written as 8-bit, and other

models are not limited.

0xXXXXX X
XX

Note: Register STK_CNTL and register STK_CNTH in V3A together constitute a 64-bit system counter.

System counter high register (STK_CNTH)

Table 5-6 SysTick counter high register

Bit Name Acces
s Description Reset valu

e

[31:0] CNTH RW

The current counter count value is 32 bits higher. Th
is register can be read by 8-bit/16-bit/32-bit, but can 
only be written by 8-bit.

Note: Only valid for V3A.

0xXXXXX X
XX

Note: Register STK_CNTL and register STK_CNTH in V3A together constitute a 64-bit system counter.



System count comparison value low register (STK_CMPLR)

Table 5-7 SysTick comparison value low register

Bit Name Acces
s Description Reset valu

e

[31:0] CMPL RW

Set the counter comparison value to 32 bits lower. 
When the CMP value and CNT value are equal, an 
STK interrupt will be triggered. For V3A, this registe
r can be read as 8-bit /16-bit /32-bit, but can only be

written as 8-bit, and other models are not limited.

0xXXXXX X
XX

Note: The register STK_CMPLR and the register STK_CMPHR in V3A together constitute the 64-bit counter
comparison value.

System count comparison value high register (STK_CMPHR)

Table 5-8 SysTick comparison value high register

Bit Name Acces
s Description Reset valu

e

[31:0] CMPH RW

Set the counter comparison value 32 bits higher. Th
e STK interrupt will be triggered when the CMP valu
e and CNT value are equal.

This register can be read by 8-bit/16-bit/32-bit, but c
an only be written by 8-bit.

Note: Only valid for V3A.

0xXXXXX X
XX

Note: The register STK_CMPLR and the register STK_CMPHR in V3A together constitute the 64-bit counter
comparison value.

Processor Low-power Settings

QingKe V3 series microprocessors support sleep state via WFI (Wait for Interrupt) instruction to achieve low

static power consumption.

Together with PFIC’s system control register (PFIC_SCTLR), various Sleep modes and WFE instructions can be

implemented.

Enter Sleep



QingKe V3 series microprocessors can go to sleep in two ways, Wait for Interrupt (WFI) and Wait For Event

(WFE). The WFI method means that the microprocessor goes to sleep, waits for an interrupt to wake up, and

then wakes up to the corresponding interrupt to execute. The WFE method means that the microprocessor

goes to sleep, waits for an event to wake up, and wakes up to continue executing the previously stopped

program flow.

The standard RISC-V supports WFI instruction, and the WFI command can be executed directly to enter sleep

by the WFI method. For the WFE method, the WFITOWFE bit in the system control register PFIC_SCTLR is

used to control the subsequent WFI commands as WFE processing to achieve the WFE method to enter sleep.

The depth of sleep is controlled according to the SLEEPDEEP bit in PFIC_SCTLR.

If the SLEEPDEEP in the PFIC_SCTLR register is cleared to zero, the microprocessor enters Sleep mode and

the internal unit clock is allowed to be turned off except for SysTick and part of the wake-up logic.

If SLEEPDEEP in the PFIC_SCTLR register is set, the microprocessor enters Deep sleep mode and all cell

clocks are allowed to be turned off.

When the microprocessor is in Debug mode, it is not possible to enter any kind of Sleep mode.

Sleep Wakeup

QingKe V3 series microprocessors can be woken up after sleep due to WFI and WFE in the following ways.

After the WFI method goes to sleep, it can be awakened by

1. The microprocessor can be woken up by the interrupt source responded to by the interrupt controller. After

waking up, the microprocessor executes the interrupt function first.

2. Enter Sleep mode, debug request can make the microprocessor wake up and enter deep sleep, debug request

cannot wake up the microprocessor.

After the WFE method goes to sleep, the microprocessor can be woken up by the following.

1. Internal or external events, when there is no need to configure the interrupt controller, wake up and continue to

execute the program.

2. If an interrupt source is enabled, the microprocessor is woken up when an interrupt is generated, and after

waking up, the microprocessor executes the interrupt function first.

3. If the SEVONPEND bit in PFIC_SCTLR is configured, the interrupt controller does not enable the interrupt, but

when a new interrupt pending signal is generated (the previously generated pending signal does not take

effect), it can also make the microprocessor wake up, and the corresponding interrupt pending flag needs to be

cleared manually after waking up.

4. Enter Sleep mode debug request can make the microprocessor wake up and enter deep sleep, debug request

cannot wake up the microprocessor.

