
Home » UNI-T » UNI-T UT3200+ Series Multi-channel Temperature Tester User Manual

Contents
1 UNI-T UT3200+ Series Multi-channel Temperature
Tester
2 Product Information
3 Product Usage Instructions
4 Warranty and Statement
5 SCPI
6 Command String Parse
7 Command Parse Rule
8 Symbol Stipulation and Definition
9 Command Tree Structure
10 Command and Parameter
11 Command Reference
12 SYST:SYSINIT
13 FETCH Subsystem
14 *IDN? Subsystem
15 Modbus
16 Start/Stop Test
17 Documents / Resources

17.1 References

UNI-T UT3200+ Series Multi-channel Temperature Tester

UNI-T UT3200+ Series Multi-channel Temperature Tester User
Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/uni-t
https://manuals.plus/uni-t/ut3200-series-multi-channel-temperature-tester-manual.pdf

Product Information

Product Name: UT3200+ Series Multi-channel Temperature Tester

Brand: UNI-T

Manufacturer: Uni-Trend Technology (China) Co., Ltd.

Trademark: UNI-T

Product Certification: Conforms to China national product standard and industry product standard,

ISO9001:2008 standard, and ISO14001:2004 standard

Product Usage Instructions

1. Connect the UT3200+ Series Multi-channel Temperature Tester to a power source using the provided power

cable.

2. Press the power button to turn on the temperature tester.

3. The temperature tester supports SCPI (Standard Commands for Programmable Instruments) programming

language. Refer to the SCPI programming manual for detailed information on commands and syntax.

4. To send commands to the temperature tester, connect a host computer and use a string of commands in the

SCPI format. The command parser of the instrument will parse and execute the commands.

5. The command parser only accepts ASCII data. Make sure to use ASCII encoding for command strings.

6. The command parser requires an end mark to terminate command parsing. The instrument accepts three

types of end marks: CR, CR+LF, and LF.

7. If an error occurs during command parsing, the command parser will terminate and invalidate the current

command.

8. The command parser is case-insensitive for parsing command strings.

9. In RS485 mode, add “ADDR::” in front of SCPI commands to communicate with multiple devices via SCPI

protocol.

10. Use semicolon “;” to send multiple instructions in a single command string.

11. The instrument sends data with a default end of 0x0A (LF).

Warranty and Statement

Copyright
2023 Uni-Trend Technology (China) Co., Ltd.

Brand Information
UNI-T is the registered trademark of Uni-Trend Technology (China) Co., Ltd.

Statement

UNI-T products are protected by patents (including obtained and pending) in China and other countries and

regions.

UNI-T reserves the right to change specifications and prices.

The information provided in this manual supersedes all previous publications.

The information provided in this manual is subject to change without notice.

UNI-T shall not be liable for any errors that may be contained in this manual. For any incidental or

consequential damages arising out of the use or the information and deductive functions provided in this

manual.

No part of this manual shall be photocopied, reproduced or adapted without the prior written permission of UNI-

T.

SCPI

SCPI�Standard Commands for Programmable Instruments�is a standardized instrument programming language
that builds on existing standards IEEE 488.1 and IEEE 488.2 and follows the floating point rules of IEEE 754
standard, ISO 646 message exchange 7-bit encoding notation (equivalent to ASCII programming) and many other
standards.
This section introduces the format, symbols, parameters, and abbreviations of the SCPI command.

Command String Parse

The host computer can send a string of commands to the instrument and the command parser of the instrument
starts to parsing after catching the terminator (\n) or an input buffer overflow.
For example

Valid command string:

AAA:BBB CCC;DDD EEE;:FFF

The instrument command parser is responsible for all command parsing and execution, and you must understand
its parsing rules before writing a program.

Command Parse Rule

Command parser only parses and responds to ASCII data.
The command parser starts to command parsing when receive the end mark. The instrument only accept three
contents as the following as the end mark.

CR

CR+LF

LF

The command parser will terminate the parsing immediately after parsing an error, and the current command will
be invalidated.
The command parser is case-insensitive for parsing command strings.
he command parser supports abbreviated form of command and the detailed see the following section.
In RS485 mode, add ADDR□Local address::□ in front of SCPI, the local address can set to 1-32.
It’s convenient to communicate with multiple devices via SCPI protocol.
For example: ADDR□1::□IDN? □ represents a blank
The end of data sent by the instrument defaults to 0x0A (LF).
Multiple instruction can be send via semicolon “ ; “.

