
Home » WAVESHARE » Waveshare General 2 Inch LCD Display Module Instruction Manual

Contents
1 Waveshare General 2 Inch LCD Display
Module
2 Product Information
3 Introduction
4 Specifications
5 Interface Description
6 Hardware Description
7 Working with Raspberry Pi

7.1 Install Libraries
7.2 FBCP Porting

8 API Description
9 Using with STM32
10 Program description
11 Arduino Software Description

11.1 Program Description
12 VisionFive2
13 Resources
14 FAQ
15 Documents / Resources

15.1 References

Waveshare General 2 Inch LCD Display Module

Waveshare General 2 Inch LCD Display Module Instruction
Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/waveshare
https://manuals.plus/waveshare/general-2-inch-lcd-display-module-manual.pdf
https://manuals.plus/#waveshare_general_2_inch_lcd_display_module
https://manuals.plus/#product_information
https://manuals.plus/#introduction
https://manuals.plus/#specifications
https://manuals.plus/#interface_description
https://manuals.plus/#hardware_description
https://manuals.plus/#working_with_raspberry_pi
https://manuals.plus/#install_libraries
https://manuals.plus/#fbcp_porting
https://manuals.plus/#api_description
https://manuals.plus/#using_with_stm32
https://manuals.plus/#program_description
https://manuals.plus/#arduino_software_description
https://manuals.plus/#program_description1
https://manuals.plus/#visionfive2
https://manuals.plus/#resources
https://manuals.plus/#faq
https://manuals.plus/#documents_resources
https://manuals.plus/#references

Product Information

Specifications

Operating voltage: 3.3V/5V (Please ensure voltage consistency for proper functionality)

Interface: SPI

LCD type: IPS

Driver: ST7789V

Resolution: 240(V) x 320 (H) RGB

Display size: 30.60H x 40.80V mm

Pixel size: 0.0975H x 0.0975V mm

Dimension: 58 x 35 mm

Frequently Asked Questions

Q: What are the supported platforms for this LCD module?

A: This LCD module provides examples for Raspberry Pi, STM32, and Arduino.

Introduction

This product provides Raspberry Pi, STM32, Arduino examples

Feature

As a 2inch IPS display module with a resolution of 240 * 320, it uses an SPI interface for communication. The

LCD has an internal controller with basic functions, which can be used to draw points, lines, circles, and

rectangles, and display English, Chinese as well as pictures.

We provide complete supporting Raspberry Pi demos (BCM2835 library, WiringPi library, and python demos),

STM32 demos, and Arduino demos.

Specifications

Operating voltage: 3.3V/5V (Please ensure that the power supply voltage and logic voltage are consistent,

otherwise it will not work properly)

Interface: SPI

LCD type: IPS

Driver: ST7789V

Resolution: 240(V) x 320 (H) RGB

Display size: 30.60�H�x 40.80�V�mm

Pixel size: 0.0975�H�x 0.0975�V�mm

Dimension: 58 x 35 (mm)

Interface Description

Raspberry Pi hardware connection

Please connect the LCD to your Raspberry Pi by the 8PIN cable according to the table below
Use the pin header or PH2.0 8PIN interface, you need to connect according to the following table

Connect to Raspberry Pi

The 2inch LCD uses the PH2.0 8PIN interface, which can be connected to the Raspberry Pi according to the
above table: (Please connect according to the pin definition table. The color of the wiring in the picture is for
reference only, and the actual color shall prevail.)

STM32 hardware connection

The example we provide is based on STM32F103RBT6, and the connection method provided is also the
corresponding pin of STM32F103RBT6. If you need to transplant the program, please connect according to the
actual pin.

STM32F103ZET connection pin correspondence

Take the XNUCLEO-F103RB development board developed by our company as an example, the
connection is as follows:

Arduino Hardware Connection

Arduino UNO Connection pin correspondence

The connection diagram is as follows (click to enlarge):

Hardware Description

LCD & Controller

The LCD supports 12-bit, 16-bit, and 18-bit input color formats per pixel, namely RGB444, RGB565, and RGB666
three color formats, this demo uses RGB565 color format, which is also a commonly used RGB format.

For most LCD controllers, the communication mode of the controller can be configured, usually with an 8080
parallel interface, three-wire SPI, four-wire SPI, and other communication methods. This LCD uses a four-wire SPI
communication interface, which can greatly save the GPIO port, and the communication speed will be faster.

Communication Protocol

Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the
device only has display requirement.

