
Home » UNIVERSAL ROBOTS » Universal Robots UR10 Medium Sized Versatile Cobot User Guide

Contents
1 Universal Robots UR10 Medium Sized Versatile Cobot
2 Product Usage Instructions
3 Key Features
4 PolyScope GUI
5 URCap Software Platform
6 Controller
7 Flexible Ethernet/IP adapter in URScript – Engineering
Preview
8 Bug Fixes
9 Documents / Resources

9.1 References
10 Related Posts

Universal Robots UR10 Medium Sized Versatile Cobot

Universal Robots UR10 Medium Sized Versatile Cobot User
Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/universal-robots
https://manuals.plus/universal-robots/ur10-medium-sized-versatile-cobot-manual.pdf
https://manuals.plus/#universal_robots_ur10_medium_sized_versatile_cobot
https://manuals.plus/#product_usage_instructions
https://manuals.plus/#key_features
https://manuals.plus/#polyscope_gui
https://manuals.plus/#urcap_software_platform
https://manuals.plus/#controller
https://manuals.plus/#flexible_ethernetip_adapter_in_urscript_-_engineering_preview
https://manuals.plus/#bug_fixes
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

Product Specifications

Software Version: 5.15.0

Supported Robot Models: UR10, UR16, UR20

Control Box Version: 5.5 for e-Series robots

Maximum Tool Force and Elbow Force: 400N

Product Usage Instructions

Payload Transition Time
Users can define a transition time for payload changes to prevent sudden jumps in the robot motion, especially
when handling heavy objects or using a vacuum gripper.

1. Access the Set Payload node in the PolyScope GUI.

2. Set the desired transition time in the input field.

3. Ensure the transition time is greater than zero to enable smoother payload changes.

Max Force for Elbow and Tool
The maximum Tool Force and Elbow Force limits can now be adjusted up to 400N for UR10, UR16, and UR20
models.

1. Navigate to the Robot limits settings in the PolyScope GUI.

2. Update the Tool Force and Elbow Force values as needed.

3. Save the changes to apply the new force limits.

EtherNet/IP and Conveyor Tracking Installation

The installation screens for EtherNet/IP and Conveyor Tracking have been improved for better usability.

1. Follow the on-screen instructions to configure EtherNet/IP or Conveyor Tracking settings.

2. Take note of the layout changes, such as checkbox replacements and improved visuals.

URCap Software Platform Updates
The URCap API and SDK have received enhancements for better payload management and support for new robot
types.

1. Refer to the updated API documentation for details on payload transition time and new robot types support.

2. Explore the URCap SDK improvements for better code readability and communication handling.

URScript Functions
Structs and variable length lists can be utilized in URScript for data aggregation and manipulation.

1. Create structs using the struct function with named arguments.

2. Manipulate lists with fixed capacity and length attributes.

3. Utilize the estimate_payload function to estimate payload mass and center of gravity based on poses and force

torque recordings.

Frequently Asked Questions (FAQ)

Q: Can the maximum Tool Force and Elbow Force limits be adjusted on all robot models?

A: No, the increased maximum limits of 400N apply only to UR10, UR16, and UR20 models.

Q: How can I estimate payload mass and center of gravity within a robot program?

A: Utilize the estimate_payload URScript function with a list of poses and force torque recordings to estimate

payload properties.

Release Versions:

UR Software Update: 5.15.0

URCap Software Platform:

URCap API: 1.14.0

URCap SDK: 1.14.0

URSim Linux: 5.15.0

URSim Virtual Machine: 5.15.0 – 2.0.285

User Manuals: 5.15.0

Support Log Reader: xxx

Key Features

Payload Transition Time (GUI)

It is possible to define a duration for a payload change in the Set Payload node.

Increased max force safety limit for elbow and tool for UR10, UR16, UR20

Max allowed setting increased from 250N to 400N.

Structs (complex data types) – Release for production

In URScript, a set of variables can be aggregated into struct, which is transferred and stored as a single

variable.

Variable length lists in URScript

Lists can be defined with length and capacity. New operations on lists supported.

Methods for list operations, struct members access, and matrices

New methods enable list length and content manipulation.

The estimate_payload() URScript function

Payload can be estimated during execution of a program.