In addition, the state of the microprocessor after wake-up can be controlled by configuring the SLEEPONEXIT

bit in PFIC_SCTLR.

SLEEPONEXIT is set and the last level interrupt return instruction (mret) will trigger the WFI mode sleep.

SLEEPONEXIT is cleared with no effect.



Various MCU products equipped with V3 series microprocessors can adopt different sleep modes, turn off different
peripherals and clocks, implement different power management policies and wake-up methods according to
different configurations of PFIC_SCTLR, and realize various low-power modes.

Debug Support

QingKe V3 series microprocessors include a hardware debug module that supports complex debugging

operations. When the microprocessor is suspended, the debug module can access the microprocessor’s GPRs,

CSRs, Memory, external devices, etc. through abstract commands, program buffer deployment instructions,

etc. The debug module can suspend and resume the microprocessor’s operation.

The debug module follows the RISC-V External Debug Support Version0.13.2 specification, detailed

documentation can be downloaded from the RISC-V International website.

Debug Module

The debug module inside the microprocessor, capable of performing debug operations issued by the debug

host, includes.

Access to registers through the debug interface

Reset, suspend, and resume the microprocessor through the debug interface

Read and write memory, instruction registers, and external devices through the debug interface

Deploy multiple arbitrary instructions through the debug interface

Set software breakpoints through the debug interface

Set hardware breakpoints through the debug interface

Support abstract command auto-execution

Support single-step debugging

Note: V3A does not support hardware breakpoints, V3B hardware breakpoints support instruction address

matching, and V3C hardware breakpoints support instruction address and data address matching.

The internal registers of the debugging module use a 7-bit address code, and the following registers are

implemented inside QingKe V3 series microprocessors.

Table 7-1 Debug module register List



Name Access address Description

data0 0x04 Data register 0, can be used for the temporary storage of dat
a

data1 0x05 Data register 1, can be used for the temporary storage of dat
a

decontrol 0x10 Debug module control register

dmstatus 0x11 Debug module status register

hartinfo 0x12 Microprocessor status register

abstracts 0x16 Abstract command status register

command 0x17 Abstract command register

abstract auto 0x18 Abstract command auto-execution

progbuf0-7 0x20-0x27 Instruction cache registers 0-7

haltsum0 0x40 Pause status register

The debug host can control the microprocessor’s suspend, resume, reset, etc. by configuring the decontrol

register. The RISC-V standard defines three types of abstract commands: access register, fast access, and

access memory.

QingKe V3A microprocessor only supports register access, other models support register and memory access,

but not fast access. Access to registers (GPRs, CSRs) and continuous access to memory can be realized by

abstract commands.

The debug module implements 8 instruction cache registers progbuf0-7, and the debug host can cache

multiple instructions (which can be compressed instructions) to the buffer and can choose to continue executing

the instructions in the instruction cache registers after executing the abstract command or execute the cached

instructions directly.

Note that the last instruction in the programs needs to be an “ebreak” or “c.ebreak” instruction. Access to

storage, peripherals, etc. is also possible through abstract commands and instructions cached in the programs.

Each register is described in detail as follows.

Data register 0 (data0)

Table 7-2 data register definition

Bit Name Access Description Reset Valu
e

[31:0] data0 RW Data register 0, used for temporary storage of data 0

Data register 1 (data1)

Table 7-3 data1 register definition



Bit Name Access Description Reset Valu
e

[31:0] data1 RW Data register 1, used for temporary storage of data 0

Debug module control register (decontrol)

This register controls the pause, reset, and resume of the microprocessor. The debug host writes data to the
corresponding field to achieve pause (haltreq), reset (ndmreset), resume (resumereq). You describe the following.

Table 7-4 decontrol register definition

Bit Name Acces
s Description Reset Valu

e

31 haltreq WO
0: Clear the pause request

1: Send a pause request 0

30 resumereq W1

0: Invalid

1: Restore the current microprocessor

Note: Write 1 is valid and the hardware is cleared aft
er the microprocessor is recovered

0

29 Reserved RO Reserved 0

28 ackhavereset W1

0: Invalid

1:    Clear the harvest status bit of  the microprocess
or

0

[27:2] Reserved RO Reserved 0

1 ndmreset RW

0: Clear reset

1: Reset the entire system other than the debug
module

 

0

0 deactivate RW
0: Reset the debug module

1: The Debug module works properly 0

Debug module status register (dm status)

This register is used to indicate the status of the debug module and is a read-only register with the following

description of each bit.