RESX: the reset pin, it should be low when powering the module and be higher at other times;

CSX: slave chip select, when CS is low, the chip is enabled.

D/CX: data/command control pin, when DC = 0, write command, when DC = 1, write data

SDA: the data pin for transmitting RGB data, it works as the MOSI pin of SPI interface;

SCL works as the SCLK pins of the SPI interface.

SPI communication has data transfer timing, which is combined by CPHA and CPOL.

CPOL determines the level of the serial synchronous clock at idle state. When CPOL = 0, the level is Low.

However, CPOL has little effect to the transmission.

CPHA determines whether data is collected at the first clock edge or at the second clock edge of serial

synchronous clock; when CPHL = 0, data is collected at the first clock edge.

There are 4 SPI communication modes. SPI0 is commonly used, in which CPHL = 0, CPOL = 0.

Working with Raspberry Pi

Enable SPI interface

PS: If you are using the system of the Bullseye branch, you need to change “apt-get” to “apt”, the system of the
Bullseye branch only supports Python3.

Open the terminal, and use the command to enter the configuration page.

Reboot Raspberry Pi

sudo reboot

Please make sure the SPI is not occupied by other devices, you can check in the middle of/boot/config.txt.

Install Libraries

Install BCM2835 libraries

Install wiringPi libraries

Install Python libraries

Download Examples

Open Raspberry Pi terminal and run the following command

Run the demo codes

Please go into the RaspberryPi directory (demo codes) first and run the commands in terminal

C codes

Re-compile the demo codes

The test program of all screens can be called directly by entering the corresponding size

sudo ./main Screen Size

Depending on the LCD, one of the following commands should be entered:

python

Enter the python program directory and run the command ls -l

Test programs for all screens can be viewed, sorted by size:

0inch96_LCD_test.py: 0.96inch LCD test program

1inch14_LCD_test.py: 1.14inch LCD test program

1inch28_LCD_test.py: 1.28inch LCD test program

1inch3_LCD_test.py: 1.3inch LCD test program

1inch47_LCD_test.py: 1.47inch LCD test program

1inch54_LCD_test.py: 1.54inchLCD test program

1inch8_LCD_test.py: 1.8inch LCD test program

2inch_LCD_test.py: 2inch LCD test program

2inch4_LCD_test.py: 2inch4 LCD test program

Just run the program corresponding to the screen, the program supports python2/3

FBCP Porting

PS: FBCP is currently not compatible with 64-bit Raspberry Pi system, it is recommended to use 32-bit system.

Framebuffer uses a video output device to drive a video display device from a memory buffer containing

complete frame data. Simply put, a memory area is used to store the display content, and the display content

can be changed by changing the data in the memory.

There is an open source project on github: fbcp-ili9341. Compared with other fbcp projects, this project uses

partial refresh and DMA to achieve a speed of up to 60fps

Download Drivers

Method 1: Use a script (recommended)

Here we have written several scripts that allow users to quickly use fbcp and run corresponding commands

according to their own screen

If you use a script and do not need to modify it, you can ignore the second method below.

Note: The script will replace the corresponding /boot/config.txt and /etc/rc.local and restart, if the user needs,
please back up the relevant files in advance.

Method 2: Manual Configuration

Environment Configuration

Raspberry Pi’s vc4-kms-v3d will cause fbcp to fail, so we need to close vc4-kms-v3d before installing it in fbcp.

sudo nano /boot/config.txt

Just block the statement corresponding to the picture below.

A reboot is then required.

sudo reboot

Compile and run

Replace it by yourself according to the LCD Module you use, above cmake [options] ..

Set up to start automatically

sudo cp ~/Waveshare_fbcp/buil

d/fbcp /usr/local/bin/fbcp

sudo nano /etc/rc.local

Add fbcp& before exit 0. Note that you must add “&” to run in the background, otherwise the system may not be

able to start.

Set the Display Resolution

Set the user interface display size in the /boot/config.txt file.

sudo nano /boot/config.txt

Then add the following lines at the end of the config.txt.

Replace the above hdmi_cvt=[options] according to the LCD Module you are using

And then reboot the system

sudo reboot

After rebooting the system, the Raspberry Pi OS user interface will be displayed

API Description

The RaspberryPi series can share a set of programs, because they are all embedded systems, and the

compatibility is relatively strong.