Flexible Ethernet/IP adapter assemblies – Engineering Preview

Enables CNC machine connectivity with custom Ethernet/IP adapter data layouts.

PolyScope GUI

Payload Transition Time
We added a new input field in the Set Payload node, which allows users to define a duration for a payload
change.
Setting a transition time larger than zero prevents the robot from doing a small “jump” when the payload changes
and is easier on the joints. This is useful when picking up or releasing heavy objects or using a vacuum gripper.

Note that the transition time is now also part of the action for the “Set Now” button.

Max force for elbow and tool
The maximum value for “Tool Force” and “Elbow Force” in “Robot limits” can now be set to a maximum of 400N
instead of 250N. This change only applies for UR10, UR16 and UR20.

Improved EtherNet/IP installation screen
The layout of the EtherNet/IP installation screen has been improved and aligned with the PROFINET installation
screen.

Improved Conveyer Tracking installation screen
The layout of the Conveyor Tracking installation screen has been improved.
In the configuration of linear conveyors, the previous “Reverse” direction button has been replaced with a
checkbox, so that it is easy to see whether the direction of the selected Line feature is reversed.

URCap Software Platform

URCap API:

Added support for payload transition time

URCaps can create Set Payload node configurations with a specified transition time

URCaps can read the transition time of a Set Payload node configuration

API changes (packagecom.ur.urcap.api.domain.program.nodes.builtin.configurations.setpayloadnode):

New methods createSelectionConfig(Payload,

Time, ErrorHandler<Time>) and createCustomParametersConfig(Mass, Position, Time,

ErrorHandler<Time>) in the existing PayloadNodeConfigFactory interface

New getTransitionTime() method in the existing SelectionPayloadNodeConfig and

CustomParametersPayloadNodeConfig interfaces

Added support for new robot types

Extended the existing RobotType enum in the RobotModel interface with the new UR20 and UR30 robot types

Deprecated the getRobotSeries() method and the RobotSeries enum in the RobotModel interface

Note:

The RobotType enum will no longer be extended with new values when new robot series

(generations) are introduced.

The getRobotSeries() method will return the UNKNOWN enum value, if the underlying robot does

not belong to either the CB3 or e-Series robot series. This will, for instance, be the case, if the robot

is a UR20. The method can only be used to determine, if a robot is a CB3 robot.

http://packagecom.ur.urcap.api.domain.program.nodes.builtin.configurations.setpayloadnode

For more information, see the Javadoc for the getRobotSeries() method.

URCap SDK:

URCap Samples

Improved readability of the POM file (pom.xml) for all samples

Updated the newURCap.sh script to the generate new URCap projects with the improved POM file format

Improved the My Daemon Swing sample:

Simplified the code and improved readability

Improved the handling of the communication with the daemon and updating of the UI

Changes are located in the code for both the C++/Python daemon and the Java URCap bundle

Controller

Introduced support control box version 5.5 for e-Series robots

Structs (complex data types) – Release for production
In URScript, a set of variables can be aggregated into struct, and thus transferred and stored as a single variable.

Structs can be obtained through multiple means:

Using the struct() function

Executing an RPC call that returns a struct

The struct function takes one or more named arguments, and each argument name becomes a member in the
struct. All values must be initialized by value, and the type of the value cannot be changed subsequently.

Create a struct:
myStruct = struct(identifier1 = 1, identifier2 = 2, myMember = “Hello structs”, listMember = [1,2,3])

Use a member:
myVar = myStruct.myMember

Variable length lists
A list object in URScript has two attributes: length and capacity. The length indicates how many elements the list
currently holding. The capacity tells how many elements the list can hold maximum. Once declared, the capacity
of the list cannot be changed. Examples of struct and list manipulation could be found in URScript manual and
support article “URScript examples for manipulating structs and lists”.

estimate_payload URScript function
Allows the payload mass and center of gravity to be estimated inside a robot program, based on a list of poses
and force torque recordings.

Flexible Ethernet/IP adapter in URScript – Engineering Preview

NOTE: Feature is not recommended for production use. Script API and functionality can change, and production
version will be released in the next major release. Contact Universal-Robots application engineer for further
support.
This functionality allows programmer to add custom Ethernet/IP connections on top of connections that contains
Universal-Robots real-time data.

