Manuals+ — User Manuals Simplified.

WAVESHARE P3-64×64 RGB Full Color LED Matrix Panel **Instruction Manual**

Home » WAVESHARE » WAVESHARE P3-64×64 RGB Full Color LED Matrix Panel Instruction Manual

WAVESHARE P3-64×64 RGB Full Color LED Matrix Panel

Contents


- 1 Important Information
- 2 Overview
 - 2.1 Introduction
 - 2.2 Features
- 3 Specifications
 - 3.1 Header Definition
 - 3.2 Usage Scenarios
- 4 User Guides for Arduino Mega
- **5 Working With ESP32**
- **6 Working With Pico**
- 7 Support
- 8 Documents / Resources
 - 8.1 References
- 9 Related Posts

Important Information

This product is a bare screen and needs to be displayed with the main control board such as Raspberry Pi, ESP32, and Arduino. For details, please refer to the list.

RGB LED, 64 x 64=4096 DOTS, 3mm Pitch

Overview

Introduction

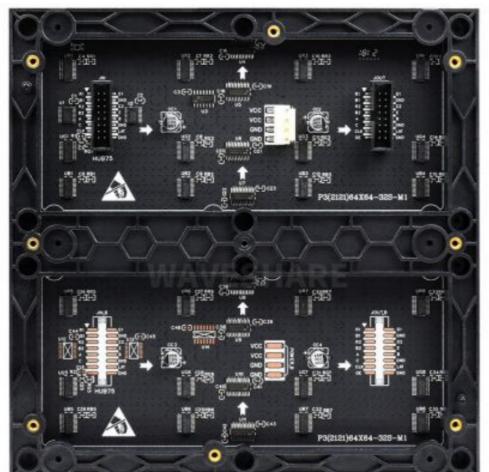
This product is a 64×64 full-color LED matrix panel with 4096 RGB LEDs onboard and 3mm pitch, which supports Raspberry Pi and Arduino, etc. It provides supporting open-source demos and tutorials, suitable for makers or electronics Enthusiasts to start learning, or DIY secondary development into other desktop or wall-

mounted display applications.

Features

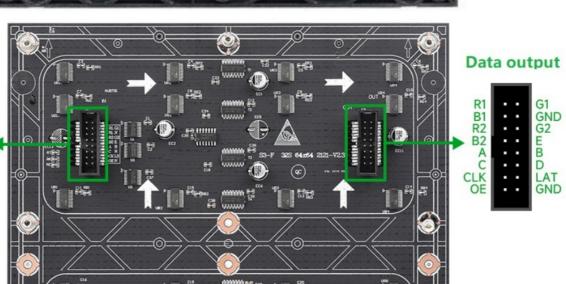
- 4096 individual RGB LEDs, full-color display, adjustable brightness.
- 64 × 64 pixels, 3mm pitch, allows displaying text, colorful images, or animation.
- 192 × 192mm dimensions, moderate size, suitable for DIY desktop display or wall mount display.
- Onboard two HUB75 headers, one for controller data input, one for output, and chain support.
- Provides open-source development resources and tutorials, for use with Raspberry Pi, Arduino, and so on.

Specifications


DIMENSIONS	192mm × 192mm	
PIXELS	64 × 64=4096 DOTS	
PITCH	3mm	
PIXEL FORM	1R1G1B	
VIEWING ANGLE	≥160°	
CONTROL TYPE	synchronization	
DRIVING	1/32 scan	
HEADER	HUB75E	
POWER SUPPLY	5V / 4A VH4 header input	
POWER	≤20W	

Header Definition

Data input


R1 R2 B2 A C CLK OE G1 GND G2 E B D LAT GND

OUT

GI GND G2

B D LAT GND

PIN	DESCRIPTION	PIN	DESCRIPTION
VCC	5V power input	GND	Ground
R1	R higher bit data	R2	R lower bit data
G1	G higher bit data	G2	G lower bit data
B1	B higher bit data	B2	B lower bit data
А	A line selection	В	B line selection
С	C line selection	D	D line selection
E	E line selection	CLK	clock input
LAT/STB	latch pin	OE	output enable