Table 7-5 dmstatus register definition



Bit Name Acces
s Description Reset Valu

e

[31:20] Reserved RO Reserved 0

19 allhavereset RO
0: Invalid

1: Microprocessor reset 0

18 anyhavereset RO
0: Invalid

1: Microprocessor reset 0

17 allresumeack RO
0: Invalid

1: Microprocessor reset 0

16 anyresumeack RO
0: Invalid

1: Microprocessor reset 0

[15:14] Reserved RO Reserved 0

13 alluvial RO
0: Invalid

1: The microprocessor is not available 0

12 any avail RO
0: Invalid

1: The microprocessor is not available 0

11 all running RO
0: Invalid

1: Microprocessor is running 0

10 any running RO
0: Invalid

1: Microprocessor is running 0

9 halted RO
0: Invalid

1: The microprocessor is in suspension 0

8 any halted RO
0: Invalid

1: Microprocessor out of suspension 0

7 authenticated
 

RO

0: Authentication is required before using the debug
module

1: The debugging module has been certified

 

0x1

[6:4] Reserved RO Reserved 0

[3:0] version RO Debugging system support architecture version 001
0: V0.13 0x2



Microprocessor status register (hartinfo)

This register is used to provide information about the microprocessor to the debug host and is a read-only register
with each bit described as follows.

Table 7-6 hartinfo register definition

Bit Name Acces
s Description Reset Valu

e

[31:24] Reserved RO Reserved 0

[23:20] scratch RO Number of scratch registers supported 0x3

[19:17] Reserved RO Reserved 0

16 DataAccess RO

0: Data register is mapped to CSR address

1: The data register is mapped to the memory
address

0x1

[15:12] data size RO Number of data registers 0x2

  [11:0] data add
 

RO

The offset address of the data register data0,

whose base address is 0xe0000000, is subject to s
pecific reading.

0xXXX

Abstract command control and status registers (abstracts)

This register is used to indicate the execution of the abstract command. The debug host can read this register to
know whether the last abstract command is executed or not and can check whether an error is generated during
the execution of the abstract command and the type of the error, which is described in detail as follows.

Table 7-7 abstracts register definitions



Bit Name Access Description Reset Valu
e

[31:29] Reserved RO Reserved 0

[28:24] progbufsize RO
Indicates the number of program buffer program

cache registers 0x8

[23:13] Reserved RO Reserved 0

12 busy RO

0: No abstract command is executing

1: There are abstract commands being executed

Note: After execution, the hardware is cleared.

 

0

11 Reserved RO Reserved 0

[10:8] cmder RW

Abstract command error type 000: No error

001: Abstract command execution to write to comman
d, abstracts, abstract auto registers or read and write t
o data and progbuf registers

010: Does not support current abstract command 011:
Execution of abstract command with exception 100: T
he microprocessor is not suspended or unavailable an
d cannot execute abstract commands 101: Bus error

110: Parity bit error during communication 111: Other 
errors

Note: For bit writing 1 is used to clear the zero.

 

 

 

 

 

 

 

0

[7:4] Reserved RO Reserved 0

[3:0] discount RO Number of data registers 0x2

Debugging hosts can access GPRs, CSR registers, and memory by writing different configuration values into

the abstract command register.

When accessing the registers, the command register bits are defined as follows.

Table 7-8 Definition of command register when accessing registers



Bit Name Acces
s Description Reset Valu

e

[31:24] cmd type WO

Abstract command type 0: Access register;

1: Quick access (not supported);

2: Access to memory.

0

23 Reserved WO Reserved 0

[22:20] aarsize WO

Access register data bit width 000: 8-bit

001: 16-bit

010: 32-bit

0

   

011: 64-bit (not supported) 100: 128-bit (not support
ed)

Note: When accessing floating-point registers

FPRs, only 32-bit access is supported.

 

19 aarpostincrement WO

0: No effect

1: Automatically increase the value of regno after ac
cessing the register

 

0

18 post exec WO

0: No effect

1�Execute the abstract command and then execute 
the command in progbuf

 

0

17 transfer WO
0: Do not execute the operation specified by write

1: Execute the manipulation specified by write 0

16 write WO
0: Copy data from the specified register to data0 1: 
Copy data from data0 register to the specified regist
er

 

0

[15:0] regno WO Specify access registers 0x0000-0x0fff are CSRs
0x1000-0x101f are GPRs

 

0



When accessing the memory, the bits in the command register are defined as follows.

