
Home » VHDLwhiz » VHDLwhiz VHDL Registers UART Test Interface Generator User Manual

VHDLwhiz.com
VHDL registers UART test interface generator – User manual

Version: 1.0.0
Date: September 1, 2023
Author: Jonas Julian Jensen
Product URL: https://vhdlwhiz.com/product/vhdl-registers-uart-test-interfacegenerator
Contact email: jonas@vhdlwhiz.com
This document describes using VHDLwhiz’s UART test interface generator to produce a custom VHDL module
and Python script for reading and writing FPGA register values.

VHDLwhiz VHDL Registers UART Test Interface Generator
User Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/vhdlwhiz
https://manuals.plus/vhdlwhiz/vhdl-registers-uart-test-interface-generator-manual.pdf
http://vhdlwhiz.com
https://vhdlwhiz.com/product/vhdl-registers-uart-test-interfacegenerator
mailto:jonas@vhdlwhiz.com

Contents
1 License
2 Changelog
3 Description
4 Requirements
5 Protocol
6 Generated files
7 Setting the UART port
8 Writing to registers
9 Debugging
10 Using the interface in other Python
scripts
11 Static RTL files
12 Demo projects
13 Implementation
14 Documents / Resources

14.1 References

License

The MIT license covers the source code’s copyright requirements and terms of use.
Refer to the LICENSE.txt file in the Zip file for details.

Changelog

These changes refer to the project files, and this document is updated accordingly.

Version Remarks

1.0.0 Initial release

Description

This document describes the following files and folders:

gen_uart_regs.py

generated/uart_regs.vhd

generated/uart_regs.py

generated/instantiation_template.vho

rtl/uart_regs_backend.vhd

rtl/uart_rx.vhd

rtl/uart_tx.vhd

demo/lattice_icestick/

demo/xilinx_arty_a7_35/

demo/xilinx_arty_s7_50/

The gen_uart_regs.py script and supporting VHDL files in this project allow you to generate custom interfaces
for reading and writing FPGA register values of various types and widths using UART.
You can use the generated VHDL module and Python script to read from or write to any number of registers in

http://gen_uart_regs.py
http://gen_uart_regs.py

your design. The UART accessible registers can have the types std_logic, std_logic_vector, signed, or unsigned.
You can decide on the precise composition of input and output registers and types when generating the output
files using the gen_uart_regs.py script.
The Python scripts were created partially with the help of the ChatGPT artificial intelligence tool, while the VHDL
code is handcrafted.

Requirements

The scripts in this project must be run through a Python 3 interpreter and the Pyserial package must be installed.
You can install Pyserial through Pip using this command: pip install pyserial

Protocol

The VHDL files and Python script uses a data framing protocol with four control characters:

Name Value Comment

READ REQ OxOA Command from the host to the FPGA to initiate a write sequence to send
all registers back over UART

START_WRITE Ox0B Marks the beginning of a write sequence in either direction

END_WRITE OxOC Marks the end of a write sequence in either direction

ESCAPE OxOD
Escape character used for escaping any of the control words, including the
ESCAPE character itself, when they appear as data between the START_
WRITE and END_WRITE markers.

Any unescaped READ_REQ byte sent to the FPGA is an instruction to send all of its UART-accessible registers
(inputs and outputs) back to the host over UART. This command is usually only issued by the uart_regs.py script.
Upon receiving this command, the FPGA will respond by sending the content of all registers back to the host.
First, the input signals, then the output signals. If their lengths don’t add up to a multiple of 8 bits, the lower bits of
the last byte will be padded zeros.
A write sequence always starts with the START_WRITE byte and ends with the END_WRITE byte. Any bytes
between those are considered to be data bytes. If any data bytes have the same value as a control character, the
data byte must be escaped. This means sending an extra ESCAPE character before the data byte to indicate that
it’s actually data.
If an unescaped START_WRITE arrives anywhere in the stream of bytes, it is considered the start of a write
sequence. The uart_regs_backend module uses this information to resynchronize in case the communication gets
out of sync.

gen_uart_regs.py

This is the script you must start with to generate the interface. Below is a screenshot of the help menu that you
can get by running: python gen_uart_regs.py -h

http://gen_uart_regs.py

To generate a custom interface, you must run the script with each of your desired UART controllable registers
listed as arguments. The available types are std_logic, std_logic_vector, unsigned, and signed.
The default mode (direction) is in and the default type is std_logic_vector unless the register is of length: 1. Then,
it will default to std_logic.
Thus, if you want to create a std_logic input signal, you can use any of these arguments:
my_sl=1
my_sl=1:in
my_sl=1:in:std_logic
All of the above variants will result in the script generating this UART-accessible signal:

Let’s run the script with arguments to generate an interface with several registers of different directions, lengths,
and types:

Generated files

A successful run of the gen_uart_regs.py script will produce an output folder named generated with the three files
listed below. If they already exist, they will be overwritten.

generated/uart_regs.vhd

generated/uart_regs.py

generated/instantiation_template.vho

uart_regs.vhd
This is the custom interface module generated by the script. You need to instantiate it in your design, where it can
access the registers you want to control using UART.
Everything above the “– UART accessible registers” section will be identical for every uart_regs module, while the
composition of port signals below that line depends on the arguments given to the generator script.
The listing below shows the entity for the uart_regs module resulting from the generate command example shown
in the gen_uart_regs.py section.

http://gen_uart_regs.py.

You do not need to synchronize the uart_rx signal, as that’s handled in the uart_rx. module.
When the module receives a read request, it will capture the values of all input and output signals within the
current clock cycle. The instantaneous snapshot is then sent to the host over UART.
When a write happens, all output registers are updated with the new values within the same clock cycle. It is not
possible to change output signal values individually.
However, the uart_regs.py script allows the user to update only selected outputs by first reading back the current
values of all registers. It then writes back all values, including the updated ones.

uart_regs.py
The generated/uart_regs.py file is generated together with the uart_regs VHDL module and contains the custom
register information in the header of the file. With this script, you can read from or write to your custom registers
with ease.
Help menu
Type python uart_regs.py -h to print the help menu:

http://uart_regs.py

Setting the UART port

The script has options to set the UART port using the -c switch. This works on Windows and Linux. Set it to one of
the available ports listed in the help menu. To set a default port, you can also edit the UART_PORT variable in the
uart_regs.py script.
Listing registers
Information about the register mapping is placed in the header of the uart_regs.py script by the gen_uart_regs.py
script. You can list the available registers with the -l switch, as seen below. This is a local command and will not
interact with the target FPGA.

Writing to registers

You can write to any of the out mode registers by using the -w switch. Supply the register name followed by “=”
and the value given as a binary, hexadecimal, or decimal value, as shown below.

Note that the VHDL implementation requires the script to write all output registers simultaneously. Therefore, if
you don’t specify a complete set of output registers, the script will first perform a read from the target FPGA and
then use those values for the missing ones. The result will be that only the specified registers change.

When you perform a write, all specified registers will change during the same clock cycle, not as soon as they are
received over UART.

Reading registers
Use the -r switch to read all register values, as shown below. The values marked in yellow are the ones we
changed in the previous write example.

Every read shows an instantaneous snapshot of all input and output registers. They are all sampled during the
same clock cycle.

Debugging

Use the -d switch with any of the other switches if you need to debug the communication protocol. Then, the script
will print out all sent and received bytes and tag them if they are control characters, as shown below.

Using the interface in other Python scripts

The uart_regs.py script contains a UartRegs class that you can easily use as the communication interface in other
custom Python scripts. Simply import the class, create an object of it, and start using the methods, as shown
below.

Refer to the docstrings in the Python code for method and descriptions and return value types.

instantiation_template.vho
The instantiation template is generated along with the uart_regs module for your convenience. To save coding
time, you can copy the module instantiation and signal declarations into your design.

Static RTL files

You need to include the following files in your VHDL project so that they are compiled into the same library as the
uart_regs module:

rtl/uart_regs_backend.vhd

rtl/uart_rx.vhd

rtl/uart_tx.vhd

The uart_regs_backend module implements the finite-state machines that clock in and out the register data. It
uses the uart_rx and uart_tx modules to handle the UART communication with the host.

Demo projects

There are three demo projects included in the Zip file. They let you control the peripherals on the different boards
as well as a few larger, internal registers.
The demo folders include pre-generated uart_regs.vhd and uart_regs.py files made specifically for those designs.

Lattice iCEstick
The demo/icecube2_icestick folder contains a register access demo implementation for the Lattice iCEstick FPGA
board.
To run through the implementation process, open the demo/lattice_icestick/icecube2_proj/uart_regs_sbt.project
file in the Lattice iCEcube2 design software.
After loading the project in the iCEcube2 GUI, click Tools →Run All to generate the programming bitmap file.
You can use the Lattice Diamond Programmer Standalone tool to configure the FPGA with the generated bitmap
file. When Diamond Programmer opens, click Open an existing programmer project in the welcome dialog box.
Select project file found in the Zip: demo/lattice_icestick/diamond_programmer_project.xcf and click OK.