The program is divided into bottom-layer hardware interface, middle-layer LCD screen driver, and upper-layer

application;

Hardware Interface

We have carried out the low-level encapsulation, if you need to know the internal implementation can go to the

corresponding directory to check, for the reason the hardware platform and the internal implementation are

different.

You can open DEV_Config.c(.h) to see definitions,which in the directory RaspberryPi\c\lib\Config.

Data type:

Module initialization and exit processing

GPIO read and write:

void DEV_Digital_Write(UWORD Pin, UBYTE Value);

UBYTE DEV_Digital_Read(UWORD Pin);

SPI write data:

void DEV_SPI_WriteByte(UBYTE Value);

Upper application

If you need to draw pictures or display Chinese and English characters, we provide some basic functions here
about some graphics processing in the directory RaspberryPi\c\lib\GUI\GUI_Paint.c(.h).

The fonts can be found in RaspberryPi\c\lib\Fonts directory

New Image Properties: Create a new image buffer, this property includes the image buffer name, width,

height, flip Angle, and color.

Select image buffer: The purpose of the selection is that you can create multiple image attributes, there can

be multiple images buffer, you can select each image you create.

Image Rotation: Set the rotation Angle of the selected image, preferably after Paint_SelectImage(), you can

choose to rotate 0, 90, 180, 270.

Image mirror flip: Set the mirror flip of the selected image. You can choose no mirror, horizontal mirror, vertical

mirror, or image center mirror.

Set points of the display position and color in the buffer: here is the core GUI function, processing points

display position and color in the buffer.

Image buffer fill color: Fills the image buffer with a color, usually used to flash the screen into blank.

The fill color of a certain window in the image buffer: the image buffer part of the window filled with a

certain color, usually used to fresh the screen into blank, often used for time display, fresh the last second of the

screen.

Draw point: In the image buffer, draw points on (Xpoint, Ypoint), you can choose the color, the size of the

point, the style of the point.

Draw line: In the image buffer, draw line from (Xstart, Ystart) to (Xend, Yend), you can choose the color, the

width and the style of the line.

Draw rectangle: In the image buffer, draw a rectangle from (Xstart, Ystart) to (Xend, Yend), you can choose the

color, the width of the line, whether to fill the inside of the rectangle.

Draw circle: In the image buffer, draw a circle of Radius with (X_Center Y_Center) as the center. You can

choose the color, the width of the line, and whether to fill the inside of the circle.

Write Ascii character: In the image buffer, use (Xstart Ystart) as the left vertex, write an Ascii character, you

can select Ascii visual character library, font foreground color, font background color.

Write English string: In the image buffer, use (Xstart Ystart) as the left vertex, write a string of English

characters, you can choose Ascii visual character library, font foreground color, font background color.

Write Chinese string: in the image buffer, use (Xstart Ystart) as the left vertex, write a string of Chinese

characters, you can choose character font, font foreground color, and font background color of the GB2312

encoding.

Write numbers: In the image buffer,use (Xstart Ystart) as the left vertex, write a string of numbers, you can

choose Ascii visual character library, font foreground color, font background color.

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual

character font, font foreground color, font background color.

Read the local bmp image and write it to the cache.

For Linux operating systems such as Raspberry Pi, you can read and write pictures. For Raspberry Pi, in the
directory: RaspberryPi\c\lib\GUI\GUI_BMPfile.c(.h).

Testing Code for Users

For Raspberry Pi, in the directory: RaspberryPi\c\examples, for all the test code;

If you need to run the 0.96-inch LCD test program, you need to add 0.96 as a parameter when running the main
demo.

Re-execute in Linux command mode as follows:

make clean

make

sudo ./main 0.96

Python (for Raspberry Pi)

Works with python and python3.

For python, his calls are not as complicated as C.

Raspberry Pi: RaspberryPi\python\lib\

lcdconfig.py

Module initialization and exit processing

GPIO read and write:

def digital_write(pin, value)

def digital_read(pin)

SPI write data.

def spi_writebyte(data)

xxx_LCD_test.py (xxx indicates the size, if it is a 0.96inch LCD, it is 0inch96_LCD_test.py, and so on)

python is in the following directory:

Raspberry Pi: RaspberryPi\python\examples\

If your python version is python2 and you need to run the 0.96inch LCD test program, reexecute it as follows in
linux command mode:

sudo python 0inch96_LCD_test.py

If your python version is python3 and you need to run the 0.96inch LCD test program, reexecute the following in
linux command mode:

sudo python3 0inch96_LCD_test.py

About Rotation Settings

If you need to set the screen rotation in the python program, you can set it by the statement im_r=
image1.rotate(270).

im_r= image1.rotate(270)

Rotation effect, take 1.54 as an example, the order is 0°, 90°, 180°, 270°

GUI Functions

Python has an image library PIL official library link , it does not need to write code from the logical layer like C and
can directly call to the image library for image processing. The following will take a 1.54-inch LCD as an example,
we provide a brief description of the demo.