Table 7-9 Definition of command Register when Accessing Memory

Bit Name Acces
s Description Reset Valu

e

[31:24] cmd type WO

Abstract command type 0: Access register;

1: Fast access (not supported);

2: Access memory.

0

23 aamvirtual WO
0: Access physical address;

1: Access virtual address. 0

[22:20] arm size WO

Access memory data bit width 000: 8-bit;

001: 16-bit;

010: 32-bit;

011: 64-bit (not supported); 100: 128-bit (not suppor
ted);

 

0

19 aampostincrement WO

0: No influence;

1: After accessing the memory successfully, increas
e the address stored in the data1 register by the nu
mber of bytes corresponding to the bit width configu
red by arm size.

Aamsize=0, accessed by byte, data1 plus 1.

Aamsize=1, accessed by half-word, data1 plus 2. a
amsize=2, accessed by bit, data1 plus 4.

 

0

18 post exec WO

0: No influence;

1: Execute the command in progbuf after executing 
the abstract command.

0



17 Reserve RO Reserved 0

 

 

16

 

 

write

 

 

WO

0: Read data from the address specified by data1 to
data0

1: Write data in data0 to the address specified by

data1.

 

 

0

 

 

 

 

 

 

[15:14]

 

 

 

 

 

 

target-specific

 

 

 

 

 

 

WO

Definition of reading and writing mode Write:

00, 01: Write directly to the memory;

10: After the data in data0 is OR with the data bits in
the memory, the result is written into the memory (O
nly word access is supported).

11: After summing the data in data0 with the data bit
s in the memory, write the result into the memory (O
nly word access is supported).

Read:

00, 01, 10, 11: Read 0 directly from the memory.

 

 

 

 

 

 

0

[13:0] Reserve RO Reserved  

Abstract command automatic execution register (abstract auto)

This register is used to configure the debugging module. When reading and writing progbufx and data of the
debugging module, the abstract command can be executed again.

The description of this register is as follows:

Table 7-10 abstract auto register definition



Bit Name Acces
s Description Reset Valu

e

[31:16] autoexecprogbuf RW

If a bit is set, the corresponding reading and writing 
of progbufx will cause the abstract command in the 
command register to be executed again.

Note: The V3 series is designed with 8 progbufs, co
rresponding to bits [23:16].

 

0

[15:12] Reserve RO Reserved 0

[11:0] autoexecdata
 

RW

If a bit is set to 1, the corresponding reading and wri
ting of the data register will cause the abstract com
mand in the Command register to be executed agai
n.

Note: V3 series is designed with two data registers, 
corresponding to bits [1:0].

0

Instruction cache register (progbufx)

This register is used to store any instruction, and deploy the corresponding operation, including 8, which needs to
pay attention to the last execution that needs to be “break” or “c.ebreak”.

Table 7-11 progbuf register definition

Bit Name Acces
s Description Reset Valu

e

[31:0] progbuf RW
Instruction encoding for cache operations, which

may include compression instructions 0

Pause status register (haltsum0)

This register is used to indicate whether the microprocessor is suspended or not. Each bit indicates the suspended
status of a microprocessor, and when there is only one core, only the lowest bit of this register is used to indicate
it.

Table 7-12 haltsum0 register definition

Bit Name Acces
s Description Reset Valu

e

[31:1] Reserved RO Reserved 0

0 haltsum0 RO
0: Microprocessor operates normally

1: Microprocessor stop 0

In addition to the above-mentioned registers of the debug module, the debug function also involves some CSR



registers, mainly the debug control and status register dcsr and the debug instruction pointer dpc, which are

described in detail as follows.

Debug control and status register (dcsr)

Table 7-13 dcsr register definition

Bit Name Access Description Reset Valu
e

[31:28] xdebugver DRO

0000: External debugging is not supported 0100: Support st
andard external debugging

1111: External debugging is supported, but does not meet

the specification

 

 

0x4

[27:16] Reserved DRO Reserved 0

15 break DRW

0: The break command in machine mode behaves as descr
ibed in the privilege file

1: The break command in machine mode can enter debug 
mode

 

 

0

[14:13] Reserved DRO Reserved 0

12 breakup
 

DRW

0: The break command in user mode behaves as described
in the privilege file

1: The break command in user mode can enter debug mod
e

 

 

0

11 step DRW
0: Interrupts are disabled under single-step debugging

1: Enable interrupts under single-step debugging 0

10 Reserved DRO Reserved 0

9 stop time DRW
0: System timer running in Debug mode

1: System timer stops in Debug mode 0

  [8:6] cause DRO

Reasons for entering debugging

001: Entering debugging in the form of break command (pri
ority 3)