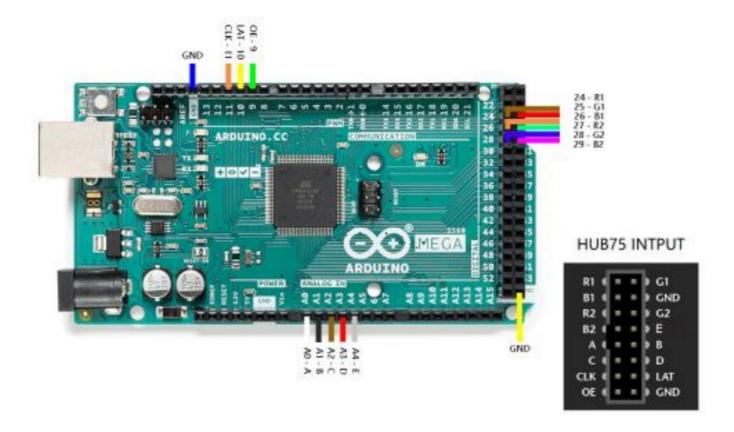
Note: The power supply ports (VCC and GND) of the display screen are 5V power supply, do not connect to other power supply voltages, so as not to burn the display screen.

Usage Scenarios

DIY Maker Desktop Or Wall Mount Display, Signboard, Environment Monitor...

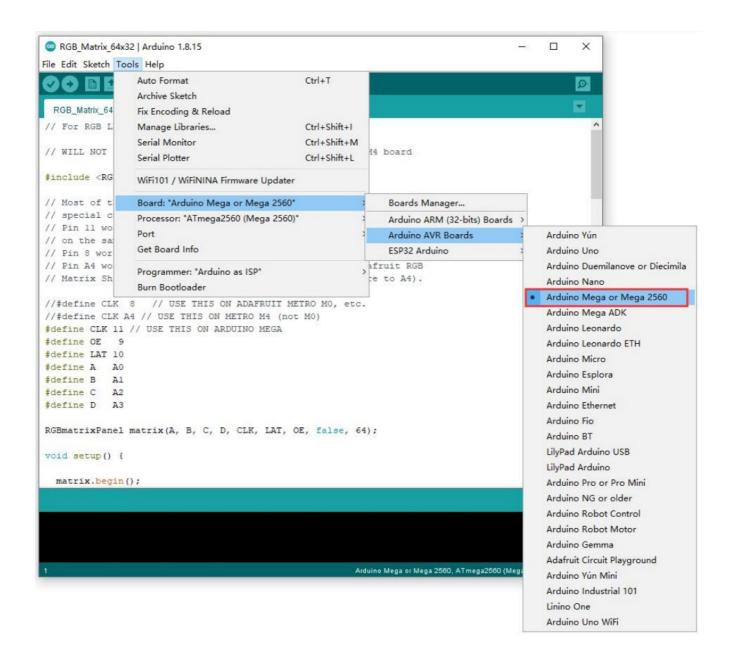
Raspberry Pi Instructions

Please refer to the github information: <u>Demo</u> , <u>wiring reference</u> .


User Guides for Arduino Mega

Hardware Connection

Preparation

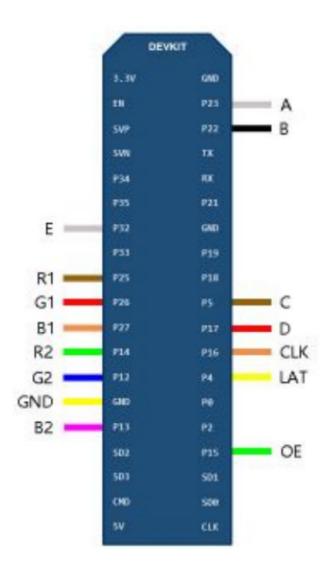

- RGB-Matrix-P3-64×64
- Arduino Mega (please purchase it separately)