It needs to use the image library and install the library

sudo apt-get install python3-pil

And then import the library

from PIL import Image,ImageDraw,ImageFont.

Among them, Image is the basic library, ImageDraw is the drawing function, and ImageFont is the text function.

Define an image cache to facilitate drawing, writing, and other functions on the picture

image1 = Image.new(“RGB”, (disp.width, disp.height), “WHITE”)

The first parameter defines the color depth of the image, which is defined as “1” to indicate the bitmap of one-bit
depth. The second parameter is a tuple that defines the width and height of the image. The third parameter
defines the default color of the buffer, which is defined as “WHITE”.

Create a drawing object based on Image1 on which all drawing operations will be performed on here.

draw = ImageDraw.Draw(image1)

Draw a line.

draw.line([(20, 10),(70, 60)], fill = “RED”,width = 1)

The first parameter is a four-element tuple starting at (0, 0) and ending at (127,0). Draw a line. Fill =”0″ means the
color of the line is white.

Draw a rectangle

draw.rectangle([(20,10),(70,60)],fill = “WHITE”,outline=”BLACK”)

The first argument is a tuple of four elements. (20,10) is the coordinate value in the upper left corner of the
rectangle, and (70,60) is the coordinate value in the lower right corner of the rectangle. Fill =” WHITE” means
BLACK inside, and outline=”BLACK” means the color of the outline is black.

Draw a circle

draw.arc((150,15,190,55),0, 360, fill =(0,255,0)

Draw an inscribed circle in the square, the first parameter is a tuple of 4 elements, with (150, 15) as the upper left
corner vertex of the square, (190, 55) as the lower right corner vertex of the square, specifying the level median
line of the rectangular frame is the angle of 0 degrees, the second parameter indicates the starting angle, the third
parameter indicates the ending angle, and fill = 0 indicates that the color of the line is white. If the figure is not
square according to the coordination, you will get an ellipse. Besides the arc function, you can also use the chord
function for drawing a solid circle.

draw.ellipse((150,65,190,105), fill = 0)

The first parameter is the coordination of the enclosing rectangle. The second and third parameters are the
beginning and end degrees of the circle. The fourth parameter is the fill color of the circle.

Character.

The ImageFont module needs to be imported and instantiated:

Font1 = ImageFont.truetype(“../Font/Font01.ttf”,25)

Font2 = ImageFont.truetype(“../Font/Font01.ttf”,35)

Font3 = ImageFont.truetype(“../Font/Font02.ttf”,32)

You can use the fonts of Windows or other fonts which is in ttc format..

Note: Each character library contains different characters; If some characters cannot be displayed, it is
recommended that you can refer to the encoding set ro used. To draw English characters, you can directly use the
fonts; for Chinese characters, you need to add a symbol u:

draw.text((40, 50), ‘WaveShare’, fill = (128,255,128),font=Font2)

text= u”����”

draw.text((74, 150),text, fill = “WHITE”,font=Font3)

The first parameter is a tuple of 2 elements, with (40, 50) as the left vertex, the font is Font2, and the fill is the font
color. You can directly make fill = “WHITE”, because the regular color value is already defined Well, of course, you
can also use fill = (128,255,128), the parentheses correspond to the values of the three RGB colors so that you
can precisely control the color you want. The second sentence shows Micro Snow Electronics, using Font3, the
font color is white.

read local image

image = Image.open(‘../pic/LCD_1inch28.jpg’)

The parameter is the image path.

Other functions

For more information, you can refer to http://effbot.org/imagingbook pil

Using with STM32

Software description

The demo is developed based on the HAL library. Download the demo, find the STM32 program file directory,

and open the LCD_demo.uvprojx in the STM32\STM32F103RBT6\MDK-ARM directory to check the program.

http://effbot.org/imagingbook

Open main.c, you can see all the test programs, remove the comments in front of the test programs on the

corresponding screen, and recompile and download.