Interface consists of 2 parts:

Configuration interface over XML-RPC to enable the functionality.

URScript functions to read and write structured data over connection assembly T→O, and O→T objects.

Functionality is intended to be used as a platform feature. It can be built into URCaps, or used directly from
URScript.
One example of EDS file with “CNC” connection that contains custom Robot→PLC (T→O) and PLC→Robot
(O→T) assemblies is available in UniversalRobot_CNC.eds. Both assemblies are 210 bytes long, and have
instance id’s 101, and 111 respectively.

Performance
It is recommended to consider performance limitation before integrating custom Ethernet/IP adapter with PLC
Scanner. Performance limits can be changed in the final production release. Contact Universal-Robots support if
following limitations are preventing implementation of Ethernet/IP connectivity in customer application. All read
and write operations are executed on non-realtime threads. In internal tests read a write turnaround cycle with PLC
RPI set to 5ms was on average 40ms. Maximum at 90ms. This implementation is not recommended for
application requiring data update rates below 20ms. Maximum recommended assembly size is 1000 bytes. This
engineering preview does not limit sizes.

Configuration interface
Ethernet/IP service exposes XML-RPC server on port 40000.
add_configuration(Robot→PLC instance id, Robot→PLC assembly size, PLC→Robot instance id, PLC→Robot
assembly size)

Function creates one input, and one output assembly that typically forms a Ethernet/IP connection object.

Parameters:

Robot→PLC instance id – Integer, unique instance ID

Robot→PLC assembly size – Integer, assembly data size in bytes

PLC→Robot instance id – Integer, unique instance ID

PLC→Robot assembly size – Integer, assembly data size in bytes

Returns:

True if new assembly was created

False when one of the assemblies already exists, or parameter error.

After function is called, external Ethernet/IP Scanner (on PLC, or CNC machine) can use new connection. Some
PLCs require connection object to be defined in EDS (Electronic Data Sheet) file. Separate guide is available on
request explaining how to add custom connections, and assemblies to existing Universal Robots EDS file.

NOTE: Universal Robots built-in assemblies 100, and 112 cannot be overwritten. Attempt to configure those
assemblies will result in an error.

Example code for adding custom Ethernet/IP from URScript
Before Start program section
create XMLRPC connection to Ethernet/IP service global eip_handle=rpc_factory(“xmlrpc”,
“http://127.0.0.1:40000/RPC2”)
one input, and one output assemblies will be available in Ethernet/IP adapter after the call global result =
eip_handle.add_configuration(101, 210, 111, 210)
dispose XMLRPC connection handle eip_handle.closeXMLRPCClientConnection()
pause for 1s while Ethernet/IP service is configuring data exchange files for new assemblies sleep(1)
next data layout for read and write should be configured

URScript interface
Payload data exchanged through the connection is accessible using read and write handle objects. Typically
handle would be opened once in “Before Start” section of the program (or by script contributed by URCap
installation contribution), then in the same section data layout will be defined. Afterwards individual reads and
writes can be made with methods on the configured handles.

eip_reader_factory(assembly_name, data_size)
Opens handle to PLC→Robot data. Typically placed in “Before Start” section of the program.

Parameters:

assembly_name – string representation of instance id.

data_size – size of the assembly data in bytes

Returns:

handle object

The handle will provide a read only access to the assembly data.

Example:
global cnc_status = eip_reader_factory(“111”, 210) # Open handle to PLC→Robot assembly with instance id 111,
and data size 210 bytes.
eip_writer_factory(assembly_name, data_size)
Opens handle to Robot→PLC data. Typically placed in “Before Start” section of the program.

Parameters:

assembly_name – string representation of instance id.

data_size – size of the assembly data in bytes

Returns:

handle object

The handle will provide a write only access to the assembly data.

Example:
global cnc_command = eip_writer_factory(“101”, 210) # Open handle to Robot→PLC assembly with instance id
101, and data size 210 bytes.

Methods on handles
Handles are used to define underlying assembly memory layout, and afterwards read and write data.

Methods are invoked on handles using ‘.’ operator. Methods are grouped in 2 families:

memory layout definitions: informing handle on how data is visible to the external device, and assigning labels.