Hardware Connection Diagram

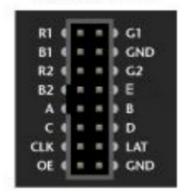
Software Settings

- Download example
- Copy the folder under libraries in AuroraDemo to the libraries in the installation directory of the Arduino IDE
- After connecting the wires according to the hardware connection diagram, the software settings are as follows:

RGB text display


The effect of running the instance is shown in the following figure:

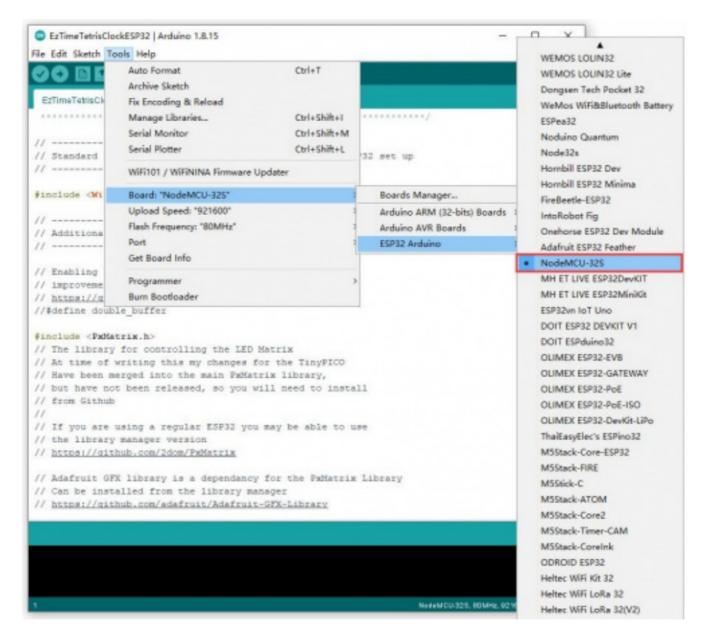
[Function Description]


- UI:
 - Can display icons
 - Can display text content such as text and numbers

Working With ESP32

Hardware Connection

HUB75 INTPUT



Preparation

- RGB-Matrix-P4-64×64
- NodeMCU-32S (not included)

Software Setting

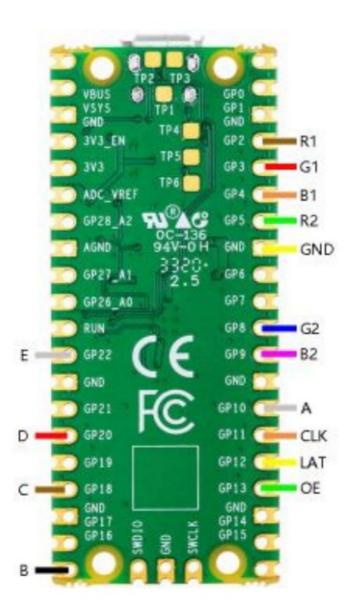
- Download the demo
- Copy the folder under libraries in AuroraDemo to the libraries in the installation directory of the Arduino IDE.
- After connecting the wires according to the hardware connection diagram, the software settings are as follows:

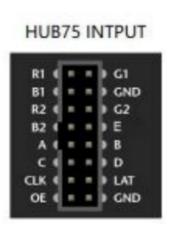
• Note: if you don't have the corresponding board, you can operate as below:

```
Click on file -> add board manager address -> enter: <a href="https://raw.githubusercontent.com/espress">https://raw.githubusercontent.com/espress</a>
```

Perform

```
SimpleTestShapes: Display basic shapes
PatternPlasma: Displays cool plasma patterns
BouncingSquares: Show bouncing squares
AuroraDemo: Simple example showing various animation effects
#There is an open source project on GitHub: ESP32-HUB75-MatrixPanel-I2S-DM
A, which has a more detailed introduction.
```