010: Entering debugging in the form of a trigger module (pri
ority 4, the highest)

011: Entering debugging in the form of pause request (prior
ity 1)

100: debugging in the form of single-step debugging

(priority 0, the lowest)

0



   101: enter debug mode directly after microprocessor reset (
priority 2) Others: Reserved  

[5:3] Reserved DRO Reserved 0

2 step DRW
0: Turn off single-step debugging

1: Enable single-step debugging 0

[1:0] Prev DRW

Privilege mode 00: User mode

01: Supervisor mode (not supported) 10: Reserved

11: Machine mode

Note: Record the privileged mode when entering debug mo
de, the debugger can modify this value to modify the privile
ged mode when exiting debug

 

 

 

 

0

Debug mode program pointer (DPC)

This register is used to store the address of the next instruction to be executed after the microprocessor enters

debug mode, and its value is updated with different rules depending on the reason for entering debug. dpc

register is described in detail as follows.

Table 7-14 dpc register definitions

Bit Name Acces
s Description Reset Valu

e

[31:0] DPC DRW Instruction address 0

The rules for updating the registers are shown in the following table.

Table 7-15 dpc update rules

Enter the debugging method dpc Update rules

break Address of the Ebreak instruction

single step Instruction address of the next instruction of the current instruction

trigger module Temporarily not supported

halt request Address of the next instruction to be executed when entering Debug

Debug Interface



Different from the standard JTAG interface defined by RISC-V, QingKe V3 series microprocessor adopts 1- a

wire/2-wire serial debug interface and follows WCH debug interface protocol V1.0.

The debug interface is responsible for the communication between the debug host and the debug module and

realizes the read/write operation of the debug host to the debug module registers.

WCH designed WCH_Link and open source its schematic and program binary files, which can be used for

debugging all microprocessors of RISC-V architecture.

Refer to the WCH Debug Protocol Manual for specific debug interface protocols.

CSR Register List

The RISC-V architecture defines a number of Control and Status Registers (CSRs) for controlling and recording

the operating status of the microprocessor.

Some of the CSRs have been introduced in the previous section, and this chapter will detail the CSR registers

implemented in the QingKe V3 series microprocessors.

CSR Register List

Table 8-1 List of Microprocessor CSR Registers



Type Name CSR Address Access Description

RISC-V

Standard CSR

marchid 0xF12 MRO Architecture number register

mimpid 0xF13 MRO Hardware implementation numbering register

mstatus 0x300 MRW Status register

misa 0x301 MRW Hardware instruction set register

mtvec 0x305 MRW Exception base address register

mscratch 0x340 MRW Machine mode staging register

MEPC 0x341 MRW Exception program pointer register

mcause 0x342 MRW Exception cause register

mtval 0x343 MRW Exception value register

pmpcfg<i> 0x3A0+i MRW PMP configuration register

pmpaddr<i> 0x3B0+i MRW PMP address register

tselect 0x7A0 MRW Debug trigger selection register

tdata1 0x7A1 MRW Debug trigger data register 1

tdata2 0x7A2 MRW Debug trigger data register 2

dcsr 0x7B0 DRW Debug control and status registers

dpc 0x7B1 DRW Debug mode program pointer register

dscratch0 0x7B2 DRW Debug mode staging register 0

dscratch1 0x7B3 DRW Debug mode staging register 1

 

Vendor defined
CSR

gintenr 0x800 URW Global interrupt enable register

intsyscr 0x804 URW Interrupt system control register

corecfgr 0xBC0 MRW Microprocessor configuration register

inestcr 0xBC1 MRW Interrupt nested control register

RISC-V Standard CSR Registers

Architecture number register (marchid)

This register is a read-only register to indicate the current microprocessor hardware architecture number, which

is mainly composed of vendor code, architecture code, series code, and version code. Each of them is defined

as follows.

Table 8-2 marchid register definition



Bit Name Acces
s Description Reset Valu

e

31 Reserved MRO Reserved 1

[30:26] Vender0 MRO
Manufacturer code 0

Fixed to the letter “W” code 0x17

[25:21] Vender1 MRO
Manufacturer code1

Fixed to the letter “C” code 0x03

[20:16] Vender2 MRO
Manufacturer code 2

Fixed to the letter “H” code 0x08

15 Reserved MRO Reserved 1

[14:10] Arch MRO Architecture code 0x16

   RISC-V architecture is fixed to the letter “V” code  

[9:5] Serial MRO
Series code

QingKe V3 series, fixed to the number “3” 0x03

[4:0] Version MRO

Version code

Can be the version “A”, “B”, “C” and other letters of t
he code

x

The manufacturer number and version number are alphabetic, and the series number is numeric. The coding table
of letters is shown in the following table.