Symbol Stipulation and Definition

This chapter uses some symbols that are not part of the command tree, but only for a better understanding of the
command string.

Mark Description

<……>

The text in angle brackets indicates the parameter of the command. For example:

<float> represents floating point number

<integer> represents integer parameter

[……] The text in square brackets indicates the optional command.

{……}
When the curly brackets contain several parameter items, it means

that only one item can be selected from them.

Capital

letter Abbreviated form of the command.

□ Blank mark, it represents a blank and only for reading.

Command Tree Structure

SCPI commands have a tree-like structure with three level (note: the command parser of this instrument can
parse any level), where the highest level is called the subsystem command. SCPI uses a colon (:) to separate
high level commands from low level commands.

For Example

Command and Parameter

A command tree is consist of command and [parameter], use a blank to separate (ASCII: 20H).

For example AAA:BBB 1.234 Command [parameter]

Command

Command words can be in long command format or in abbreviated form. Long format facilitates engineers to
better understand the meaning of the command string; abbreviated form is suitable for writing.

Parameter

Single character command, no parameter For Example AAA:BBB

Parameter can be string format and its abbreviated form is also follow the last section “ command abbreviated
rule”

For example AAA:BBB□1.23

Parameter can be numerical value format.

<integer> 123, +123, -123

<float>

Floating point number of arbitrary form:

<fixfloat>: fixed floating point number: 1.23, -1.23

<Sciloat>: floating point number represented by scientific notation: 1.23E+4, +1.23e-4

<mpfloat>: floating point number represented by multiplying power: 1.23k, 1.23M, 1.23G
, 1.23u

Table 0-1 Abbreviation of Multiplying Power

Numerical Value Multiplying Power

1E18 (EXA) EX

1E15 (PETA) PE

1E12 (TERA) T

1E9 (GIGA) G

1E6 (MEGA) MA

1E3 (KILO) K

1E-3 (MILLI) M

1E-6 (MICRO) U

1E-9 (NANO) N

1E-12 (PICO) P

1E-15 (PEMTO) F

1E-18 (ATTO) A

SCPI is case-insensitive, so the written is different from standard name.

For example :

“1M” represents 1 milli, not 1 mega. “1MA” represents 1 mega.

Separator

The instrument command parser can only receive allowable separator. Other separator will cause error “Invalid
separator”.

;
Semicolon is for separating two commands.

For Example AAA:BBB 100.0 ; CCC:DDD

:
Colon is for separating command tree or restart the command tree.

For Example AAA : BBB : CCC 123.4; : DDD : EEE 567.8

?
Question mark is for querying.

For Example AAA ?

□
Blank is for separating the parameter.

For Example AAA:BBB□1.234

Command Reference

All commands are explained by the subsystem command order. MEAS Measurement subsystem

SYST System subsystem

FETCH Fetch data subsystem

ERROR ERROR subsystem

IDN? Query subsystem

MEAS Subsystem

MEAS subsystem is used to switch to different display page.

MEAS
:MODEL {tc-t,tc-k,tc-j,tc-n,tc-e,tc-s,tc-r,tc-b}

:RATE {fast,slow}

:START {on,off}

:CMODEL <para>,<level>

:CHANON <para>,<on,off>

:LOW <level>

:CLOW <para>,<level>

:HIGH <level>

:CHIGH <para>,<level>

:SENSOR {tc-t,tc-k,tc-j,tc-n,tc-e,tc-s,tc-r,tc-b}

MEAS:MODEL

MEAS:MODEL is used to set sensor type.

Command Syntax MEAS:MODEL<tc-t,tc-k,tc-j,tc-n,tc-e,tc-s,tc-r,tc-b>

Example SEND>MEAS:MODEL tc-k <NL> // Set the sensor type to Type K thermocouple.

Query Syntax MEAS:MODEL?

Query Return <tc-t,tc-k,tc-j,tc-n,tc-e,tc-s,tc-r,tc-b>

Example
SEND> MEAS:MODEL?<NL>

RET> tc-t <NL>

MEAS:RATE

MEAS:RATE is used to set sampling rate.

Command Syntax MEAS:RATE<fast,slow>

Example SEND>MEAS:RATE fast<NL> // Set sampling rate to fast.

Query Syntax MEAS:RATE?

Query Return <fast,slow>

Example

SEND> MEAS:RATE?<NL>

RET> fast <NL>

MEAS:START

MEAS:START is used to enable the sampling.

Command Syntax MEAS:START <on,off>

Example SEND>MEAS:START off<NL> // Stop sampling.