LCD_0in96_test() 0.96inch LCD test program

LCD_1in14_test() 1.14inch LCD test program

LCD_1in28_test() 1.28inch LCD test program

LCD_1in3_test() 1.3 inch LCD test program

LCD_1in54_test() 1.54inch LCD test program

LCD_1in8_test() 1.8inch LCD test program

LCD_2in_test() 2inch LCD test program

Program description

Underlying hardware interface

Data type

#define / UBYTE / uint8_t

#define / UWORD / uint16_t

#define / UDOUBLE / uint32_t

Module initialization and exit processing

Write and read GPIO

void / DEV_Digital_Write(UWORD Pin, UBYTE Value);

UBYTE / DEV_Digital_Read(UWORD Pin);

SPI write data

UBYTE / SPI4W_Write_Byte(uint8_t value);

The upper application

For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you
can use the upper application to do, and we provide some basic functions here about some graphics processing in
the directory STM32\STM32F103RB\User\GUI_DEV\GUI_Paint.c(.h)

Note: Because of the size of the internal RAM of STM32 and arduino, the GUI is directly written to the RAM of the
LCD.

The character font which GUI dependent is in the directory STM32\STM32F103RB\User\Fonts

New Image Properties: Create a new image property, this property includes the image buffer name, width,

height, flip Angle, color.

Set the clear screen function, usually call the clear function of LCD directly

Set the drawing pixel function

Select image buffer: the purpose of the selection is that you can create multiple image attributes, image buffer
can exist multiple, you can select each image you create

Image Rotation: Set the selected image rotation Angle, preferably after Paint_SelectImage(), you can choose to
rotate 0, 90, 180, 270.

Image mirror flip: Set the mirror flip of the selected image. You can choose no mirror,horizontal mirror, vertical
mirror, or image center mirror.

Set points of display position and color in the buffer: here is the core GUI function, processing points display
position and color in the buffer.

Image buffer fill color: Fills the image buffer with a color, usually used to flash the screen into blank.

Image buffer part of the window filling color: the image buffer part of the window filled with a certain color,
generally as a window whitewashing function, often used for time display, whitewashing on a second

Draw points: In the image buffer, draw points on (Xpoint, Ypoint), you can choose the color, the size of the point,
the style of the point.

Line drawing: In the image buffer, line from (Xstart, Ystart) to (Xend, Yend), you can choose the color, line width,
line style.

Draw rectangle: In the image buffer, draw a rectangle from (Xstart, Ystart) to (Xend, Yend), you can choose the
color, the width of the line, whether to fill the inside of the rectangle.

Draw circle: In the image buffer, draw a circle of Radius with (X_Center Y_Center) as the center. You can choose
the color, the width of the line, and whether to fill the inside of the circle.

Write Ascii character: In the image buffer, at (Xstart Ystart) as the left vertex, write an Ascii character, you can
select Ascii visual character library, font foreground color, font background color.

Write English string: In the image buffer, use (Xstart Ystart) as the left vertex, write a string of English characters,

can choose Ascii visual character library, font foreground color, font background color.

Write Chinese string: in the image buffer, use (Xstart Ystart) as the left vertex, write a string of Chinese
characters, you can choose GB2312 encoding character font, font foreground color, font background color.

Write numbers: In the image buffer,use (Xstart Ystart) as the left vertex, write a string of numbers, you can
choose Ascii visual character library, font foreground color, font background color.

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual
character font, font foreground color, font background color.

Arduino Software Description

Note: The demos are all tested on Arduino uno. If you need other types of Arduino, you need to determine
whether the connected pins are correct.

Arduino IDE Installation Steps

Arduino IDE Installation Steps

https://www.waveshare.com/wiki/Template:Arduino_IDE_Installation_Steps

Run program

In the product encyclopedia interface download the program , and then unzip it. The Arduino program is located at
~/Arduino/…

Please select the corresponding program according to the LCD screen model to open

You can view test programs for all screen sizes, sorted by size:

For example, 1.54inch LCD Module. Open the LCD_1inch54 folder and run the LCD_1inch54.ino file.

Open the program, select the development board model Arduino UNO

Select the corresponding COM port

Then click to compile and download

Program Description

Document Introduction

Take Arduino UNO controlling a 1.54-inch LCD as an example, open the Arduino\LCD_1inch54 directory:

Of which:

LCD_1inch54.ino: open with Arduino IDE;

LCD_Driver.cpp(.h): is the driver of the LCD screen;

DEV_Config.cpp(.h): It is the hardware interface definition, which encapsulates the read and write pin levels,

SPI transmission data, and pin initialization;

font8.cpp, font12.cpp, font16.cpp, font20.cpp, font24.cpp, font24CN.cpp, fonts.h: fonts for characters of different

sizes;

image.cpp(.h): is the image data, which can convert any BMP image into a 16-bit true color image array

through Img2Lcd (downloadable in the development data).