Table 8-3 Alphabetic Mapping Table

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2 23 2

4
2
5

2
6

Among them, QingKe V3A microprocessor, the register reads back to 0.

Hardware implementation numbering register (limpid)

This register is mainly composed of vendor codes, each of which is defined as follows.



Table 8-4 limpid register definition

Bit Name Acces
s Description Reset Valu

e

31 Reserved MRO Reserved 1

[30:26] Vender0 MRO
Manufacturer code 0

Fixed to the letter “W” code 0x17

[25:21] Vender1 MRO
Manufacturer code1

Fixed to the letter “C” code 0x03

[20:16] Vender2 MRO
Manufacturer code 2

Fixed to the letter “H” code 0x08

15 Reserved MRO Reserved 1

[14:8] Reserved MRO Reserved 0

[7:4] Minor MRO Subversion number 0xX

[3:0] Major MR0 Major version number 0xX

This register is readable in any machine implementation, and in the QingKe V3A series processor, this register

reads back to zero.

Machine mode status register (mstatus)

This register has been partially described in the previous section, and its folks are positioned as follows.

Table 8-5 mstatus register definition

Bit Name Acces
s Description Reset Valu

e

[31:13] Reserved MRO Reserved 0

[12:11] MPP MRW Privileged mode before entering the break 0

[10:8] Reserved MRO Reserved 0

7 MPIE MRW Interrupt enable state before entering an interrupt 0

[6:4] Reserved MRO Reserved 0

3 MIE MRW Machine mode interrupt enable 0

[2:0] Reserved MRO Reserved 0

The MPP field is used to save the privileged mode before entering the exception or interrupt and is used to

restore the privileged mode after exiting the exception or interrupt. MIE is the global interrupt enable bit, and



when entering the exception or interrupt, the value of MPIE is updated to the value of MIE, and it should be

noted that in the QingKe V3 series microprocessors, MIE will not be updated to 0 before the last level of nested

interrupts to ensure that the interrupt nesting in Machine mode continues to be executed. When an exception or

interrupt is exited, the microprocessor reverts to the Machine mode saved by MPP, and the MIE is restored to

the MPIE value.

QingKe V3 microprocessor supports Machine mode and User mode, if you need to make the microprocessor

only work in Machine mode, you can set the MPP to 0x3 in the initialization of the boot file, that is, after

returning, it will always remain in Machine mode.

Hardware instruction set register (misa)

This register is used to indicate the architecture of the microprocessor and the supported instruction set

extensions, each of which is described as follows.

Table 8-6 misa register definition

Bit Name Acces
s Description Reset Valu

e

[31:30] MXL MRO

Machine word length 1:32

2:64

3:128

1

[29:26] Reserved MRO Reserved 0

[25:0] Extensions MRO Instruction set extensions x

The MXL is used to indicate the word length of the microprocessor, QingKe V3 are 32-bit microprocessors, and

the domain is fixed to 1.

Extensions are used to indicate that the microprocessor supports extended instruction set details, each

indicates a class of extensions, its detailed description is shown in the following table.

Table 8-7 Instruction Set Extension Details



Bit Name Description

0 A Atomic extension

1 B Tentatively reserved for Bit-Manipulation extension

2 C Compressed extension

3 D Double-precision floating-point extension

4 E RV32E base ISA

5 F Single-precision floating-point extension

6 G Additional standard extensions present

7 H Hypervisor extension

8 I RV32I/64I/128I base ISA

9 J Tentatively reserved for Dynamically Translated Languages extension

10 K Reserved

11 L Tentatively reserved for Decimal Floating-Point extension

12 M Integer Multiply/Divide extension

13 N User-level interrupts supported

14 O Reserved

15 P Tentatively reserved for Packed-SIMD extension

16 Q Quad-precision floating-point extension

17 R Reserved

18 S Supervisor mode implemented

19 T Tentatively reserved for Transactional Memory extension

20 U User mode implemented

21 V Tentatively reserved for Vector extension

22 W Reserved

23 X Non-standard extensions present

24 Y Reserved

25 Z Reserved

For example, for the QingKe V3A microprocessor, the register value is 0x401001105, which means that the



supported instruction set architecture is RV32IMAC, and it has User mode implementation.