Query Syntax MEAS:START?

Query Return <on,off>

Example
SEND> MEAS:START?<NL>

RET> on <NL>

MEAS:CMODEL

MEAS:CMODEL is used to set the sensor type of each channel.

Command Syntax MEAS:MODEL <para>,<tc-t,tc-k,tc-j,tc-n,tc-e,tc-s,tc-r,tc-b>

For Example SEND>MEAS:CMODEL 1,TC-T<NL> // Set the sensor of CH001 to Type T.

Query Syntax

MEAS:CMODEL? // Acquire the sensor type of all channels.

MEAS:CMODEL?<int> // Acquire the sensor type of single channel, the minimum o
f channel number is 1.

Query Return < tc-t,tc-k,tc-j,tc-n,tc-e,tc-s,tc-r,tc-b >

For Example

SEND> MEAS:CMODEL?<NL>

RET> < tc-t,tc-k,tc-j,tc-n,tc-e,tc-s,tc-r,tc-b ><NL>

SEND> MEAS:CMODEL? 1<NL> // Acquire the sensor type of CH001. RET> < tc-t >
<NL>

MEAS:LOW

MEAS:LOW is used to set the lower limit of all channels.

Command Syntax MEAS:LOW <float>

For Example SEND>MEAS:LOW -200.0<NL> // Set the lower limit of all channels to -200.0.

Query Syntax MEAS:LOW?

Query Return <float,float> <NL>

For Example
SEND> MEAS:LOW? <NL>

RET> <-2.00000e+02,-2.00000e+02> <NL>

MEAS:CLOW

MEAS:CLOW is used to set the lower limit of each channel.

Command Syntax MEAS:CLOW <para>,<float>

For Example SEND>MEAS:CLOW 1,-200.0<NL> // Set the lower limit of CH001 to -200.0.

MEAS:HIGH
MEAS:HIGH is used to set the upper limit of all channels.

Command Syntax MEAS:HIGH <float>

For Example SEND>MEAS:HIGH 1800.0<NL> // Set the upper limit of all channels to 1800.0.

Query Syntax MEAS:HIGH?

Query Return <float,float> <NL>

For Example
SEND> MEAS:HIGH? <NL>

RET> <1.80000e+03, 1.80000e+03> <NL>

MEAS:CHIGH

MEAS:CHIGH is used to set the upper limit of each channel.

Command Syntax MEAS:CHIGH <para>,<float>

For Example SEND>MEAS:CHIGH 1,1800.0<NL> // Set the upper limit of CH001 to 1800.0.

Query Syntax MEAS:CHIGH�1

Query Response <float> <NL>

Example
SEND> MEAS:CHIGH? 1<NL>

RET> <1.80000e+03> <NL>

MEAS:SENSOR

MEAS:SENSOR is used to acquire sensor type of each channel.

Command Syntax MEAS:SENSOR

Query Response <TC-T,TC-K,TC-J,TC-N,TC-E,TC-S,TC-R,TC-B> <NL>

Example
SEND> MEAS:SENSOR <NL>

RET> <TC-T,TC-K,TC-J,TC-N,TC-E,TC-S,TC-R,TC-B> <NL>

SYST Subsystem

SYST subsystem is used to set SETUP page.

SYST

:COMP {on,off}

:BEEP {on,off}

:KEYTONE {on,off}

:UNIT {cel,kel,fah}

SYST:COMP

Command Syntax SYST:COMP <on,off>

For Example SEND>SYST:COMP on<NL> // Turn on the comparator.

Query Syntax SYST:COMP?

Query Return <on,off> <NL>

For Example
SEND> SYST:COMP? <NL>

RET> <on> <NL>

SYST:BEEP
SYST:BEEP is used to set the comparator beep state.

Command Syntax SYST:BEEP <on,off>

For Example SEND>SYST:BEEP on<NL> // Turn on comparator beep.

Query Syntax SYST:BEEP?

Query Return <on,off> <NL>

For Example
SEND>SYST:BEEP? <NL>

RET> <on> <NL>

SYST:KEYTONE
SYST:BEEP is used to set the state of key beep.

Command Syntax SYST:KEYTONE <on,off>

For Example SEND>SYST:KEYTONE on<NL> // Turn on key beep.

Query Syntax SYST:KEYTONE?

Query Return <on,off> <NL>

For Example
SEND>SYST:KEYTONE? <NL>

RET> <on> <NL>

SYST:SYSINIT

Command Syntax SYST:SYSINIT

Example SEND> SYST:SYSINIT // Return to factory set.