The program is divided into bottom-layer hardware interface, middle-layer LCD screen driver, and upper-layer

application;

Underlying Hardware Interface

The hardware interface is defined in the two files DEV_Config.cpp(.h), and functions such as read and write pin
level, delay, and SPI transmission are encapsulated.

write pin level

void DEV_Digital_Write(int pin, int value)

The first parameter is the pin, and the second is the high and low level.

Read pin level

int DEV_Digital_Read(int pin)

The parameter is the pin, and the return value is the level of the read pin.

Delay

DEV_Delay_ms(unsigned int delaytime)

millisecond level delay.

SPI output data

DEV_SPI_WRITE(unsigned char data)

The parameter is char type, occupying 8 bits.

The Upper Application

For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you
can use the upper application to do, and we provide some basic functions here about some graphics processing in
the directory GUI_Paint.c(.h)

Note: Because of the size of the internal RAM of STM32 and Arduino, the GUI is directly written to the RAM of the
LCD.

The fonts used by the GUI all depend on the font*.cpp(h) files under the same file

New Image Properties: Create a new image property, this property includes the image buffer name, width,

height, flip Angle, and color.

Set the clear screen function, usually call the clear function of LCD directly.

Set the drawing pixel function.

Select image buffer: the purpose of the selection is that you can create multiple image attributes, image

buffers can exist multiple, and you can select each image you create.

Image Rotation: Set the selected image rotation Angle, preferably after Paint_SelectImage(), you can choose

to rotate 0, 90, 180, 270.

Image mirror flip: Set the mirror flip of the selected image. You can choose no mirror, horizontal mirror, vertical

mirror, or image center mirror.

Set points of display position and color in the buffer: here is the core GUI function, processing points

display position and color in the buffer.

Image buffer fill color: Fills the image buffer with a color, usually used to flash the screen into blank.

Draw points: In the image buffer, draw points on (Xpoint, Ypoint), you can choose the color, the size of the

point, the style of the point.

Line drawing: In the image buffer, line from (Xstart, Ystart) to (Xend, Yend), you can choose the color, line

width, line style.

Draw rectangle: In the image buffer, draw a rectangle from (Xstart, Ystart) to (Xend, Yend), you can choose the

color, the width of the line, whether to fill the inside of the rectangle.

Draw circle: In the image buffer, draw a circle of Radius with (X_Center Y_Center) as the center. You can

choose the color, the width of the line, and whether to fill the inside of the circle.

Write Ascii character: In the image buffer, at (Xstart Ystart) as the left vertex, write an Ascii character, you can

select Ascii visual character library, font foreground color, font background color.

Write English string: In the image buffer, use (Xstart Ystart) as the left vertex, write a string of English

characters, can choose Ascii visual character library, font foreground color, font background color.

Write Chinese string: in the image buffer, use (Xstart Ystart) as the left vertex, write a string of Chinese

characters, you can choose GB2312 encoding character font, font foreground color, font background color.

Write numbers: In the image buffer,use (Xstart Ystart) as the left vertex, write a string of numbers, you can

choose Ascii visual character library, font foreground color, font background color.

Write numbers with decimals: at (Xstart Ystart) as the left vertex, write a string of numbers with decimals, you

can choose Ascii code visual character font, font foreground color, font background color

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual

character font, font foreground color, font background color.

Display image: at (Xstart Ystart) as the left vertex, display an image whose width is W_Image and height is

H_Image;

VisionFive2

Adaptive Model

0.96inch LCD Module

1.14inch LCD Module

1.28inch LCD Module

1.3inch LCD Module

1.54inch LCD Module

1.8inch LCD Module

2inch LCD Module

2.4inch LCD Module

Hardware Connection

https://www.waveshare.com/0.96inch-lcd-module.htm
https://www.waveshare.com/1.14inch-lcd-module.htm
https://www.waveshare.com/1.28inch-lcd-module.htm
https://www.waveshare.com/1.3inch-lcd-module.htm
https://www.waveshare.com/1.54inch-lcd-module.htm
https://www.waveshare.com/1.8inch-lcd-module.htm
https://www.waveshare.com/2inch-lcd-module.htm
https://www.waveshare.com/2.4inch-lcd-module.htm

VisionFive2 Pin Connection

Install Corresponding Libraries

Demo Download

Run the Corresponding Demo According to the Screen You Purchased

Resources

Document

Schematic

Datasheet

2inch_LCD_Module Manual

Software

cd

Image2Lcd

Demo codes

Demo codes

3D Drawing

2inch LCD Module 3D drawing

FAQ

‘Question:’ 1. The LCD keeps black when using it with Raspberry Pi?