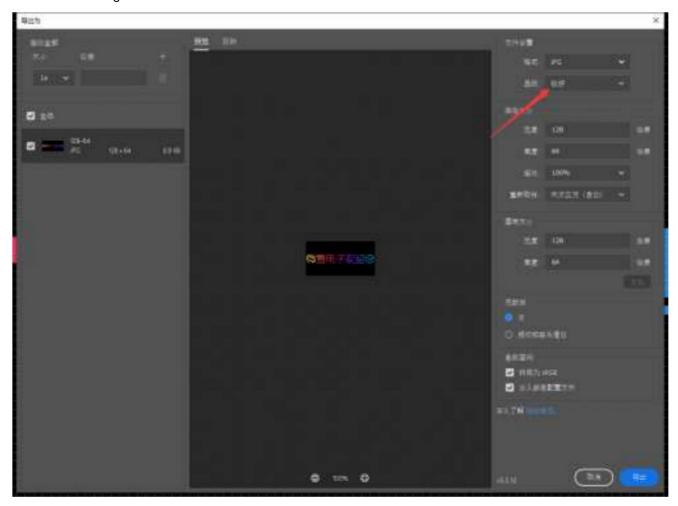

Working With Pico


Hardware Connection

Preparation

- RGB-Matrix-P4-64×64
- Raspberry Pi Pico (It must be purchased separately. If not, it is recommended to buy one with soldered pin headers, which is convenient for wiring.)

Diagram


Software Setting

- Download the demo
- After connecting the wire according to the diagram, you can set the software: environment building

Performance

 After setting up the CircuitPython environment, you can copy all the contents of the CircuitPython directory in the downloaded Pico example to the recognized U flash drive, and you can run the example (there are 16 demos in this code). • The PSD folder is a file in ".psd" format, which can be used to modify the text image that needs to be moved.

The modified image needs to be saved as "Excellent" and the format needs to be converted to BMP format.

Function

- Display text
- · Set scrolling effect

Resources

- <u>Demo Sample</u>
- 2D Drawing
- windows-arduino-1.8.15

Support

If you require technical support, please go to the page and open a ticket.

Documents / Resources

WAVESHARE P3-64x64 RGB Full Color LED Matrix Panel [pdf] Instruction Manual P3-64x64 RGB Full Color LED Matrix Panel, P3-64x64, RGB Full Color LED Matrix Panel, Color LED Matrix Panel, LED Matrix Panel, Matrix Panel, Panel

References

- O rcontent.com
- GitHub hzeller/rpi-rgb-led-matrix: Controlling up to three chains of 64x64, 32x32, 16x32 or similar RGB LED displays using Raspberry Pi GPIO
- Orpi-rgb-led-matrix/wiring.md at master · hzeller/rpi-rgb-led-matrix · GitHub
- W File: Arduino-Mega-hw-connect-RGB-Matrix02.jpg Waveshare Wiki
- Maria File: Arduino-Mega-RGB-Matrix-EN.jpg Waveshare Wiki
- W File:RGB-Matrix-P3-64x32-details-07.jpg Waveshare Wiki
- W File:RGB-Matrix-P3-64x64-2.png Waveshare Wiki
- W File:RGB-Matrix-P3-64x64-details05.jpg Waveshare Wiki
- W File:RGB-Matrix-P3-64x64-F-details-3.jpg Waveshare Wiki
- W File:RGB-Matrix-P3-64x64-F.jpg Waveshare Wiki
- W File:RGB-Matrix-P3-64x642.png Waveshare Wiki
- W File: RGB-Matrix-P4-64x32 ESP32.jpg Waveshare Wiki
- W File:RGB-Matrix-P4-64x32 ESP3202.jpg Waveshare Wiki
- W File:RGB-Matrix-P4-64x32 Pico.jpg Waveshare Wiki
- W File:RGB-Matrix-P4-64x32 Pico02.png Waveshare Wiki
- Waveshare Wiki
- W Pico-CircuitPython-Manual Waveshare Wiki
- W RGB-Matrix-P3-64x64-F Waveshare Wiki
- User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.