All methods in this family start with “define_…”.

data access methods: read and write process data.

Examples:
cnc_status.define_bit(0, 1, 0, “comm_check”)status =
cnc_status.read(“comm_check”)cnc_command.define_uint8(6, “program_number”)
define_uint8(offset, data_name), define_uint16(offset, data_name), define_int16(offset, data_name),
define_float32(offset, data_name), define_int32(offset, data_name)
Methods define individual labels in assemblies exchanged with PLC. Labels are used for writing and reading
process data in URScript.

Parameters:

offset: Integer, position of the data in assembly in bytes

data_name: String, label

NOTE: Overlapping data definitions are not allowed, except for overlap with bit fields.

Examples:
cnc_status.define_uint8(11, “service_code”) # set label “service_code” to byte 11 of the assembly
define_bit(offset, bitfield_width, bit_number, data_name)
Method defines individual label in assemblies exchanged with PLC. Labels are used for writing and reading
process data in URScript.

Parameters:

offset: Integer, position of the data in assembly in bytes

bitfield_width: Integer, can be 1, 2 or 4 representing bit in byte, word, or double word.

bit_number Integer, bit number in a word. 0 = least significant bit. Depending on the bitfield_width most

significant bit will be 7, 15, or 31.

data_name: String, label

NOTE: Overlapping bit definitions are not allowed.

Example:
cnc_status.define_bit(0, 1, 0, “comm_check”) # set label “comm_check” to bit 0 in byte 0 of the assembly.
cnc_status.define_bit(16, 2, 9, “door_opened”) # set label “door_opened” to bit 9 in word starting on byte 16 of the
assembly.
define_uint8_array(offset, length, data_name), define_uint16_array(offset, length, data_name),
define_int16_array(offset, length, data_name), define_float32_array(offset, length,
data_name), define_int32_array(offset, length, data_name)
Methods define individual labels in assemblies exchanged with PLC. Labels are used for writing and reading
process data in URScript.

Parameters:

offset: Integer, position of the data in assembly in bytes

length: Integer, number of elements of the array with base size specified by the data type (e.g. for

define_uint16_array length = 4 will use 8 bytes)

data_name: String, label

Examples:
cnc_command.define_uint8_array(48, 32, “work_number”) # set label
“work_number” to 32 byte long array starting at byte 48 in the assembly cnc_command.define_int16_array(120, 3,
“axes_offset”) # set label
“axes_offset” to 3 words (6 byte long) array starting at byte 120 in the assembly
define_string(offset, length, data_name)

Parameters:

offset: Integer, position of the data in assembly in bytes

length: Integer, number of characters in the string. String should be terminated with 0 if it’s shorter than length.

data_name: String, label

read(data_names)
Method reads one or more data labels written by external PLC. Last data is read in non-blocking way.

Parameters:

 data_name:

Single string – one data label to read. Method returns basic data type.

Array of strings – multiple data labels to read. Method returns structure with fields named with data labels.

Examples:
comm_check = cnc_status.read(“comm_check”) # reads single bit to comm_check URScript variable
service_request = cnc_status.read([“door_closed”, “service_code”]) # reads multiple fields that can be accessed
as service_request struct members if(service_request.door_closed):
do_service_code(service_request.service_code)
end

write(data_struct)
Method writes one or more data labels to memory read external PLC.

Parameters:

data_struct: Struct where member names are data labels, and values are data contents

All labels in struct are guaranteed to be written at the same time to assembly data.

NOTE: method will do a range check based on the type of the data label. Numbers exceeding data type will stop a
program with runtime exception.

Examples:
cnc_command.write(struct(work_number = [1, 2, 3, 4], search_start = True)) # set work_number label array, and
search_start bit
cnc_command.write(struct(door_open = True))
define global struct, and reuse in calls to write method
s = struct(robot_ready = False, machine_stop = False, robot_alarm = False)
s.robot_ready = True cnc_command.write(s)

clear()
Method sets all memory managed by handle to zero.
Can only be called on the write handle.

close()
Closes handle object, and frees memory associated. It’s recommended to close handles if they are used only once
in a program. If handle is used repeatedly then it’s recommended to keep it open over the lifespan of the program.
The same handle can not be opened again, new handle has to be created.

