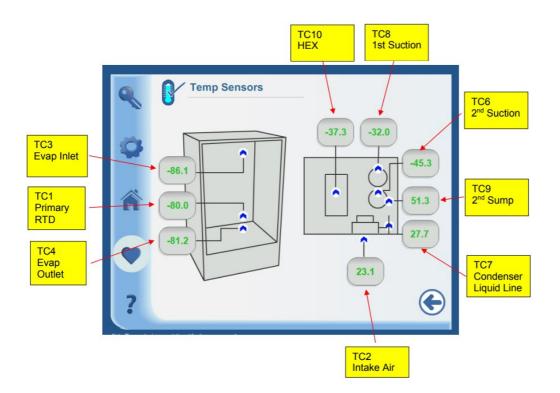


Unity Lab Services Freezer ULT Peek TC Diagnostics User Guide

Home » Unity Lab Services » Unity Lab Services Freezer ULT Peek TC Diagnostics User Guide 1

Unity Lab Services Freezer ULT Peek TC Diagnostics User Guide

A Thermo Fisher Scientific Brand


Contents

- 1 Product Overview
- 2 Onboard

Instrumentation

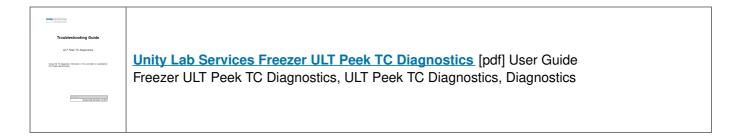
- 3 Documents / Resources
 - 3.1 References
- **4 Related Posts**

Product Overview

T/C	Reading	Indication: No Problem Indicated		
TC #10	35 to -45C	The TC is in a normal operating range. TC #10 are warmer than when the first stage is running without the second stage energized, showing that the first st age is receiving a heat load from the second stage, which is how the cascade system is supposed to work.		
TC #3	-86 to -95C	TC #3 is cold showing that the interstage condenser (Heat Exchanger) is wor king well. TC #4 is colder than TC #3, reflecting proper operation of the casca de system with a flooded evaporator.		
TC #4	-86 to -95C	The delta T between TC #3 and TC #4 is about 5 degrees F. If the door is ope ned, product loaded, or room ambient increases, the TC readings and delta T, along with the cabinet temp, may also increase until the system removes the added heat load. If the unit is cycling the readings will fluctuate, which is why stabilized Bottom Out mode is used for these readings.		
Display Te mp.	-86 to 95C	Acceptable Bottom Out Temperature.		
TC #10	-35 to -50C	 First stage appears to be running normally or too cold. There is little or no heat load coming from the second stage This is the first indication that second stage is not working properly TC #3 could be marginal or very cold, depending on how little refrigerant is actually moving through the evaporator TCs #3 and #4. 		
TC #3	- 86 to -95C	TC #3 shows a large heat load in the second stage, but ifs not getting transred to the first stage, indicating a lack of refrigerant flow. Four main reason 1) Leak, (2) Undercharge, (3) Lack of efficiency, (4) An obstruction to flow.		
TC #4	-40 to -75C	Manifold Gauge Diagnostics; second stage flow problems. Hint: If there's a le ak, you will see temperatures continue to change and warm. If it's a bad pum p or restriction, it will probably maintain.		
Display Te mp.	Unable to achiev e set point	A steady or slightly fluctuating cabinet temperature.		

An oil logging problem is a type of restriction, due to too much refrigerant oil getting to the cap tube and evaporator, and then becoming thick, or even solid, at these cold sections of the system. It can be caused by a large load of warm product placed in the cabinet, lack of first stage performance, failed oil separator, contamination build up over time, or failure to defrost the cabinet as needed. It can be constant or varying. This is because the oil logging gets worse as the cabinet cools, which causes the cabinet to warm, which thaws the oil allowing more flow and the cabinet will start to cool again, repeating the cycle. The cabinet temperature will vary around -55°C to -75°C over a period of a day or two, warming then cooling, then warming then cooling, continually. This cycle will not continue if the problem is a leak, as in that case, the cabinet will get continually warmer. Defrosting the cabinet over a period of 48 hours, then restarting it might solve the problem. Back-flushing the system, replacing the oil separator, then recharging is the definite solution. Refer to Manifold Gauge Diagnostic Procedures, Section 6.17 of this manual for further symptoms using gauges.

A continuously increasing restriction can look like a leak, as the restriction gets more severe. Refer to Manifold Gauge Diagnostic Procedures, Section 6.17 of this manual for further instructions before making this determination.


Onboard Instrumentation

Sensor	Location	Туре	Detail		
RTD1	Cargo Area	RTD, 1000 Ohm	Back wall, center. Near the end of the evaporator.		
TC #1	First Stage Suction	T-type thermocouple	On suction tube at compressor		
TC #2	Condenser Air Inlet	TT-type thermocouple	In air stream in front of condenser coil		
TC #3	Evaporator In	TT-type thermocouple	Top of cabinet; foamed in place,		
TC #4	Evaporator Out	T-type thermocouple	Bottom of cabinet, foamed in place.		
TC #5	Blank; Reserved For Futur e Use				
TC #6	Second Stage Suction	TT-type thermocouple	On suction tube at compressor		
TC #7	Condenser Out (Liquid Lin e)	TT-type thermocouple	Immediately downstream from the condenser coil.		
TC #8	Blank; Reserved For Futur e Use	Т			
TC #9	Stage Sump	IT-type thermocouple			
TC #10	врнх	Two T-type thermocouples	Installed at the center of the BPHX. Two sensors installed; one for backup.		

Sensor	Location	Туре	Main Board Location	Wire/Band Color	Part Number
RTD I	Back Wall Inside Cabinet	RID, 1000 Ohm Red/Whit e	J18	Red/White	315206H01
TC #1	First Stage Suction	TC, Type T, Stranded	J14	Brown	315204H01
TC #2	Condenser Air Inlet	TC, Type T, Stranded,	J14	Red	315204H02
TC #3	Evaporator Inlet	TC, Type T, Stranded,	J14	Orange	315204H03
TC #4	Evaporator Out #1	TC, Type T, Stranded,	J14	Yellow	315204H04
TC #6	Second Stage Suction	TC, Type T, Stranded,	J14	Blue	315204H06
TC #7	Condenser Out (Liquid Lin e)	TC, Type T, Stranded,	J14	Violet	3152041-107
TC #9	Second Stage Sump	TC, Type T, Stranded,	J14	White	315204H09
Lc #10	ВРНХ	TC, Type T, Stranded,	J14	Black	315204H10

Documents / Resources

References

• U Contact Us

Manuals+,