SYST:UNIT

SYST:UNIT is used to set the temperature unit.

Command Syntax SYST:UNIT <cel,kel,fah>

Parameter

<cel,kel,fah>

cel: degree Celsius kel: Kelvin degree

fah: Fahrenheit degree

For Example SEND>SYST:UNIT cel<NL> // Set the temperature unit to degree Celsius.

Query Syntax SYST:UNIT?

Query Return <cel,kel,fah> <NL>

For Example

SEND> SYST:UNIT? <NL>

RET> <cel> <NL>

FETCH Subsystem

FETCH subsystem is used to acquire the temperature data.

FETCH ?

FETCH?

FETCH? is used to fetch temperature data.

Query Syntax FETCH?

Query Return <float, float , float> <NL>

For Example
SEND>FETCH? <NL>

RET> <+1.00000e-05, +1.00000e-05, +1.00000e-05> <NL>

ERROR Subsystem
ERROR subsystem is used to return error message.

Query Syntax ERROR?

Query Return Error string

For Example
SEND> ERR? <NL>

RET>no error <NL>

*IDN? Subsystem

IDN? is used to query instrument ID.

Query Syntax IDN?OR *IDN?

Query Return <MODEL>,<Revision>,<SN>,<Manufacturer>

Modbus

Register Overview
All register addresses used by the instrument are listed below.

Notes:

1. Unless otherwise specified, the numeric value of instruction and response frame are hexadecimal.

2. The register only contains the instruction of acquiring the test result and starting/stopping the test. If user want

to customize other instructions, please contact UNI-T sake department.

3. Floating point number online conversion can refer to website

http://www.binaryconvert.com/convert_float.html

Register Address Name Numeric value Description

0200

Start/Stop test

1 byte integer

Wirte-only register, data takes 1

register

0202~0261

Temperature value of

channel 1~48

4 bytes floating point

number

Read-only register, data of each

channel takes 2 registers.

Start/Stop Test

Write

1 2 3 4 5 6 7 8 9 10 11

01 10 02 00 00 01 02 00 01 44 50

Station

number Write Register
Register

quantity Byte Data CRC16

0000�Stop

0001�Start

Written return

http://www.binaryconvert.com/convert_float.html

1 2 3 4 5 6 7 8

01 10 02 00 00 01 00 71

Slave

station Write Register
Register

quantity CRC16

Acquire Test Result
Register 0202~0261 is used to acquire the test result of all channels. For example: acquire the test result of CH1
Send

1 2 3 4 5 6 7 8

01 03 02 02 00 02 64 73

Slave

station Read Register
Register

quantity CRC-16

Response

1 2 3 4 5 6 7 8 9

01 03 04 41 DC 44 5A 9C CE

01 03 Byte
Float-point number with single

precision CRC-16

B4~B7 is float-point number with single precision, byte order AA BB CC DD

Test data: 41 DC 44 5A converts to float-point number: 0x41DC445A = 27.5334; (If the channel is open circuit,
then the test result is 100000.)

Documents / Resources

UNI-T UT3200+ Series Multi-channel Temperature Tester [pdf] User Manual
UT3200, UT3200 Series Multi-channel Temperature Tester, Multi-channel Temperature Tester,
Temperature Tester, Tester

References

 UNI-T Voltage Meter, Multimeter, Oscilloscope | UNI-T-UNI-T Voltage Meter, Multimeter, Oscilloscope |

UNI-T

 Float (IEEE754 Single precision 32-bit) Converter

https://manuals.plus/m/a5aca52398233190528b77881a60c439e8fd5bb21db45a43bf85acafcfcc3884
https://manuals.plus/m/a5aca52398233190528b77881a60c439e8fd5bb21db45a43bf85acafcfcc3884_optim.pdf
http://instruments.uni-trend.com
http://www.binaryconvert.com/convert_float.html

Manuals+,

https://manuals.plus/

	UNI-T UT3200+ Series Multi-channel Temperature Tester User Manual
	UNI-T UT3200+ Series Multi-channel Temperature Tester
	Product Information
	Product Usage Instructions
	Warranty and Statement
	SCPI
	Command String Parse
	Command Parse Rule
	Symbol Stipulation and Definition
	Command Tree Structure
	Command and Parameter
	Command Reference
	SYST:SYSINIT
	FETCH Subsystem
	*IDN? Subsystem
	Modbus
	Start/Stop Test
	Documents / Resources
	References