After the project loads, click the three dots in the File Name column, as shown above. Browse to select the bitmap
file that you generated in
iCEcube2: demo/lattice_icestick/icecube2_proj/uart_regs_Implmnt/sbt/outputs/bitmap/top_ice stick_bitmap.bin
Finally, with the iCEstick board plugged into a USB port on your computer, select Design→Program to program
the SPI flash and configure the FPGA.
You can now proceed to read and write registers by using the demo/lattice_icestick/uart_regs.py script as
described in the uart_regs.py section.

Xilinx Digilent Arty A7-35T

You can find the demo implementation for the Artix-7 35T Arty FPGA evaluation kit in the demo/arty_a7_35 folder.
Open Vivado and navigate to the extracted files using the Tcl console found at the bottom of the GUI interface.
Type this command to enter the demo project folder: cd <zip_content>/demo/arty_a7_35/vivado_proj/
Execute the create_vivado_proj.tcl Tcl script to regenerate the Vivado project: source ./create_vivado_proj.tcl
Click Generate Bitstream in the sidebar to run through all the implementation steps and generate the
programming bitstream file.
Finally, click Open Hardware Manager and program the FPGA through the GUI.
You can now proceed to read and write registers by using the demo/arty_a7_35/uart_regs.py script as described
in the uart_regs.py section.

Xilinx Digilent Arty S7-50
You can find the demo implementation for the Arty S7: Spartan-7 FPGA development board in the
demo/arty_s7_50 folder.
Open Vivado and navigate to the extracted files using the Tcl console found at the bottom of the GUI interface.
Type this command to enter the demo project folder: cd <zip_content>/demo/arty_s7_50/vivado_proj/
Execute the create_vivado_proj.tcl Tcl script to regenerate the Vivado project: source ./create_vivado_proj.tcl
Click Generate Bitstream in the sidebar to run through all the implementation steps and generate the
programming bitstream file.
Finally, click Open Hardware Manager and program the FPGA through the GUI.
You can now proceed to read and write registers by using the demo/arty_s7_50/uart_regs.py script as described
in the uart_regs.py section.

Implementation

There are no specific implementation requirements.
Constraints
No specific timing constraints are needed for this design because the UART interface is slow and treated as an
asynchronous interface.
The uart_rx input to the uart_regs module is synchronized within the uart_rx module. Thus, it doesn’t need to be
synchronized in the top-level module.
Known issues

You may need to reset the module before it can be used, depending on whether your FPGA architecture

supports default register values.

Copyright VHDLwhiz.com

Documents / Resources

VHDLwhiz VHDL Registers UART Test Interface Generator [pdf] User Manual
VHDL, VHDL Registers UART Test Interface Generator, Registers UART Test Interface Generat
or, UART Test Interface Generator, Test Interface Generator, Interface Generator, Generator

References

 VHDLwhiz - The best resource for VHDL engineers

 Artix-7 FPGA Development Board - Digilent Arty A7 - Xilinx

 Spartan-7 FPGA Development Board for Hobbyists - Digilent Arty S7 - Xilinx

 Vivado - Wikipedia

 Installation - pip documentation v23.2.1

 pyserial · PyPI

 VHDLwhiz - The best resource for VHDL engineers

 VHDL registers UART test interface generator - VHDLwhiz

 VHDL registers UART test interface generator - VHDLwhiz

 iCEcube2 | FPGA Design Software | Lattice Semiconductor

 iCEstick Evaluation Kit | Lattice Kits & Boards

http://vhdlwhiz.com
https://manuals.plus/m/0b46b3816849ad69aa9b189fb26e1b722bdf8a389aded42d1932f9a75bd41438
https://manuals.plus/m/0b46b3816849ad69aa9b189fb26e1b722bdf8a389aded42d1932f9a75bd41438_optim.pdf
http://vhdlwhiz.com
https://digilent.com/shop/arty-a7-artix-7-fpga-development-board/
https://digilent.com/shop/arty-s7-spartan-7-fpga-development-board/
https://en.wikipedia.org/wiki/Xilinx_Vivado
https://pip.pypa.io/en/stable/installation/
https://pypi.org/project/pyserial/
https://vhdlwhiz.com/
https://vhdlwhiz.com/product/vhdl-registers-uart-test-interface-
https://vhdlwhiz.com/product/vhdl-registers-uart-test-interface-generator
https://www.latticesemi.com/icecube2
https://www.latticesemi.com/icestick

 Lattice Diamond Programmer and Deployment Tool

 Download Python | Python.org

Manuals+,

https://www.latticesemi.com/programmer
https://www.python.org/downloads/
https://manuals.plus/

	VHDLwhiz VHDL Registers UART Test Interface Generator User Manual
	License
	Changelog
	Description
	Requirements
	Protocol
	Generated files
	Setting the UART port
	Writing to registers
	Debugging
	Using the interface in other Python scripts
	Static RTL files
	Demo projects
	Implementation
	Documents / Resources
	References