Bug Fixes

PolyScope GUI

The ampere value for the “IO Current” field in the Readings panel on the Log tab is now shown as a decimal

number instead of a whole number

Fixed an issue where programs were slow to start, if the program contained Pallet (Palletizing) nodes

Fixed issue on UR20 robots using a setup with an external 3-Position Enabling (3PE) Device where the

Automove screen would show illustrations and text referring to the UR Teach Pendant with built-in 3PE

functionality

Controller

Introduced the RTDE channel “collision_detection_ratio” which publishes a non-negative double precision

floating point value which can be used to monitor how close the robot is to triggering a C157 or C158 “collision

detected” protective stop. A protective stop is triggered if the value is ever equal to or exceeds 1.0. The channel

is very similar to the existing RTDE channel “joint_position_deviation_ratio” which does the same for the C153

and C159 “joint position deviation” protective stops.

Fixed issue where empty string variables were incorrectly evaluated as True; now empty strings correctly

evaluate as False, ensuring accurate boolean logic in conditional statements.

Fixed issue where a robot with IMMI attached would fault the first time the robot arm was powered on after a

reboot of the controlbox.

Fixed an issue where the get_inverse_kin_has_solution() function where it would incorrectly report that the

solution had not been found after two or more calls with the same argument.

Fixed a corner case with movec in “fixed” mode where the TCP could rotate in the opposite direction of the

required rotation to maintained the “fixed’ orientation constraint.

Fixed situations where UR20 will fail with 48V voltage drop (C740A11) or over-current (C740A15), or system

reboot in very hard motions.

URCap Software Platform

Fixed issue where an unhandled null pointer Java exception would occur, in some situations, when the user

tried to undo program changes. This could occur, if the user prior to the undo action had attempted twice to

insert a new URCap node as child under another URCap node with locked child sequence.

Fixed issue where a URCap would never get a callback after calling the

UserInteraction.getUserDefinedRobotPosition(RobotPositionCallback2) method to request the end user to

define a position of the robot. This would occur, if the robot was not powered on and brake released (“Robot

needs to be powered ON to proceed.” tooltip displayed in the PolyScope footer). The

RobotPositionCallback2.onCancel() callback function is now called, if the robot is not fully operational when the

request is made.

Fixed issue where a URCap would never get a callback after calling one of the methods in the RobotMovement

interface, e.g. requestUserToMoveRobot(Pose, RobotMovementCallback), to request the end user to move the

robot to a given target position. This would occur, if the robot was not powered on and brake released (“Robot

needs to be powered ON to proceed.” tooltip displayed in the PolyScope footer). The

RobotMovementCallback.onCancel() callback function is now called, if the robot is not fully operational when

the request is made.

URSim

Embedded

Removed generic user fault report “Start up check : Critical error”, and replaced it with more clear error reports

in the specific scenarios

Fixed issue where Energy Eater power dissipation monitoring can cause system to fault if the safety control

board and I/O draws more than 50W.

Fix for issue where robot would be stuck in booting if a fault occurs very early after the joints boot. Could e.g.

occur if the brake solenoid cable was disconnected

Documents / Resources

Universal Robots UR10 Medium Sized Versatile Cobot [pdf] User Guide
UR10, UR16, UR20, UR10 Medium Sized Versatile Cobot, UR10, Medium Sized Versatile Cobo
t, Sized Versatile Cobot, Versatile Cobot, Cobot

References

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/5f84931d991b69e8e323132cbf38d027e54b5c62d1e355d6fd9f62565b96ea33
https://manuals.plus/m/5f84931d991b69e8e323132cbf38d027e54b5c62d1e355d6fd9f62565b96ea33_optim.pdf
https://manual.tools/?p=14888753#MTA0LjI4LjIzNC4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	Universal Robots UR10 Medium Sized Versatile Cobot User Guide
	Universal Robots UR10 Medium Sized Versatile Cobot
	Product Usage Instructions
	Key Features
	PolyScope GUI
	URCap Software Platform
	Controller
	Flexible Ethernet/IP adapter in URScript – Engineering Preview
	Bug Fixes
	Documents / Resources
	References