Answer:

https://www.waveshare.com/w/upload/e/ee/2inch_LCD_Module_SchDoc.pdf
https://www.waveshare.com/w/upload/a/ad/ST7789VW.pdf
https://www.waveshare.net/w/upload/b/b1/2inch_LCD_Module.pdf
https://www.waveshare.com/w/upload/7/78/LcmZimo.zip
https://www.waveshare.com/wiki/File:Image2Lcd2.9.zip
https://www.waveshare.com/w/upload/e/e9/LCD_Module_code.7z
https://www.waveshare.com/w/upload/9/93/2inch_LCD_Module_3D_Drawing.zip

Please check that if you have enabled SPI interface

Check BL pin, if BL pin has no output value, you can try to disconnect BL pin and test it again.

‘Question:’ 2. The python codes has error? Answer:

Please install image libraries and test it again. Run command: sudo apt-get install pythonimaging to install it

and test again.

‘Question:’ 3.Why doesn’t the screen display properly when connected to an Arduino?

Answer:

When using an Arduino, please make sure it is plugged into a 5v power supply.

‘Question:’4.Incorrect use of Raspberry Pi controls may cause?

Answer:

If running the wiringPi demo is normal, then running python or BCM2835 may cause the screen to fail to refresh
normally, because the bcm2835 library is a library function of the Raspberry Pi cpu chip, and the bottom layer is to
directly operate the registers, while the bottom layer of the wiringPi library and python are read and written by
reading and writing. The device file of the linux system operates the device, which may cause the GPIO port to be
abnormal. Restarting the Raspberry Pi can solve it perfectly.

‘Question:’5.How to flip the image?

Answer:

C language control can use the function Paint_SetRotate(Rotate); But the flip angle in C language can only be

0, 90, 180, 270 degrees; Python can call rotate(Rotate) to flip any angle.

‘Question:’6.What is the maximum power consumption of the 2inch LCD Module?

Answer:

3.3V 46mA

Support

If you require technical support, please go to the page and open a ticket.

Documents / Resources

Waveshare General 2 Inch LCD Display Module [pdf] Instruction Manual
General 2 Inch LCD Display Module, General, 2 Inch LCD Display Module, LCD Display
Module, Display Module, Module

https://manuals.plus/m/461083a70abe451835f8641d1830bc61b875ebe1a0c0b80b2fa09415244a541f_optim.pdf

References

 airspayce.com/mikem/bcm2835/bcm2835-1.71.tar.gz

 GitHub - WiringPi/WiringPi: The arguably fastest GPIO Library for the Raspberry Pi

 project-downloads.drogon.net/wiringpi-latest.deb

 0.96inch LCD display Module, IPS screen, 160x80 HD resolution, SPI interface

 1.14inch LCD Display Module, IPS Screen, 65K RGB Colors, 240×135 Resolution, SPI Interface

 1.28inch Round LCD Display Module, 65K RGB Colors, 240×240 Resolution, SPI Interface

 1.3inch LCD display Module, IPS screen, 240x240 HD resolution, SPI interface

 1.54inch LCD Display Module, IPS Screen, 65K RGB Colors, 240×240 Resolution, SPI Interface