Machine mode exception base address register (mtvec)

This register is used to store the base address of the exception or interrupt handler and the lower two bits are

used to configure the mode and identification method of the vector table as described in Section 3.2.

Machine mode staging register (mscratch)

Table 8-8 mscratch register definitions

Bit Name Acces
s Description Reset Valu

e

[31:0] mscratch MRW Data storage 0

This register is a 32-bit readable and writable register in machine mode for temporary data storage. For example,
when entering an exception or interrupt handler, the user stack pointer SP is stored in this register and the
interrupt stack pointer is assigned to the SP register. After exiting the exception or interrupt, restore the value of
the user stack pointer SP from scratch. That is, the interrupt stack and user stack can be isolated.

Machine mode exception program pointer register (map)

Table 8-9 mepc register definitions

Bit Name Acces
s Description Reset Valu

e

[31:0] mepc MRW Exception procedure pointer 0

This register is used to save the program pointer when entering an exception or interrupt.

It is used to save the instruction PC pointer before entering an exception when an exception or interrupt is

generated, and mepc is used as the return address when the exception or interrupt is handled and used for an

exception or interrupt return.

However, it is important to note that.

When an exception occurs, mepc is updated to the PC value of the instruction currently generating the

exception.

When an interrupt occurs, mepc is updated to the PC value of the next instruction.

When you need to return an exception after processing the exception, you should pay attention to modifying the

value of the mepc, and more details can be found in Chapter 2 Exceptions.

Machine mode exception cause register (mcause)

Table 8-10 mcause register definition



Bit Name Acces
s Description Reset Valu

e

31 Interrupt MRW
Interrupt indication field 0: Exception

1: Interruption

 

0

[30:0] Exception Code MRW For exception codes, see Table 2-1 for details 0

This register is mainly used to store the cause of the exception or the interrupt number of the interrupt. Its

highest bit is the Interrupt field, which is used to indicate whether the current occurrence is an exception or an

interrupt.

The lower bit is the exception code, which is used to indicate the specific cause. Its details can be found in

Chapter 2 Exceptions.

Machine mode exception value register (mtval)

Table 8-11 mtval register definition

Bit Name Acces
s Description Reset Valu

e

[31:0] mtval MRW Exception value 0

This register is used to hold the value that caused the exception when an exception occurs. For details such as

the value and time of its storage, please refer to Chapter 2 Exceptions.

PMP configuration register (pmpcfg<i>)

This register is mainly used to configure the physical memory protection unit, and every 8 bits of this register

are used to configure the protection of an area. Please refer to Chapter 4 for the detailed definition.

PMP address register (pmpaddr<i>)

This register is mainly used for the address configuration of the physical memory protection unit, which

encodes the upper 32 bits of a 34-bit physical address. Please refer to Chapter 4 for the specific configuration

method.

Debug mode program pointer register (DPC)

This register is used to store the address of the next instruction to be executed after the microprocessor enters

Debug mode and its value are updated with different rules depending on the reason for entering debug. Refer

to Section 6.1 for a detailed description.

Debug trigger select register (select)



It is only valid for microprocessors that support hardware breakpoints and supports 4-channel breakpoints at

most, and its lower 2 bits are valid.

When configuring each channel breakpoint, you need to select the corresponding channel through this register

before configuration.

Table 8-12 select register definition

Bit Name Acces
s Description Reset Valu

e

[31:2] Reserved MRO Reserved 0

[1:0]
 

SELECT

 

MRW

The breakpoint channel selection register is configu
red, that is, after the corresponding channel is selec
ted, the tdata1 and tdata2 registers can  be 
operated  to  configure a breakpoint

information.

 

X

Debug trigger data register 1(tdata1)

It is only valid for microprocessors that support hardware breakpoints. Microprocessors only support instruction
address and data address breakpoints, where the bit TYPE of the tdata1 register is a fixed value of 2, and other
bits conform to the definition of control in the debugging standard.

Table 8-13 tdata1 register definition

Bit Name Acces
s Description Reset Valu

e

[31:28] TYPE MRO Breakpoint type definition, control type. 0x2

 

 

27

 

 

DMODE

 

 

MRO

0: The relevant registers of the flip-flop can be modi
fied in both machine mode and debugging mode;

1: Only debug mode can modify the relevant registe
rs of the flip-flop.