 1.8inch LCD display Module, 128x160 pixels, SPI interface

 2.4inch LCD Display Module, 65K RGB Colors, 240×320 Resolution, SPI Interface

 2inch LCD Display Module, IPS Screen, 240×320 Resolution, SPI Interface

 File:0.96inch lcd module spi.png - Waveshare Wiki

 File:1.28inch LCD Arduino.png - Waveshare Wiki

https://manuals.plus/m/461083a70abe451835f8641d1830bc61b875ebe1a0c0b80b2fa09415244a541f
http://www.airspayce.com/mikem/bcm2835/bcm2835-1.71.tar.gz
https://github.com/WiringPi/WiringPi
https://project-downloads.drogon.net/wiringpi-latest.deb
https://www.waveshare.com/0.96inch-lcd-module.htm
https://www.waveshare.com/1.14inch-lcd-module.htm
https://www.waveshare.com/1.28inch-lcd-module.htm
https://www.waveshare.com/1.3inch-lcd-module.htm
https://www.waveshare.com/1.54inch-lcd-module.htm
https://www.waveshare.com/1.8inch-lcd-module.htm
https://www.waveshare.com/2.4inch-lcd-module.htm
https://www.waveshare.com/2inch-lcd-module.htm
https://www.waveshare.com/wiki/File:0.96inch_lcd_module_spi.png
https://www.waveshare.com/wiki/File:1.28inch_LCD_Arduino.png

 File:1in3 lcd fb5.png - Waveshare Wiki

 File:2-Aduino.jpg - Waveshare Wiki

 File:2-rpi.jpg - Waveshare Wiki

 File:2-STM32.jpg - Waveshare Wiki

 File:2inch LCD Module fbcp02.png - Waveshare Wiki

 File:2inch-LCD-Module-6.jpg - Waveshare Wiki

 File:FBCP CLOSE.jpg - Waveshare Wiki

 File:LCD arduino cede1.png - Waveshare Wiki

 File:LCD arduino cede3.png - Waveshare Wiki

 File:LCD arduino cede4.png - Waveshare Wiki

 File:LCD arduino cede5.png - Waveshare Wiki

 File:LCD arduino ide codeDescription font.png - Waveshare Wiki

 File:LCD arduino ide codeDescription GUI.png - Waveshare Wiki

 File:LCD arduino ide codeDescription1.png - Waveshare Wiki

 File:LCD Rotate.jpg - Waveshare Wiki

 File:LCD rpi c examples&128.png - Waveshare Wiki

 File:LCD rpi Font.png - Waveshare Wiki

 File:LCD rpi GUI.png - Waveshare Wiki

 File:LCD rpi python examples.png - Waveshare Wiki

 File:LCD rpi python examples2.png - Waveshare Wiki

 File:LCD rpi python lib.png - Waveshare Wiki

 File:LCD STM32 CODE1.png - Waveshare Wiki

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://www.waveshare.com/wiki/File:1in3_lcd_fb5.png
https://www.waveshare.com/wiki/File:2-Aduino.jpg
https://www.waveshare.com/wiki/File:2-rpi.jpg
https://www.waveshare.com/wiki/File:2-STM32.jpg
https://www.waveshare.com/wiki/File:2inch_LCD_Module_fbcp02.png
https://www.waveshare.com/wiki/File:2inch-LCD-Module-6.jpg
https://www.waveshare.com/wiki/File:FBCP_CLOSE.jpg
https://www.waveshare.com/wiki/File:LCD_arduino_cede1.png
https://www.waveshare.com/wiki/File:LCD_arduino_cede3.png
https://www.waveshare.com/wiki/File:LCD_arduino_cede4.png
https://www.waveshare.com/wiki/File:LCD_arduino_cede5.png
https://www.waveshare.com/wiki/File:LCD_arduino_ide_codeDescription_font.png
https://www.waveshare.com/wiki/File:LCD_arduino_ide_codeDescription_GUI.png
https://www.waveshare.com/wiki/File:LCD_arduino_ide_codeDescription1.png
https://www.waveshare.com/wiki/File:LCD_Rotate.jpg
https://www.waveshare.com/wiki/File:LCD_rpi_c_examples%2526128.png
https://www.waveshare.com/wiki/File:LCD_rpi_Font.png
https://www.waveshare.com/wiki/File:LCD_rpi_GUI.png
https://www.waveshare.com/wiki/File:LCD_rpi_python_examples.png
https://www.waveshare.com/wiki/File:LCD_rpi_python_examples2.png
https://www.waveshare.com/wiki/File:LCD_rpi_python_lib.png
https://www.waveshare.com/wiki/File:LCD_STM32_CODE1.png
https://manual.tools/?p=12883765#MTA0LjI4LjIzNC4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	Waveshare General 2 Inch LCD Display Module Instruction Manual
	Waveshare General 2 Inch LCD Display Module
	Product Information
	Introduction
	Specifications
	Interface Description
	Hardware Description
	Working with Raspberry Pi
	Install Libraries
	FBCP Porting

	API Description
	Using with STM32
	Program description
	Arduino Software Description
	Program Description

	VisionFive2
	Resources
	FAQ
	Documents / Resources
	References