 

 

1

  [26:21]
 

MASKMAX

 

MRO

When MATCH=1, the maximum exponential power r
ange of matching is allowed, that is, the maximum a
llowable matching range is 231 bytes.

 

0x1F

[20:13] Reserved MRO Reserved 0



 

 

12

 

 

ACTION

 

 

MRW

Set the processing mode when triggering a
breakpoint:

0: When triggering, enter the breakpoint and call ba
ck the interrupt;

1: Enter debugging mode when triggered.

 

 

0

[11:8] Reserved MRO Reserved 0

 

 

 

7

 

 

 

MATCH

 

 

 

MRW

Matching policy configuration:

0: Match when the trigger value is equal to TDATA2;

1: The trigger value matches the high m bit of TDAT
A2, where m = 31–n, and n is the first 0 quote of TD
ATA2 (starting from the low bit).

 

 

 

0

 

6

 

M

 

MRW

Enable flip-flop in M mode:

0: Disable the trigger in M mode; 1: Enable the trigg
er in M mode.

 

0

[5:4] Reserved MRO Reserved 0

 

3

 

U

 

MRW

Enable trigger in U mode:

0: Disable the trigger in U mode; 1: Enable the trigg
er in U mode.

 

0

 

2

 

EXECUTE

 

MRW

Instruction read address trigger enabled: 0: Disable;

1: Enable.

 

0

 

1

 

STORE

 

MRW

Data write address trigger enabled: 0: Disable;

1: Enable.

 

0

 

0

 

LOAD

 

MRW

Data read address trigger enabled: 0: Disable;

1: Enable.

 

0

Debug trigger data register 2(tdata2)

It is only valid for microprocessors that support hardware breakpoints and is used to save the matching value of
the trigger.

Table 8-14 tdata2 register definition

Bit Name Acces
s Description Reset Valu

e

[31:0] TDATA2 MRW Used to save matching values. X



Debug control and status register (dcsr)

This register is used to control and record the running state of the debugging mode. Refer to Section 7.1 for
details.

Debug mode program pointer (DPC)

This register is used to store the address of the next instruction to be executed after the microprocessor enters the
debugging mode, its value is different according to the reasons for entering the debugging mode, and the updating
rules are also different. Refer to Section 7.1 for a detailed description.

Debug mode staging register (dscratch0-1)

This group of registers is used for temporary storage of data in Debug mode.

Table 8-15 dscratch0-1 register definitions

Bit Name Acces
s Description Reset Valu

e

[31:0] dscratch DRW Debug mode data staging value 0

User-defined CSR Register

User mode global interrupt enable register (gintenr)

This register is used to control the enable and mask of global interrupt. The enable and mask of global interrupt

in machine mode can be controlled by the MIE and MPIE bits in status, but this register cannot be operated in

user mode.

While the global interrupt enables register gintenr is the mapping of MIE and MPIE in status.

In user mode, intent can be used to set and clear MIE and MPIE, as described in Section 3.2 for details.

Note

Global interrupts do not include unmasked interrupts NMI and exceptions.

Interrupt system control register (intsyscr)

This register is mainly used to configure interrupt nesting depth, hardware stack pressing, and other related
functions, as described in Section 3.2 for details.

Microprocessor configuration register (corecfgr)

This register is used to control whether the NMI interrupt is allowed after the interrupt overflows and whether the
interrupt request is cleared when the fence instruction is executed. Please refer to Section 3.2 for the specific
definition.

Interrupt nested control register (inestcr)



This register is used to indicate the interrupt nesting state and whether it overflows or not, and to control the
maximum nesting level. Please refer to Section 3.2 for the specific definition.

Documents / Resources

WH V3 Microprocessor [pdf] User Manual
V3 Microprocessor, V3, Microprocessor

References

 index - NanjingQinhengMicroelectronics

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/db39831985ae9dc8d09e2921b2cda79110798c49f6d1969aac3dae7b34cd9cd3
https://manuals.plus/m/db39831985ae9dc8d09e2921b2cda79110798c49f6d1969aac3dae7b34cd9cd3_optim.pdf
https://wch-ic.com
https://manual.tools/?p=14630101#MTA0LjI4LjIzNC4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	WH V3 Microprocessor User Manual
	WH V3 Microprocessor
	Product Usage Instructions
	Frequently Asked Questions
	Overview
	Features
	Exception
	PFIC and Interrupt Control
	Physical Memory Protection PMP
	Debug Support
	CSR Register List
	User-defined CSR Register

	Documents / Resources
	References



