UBIBOT CO2 Probe Concentration Measuring and Monitoring User Guide Home » UBIBOT » UBIBOT CO2 Probe Concentration Measuring and Monitoring User Guide 🖔 # **UBIBOT CO2 Probe Concentration Measuring and Monitoring** #### **Contents** - 1 Product Introduction - 2 Use Case Scenarios - 3 Features - **4 Product Specifications** - **5 Wiring Instruction** - 6 Communication **Protocol** - 7 Documents / Resources - 7.1 References - **8 Related Posts** #### **Product Introduction** The carbon dioxide probe is an industrial-grade probe with high integration. The data is sent from the internal chip of the probe to the computer through the modbus-rs485 interface, and multiple probes can be connected to the bus network to realize real-time monitoring of multiple field environments. In addition, the probe can also be directly connected to the power supply to display the measurement data through the LCD screen. The probe is designed with waterproof and breathable film, with the highest waterproof level up to IP65. It has super stability and anti interference ability, strong product protection performance and first grade lightning protection, which can be used in agricultural industry and other occasions. #### **Use Case Scenarios** It is widely used in agricultural greenhouses, intelligent buildings, workshops, warehouses, pharmacies, libraries, museums, laboratories, offices, ventilation ducts and other places where carbon dioxide concentration needs to be monitored. #### **Features** - 1. RS485 interface communication distance up to 1200 meters. - 2. High precision, wide range, good consistency. - 3. Standard audio interface design, easy to plug. - 4. Super stability and anti-interference. - 5. Standard MODBUS RTU protocol. - 6. Able to accurately measure CO2 concentration. - 7. The product has strong protective performance and first grade lightning protection. # **Product Specifications** | Specifications | | |------------------------|--| | Model | UB-CO2-P1 | | Working Voltage | DC5V | | Measuring Range | 0~10000ppm | | Measuring Accuracy | CO2: ± (30ppm+3%) Accuracy(max) 0.1ppm | | Output Interface | RS485 | | Communication Protocol | MODBUS RTU | | Communication Address | 0x61 | | Baud Rate | 1200 bit/s,2400 bit/s, 4800 bit/s, 9600 bit/s, 19200 bit/s(optional) | | Standby Current | 20mA | | Interface Type | Audio Interface | | Dimensions | 65*46*29mm | | Cable Length | 3m | # **Wiring Instruction** # **Communication Protocol** - 1. All communication circuits shall follow the master/slave mode. In this way, data can be transferred between one primary station (e.g., PC) and multiple sub-stations. No communication should start from a substation. - 2. The information transmission mode is asynchronous, byte format is 1 start bit, 8 data bits, and 1 stop bit, no check. - 3. Compliance with MODUBS RTU protocol standards. - 4. The default baud rate is 9600 and the address is 0x61. - * This protocol is a master slave protocol. There is one master station and several slave stations on a bus. The communication parameters between each station must be consistent, including baud rate, data bits, check bit check method and stop bits. The address of each slave station must be different, otherwise the slave station response may conflict. | Query | Query Message from Master (Read) | | | | | | | | | | | | |-------------|----------------------------------|------------------------|---------|------------------------|-----|-----------------------|-----------|-----------------------|---------|--------------|--------------|-------------| | Addr
ess | Function
Code (R
ead) | Starting Address
Hi | | Starting Address
Lo | | No.of Registers
Hi | | No.of Registers
Lo | | CRC16
LSB | CRC16
MSB | | | 0x61 | 0x03 | RegAddr_H | | RegAdd | r_L | Data_H | | Data_L | | CRC16
_L | CRC16
_H | | | Respo | Response Message from Slave | | | | | | | | | | | | | Addr
ess | Function
Code (R
ead) | Byte C
ount | Data1 M | Data1 MSB | | Data2
MSB | Data2 LSB | | | CRC16
LSB | CRC16
MSB | | | 0x61 | 0x03 | BytesL
enth | Data1_F | Data1_H | | Data2_
H | Data2_L | | Data2_L | | CRC16
_L | CRC16
_H | | Query I | Query Message from Master (Write) | | | | | | | | | | | |-------------|-----------------------------------|-------------------------|----------------|------------------------|------------------------|---------------|--------------|--|--|--|--| | Addre
ss | Function C ode (Write) | Starting Addr
ess Hi | Starting Addre | No.of Register
s Hi | No.of Register
s Lo | CRC16 L
SB | CRC16
MSB | | | | | | 0x61 | 0x06 | RegAddr_H | RegAddr_L | Data_H | Data_L | CRC16_
L | CRC16_
H | | | | | | Respor | Response Message from Slave | | | | | | | | | | | | Addre
ss | Function C ode (Write) | Starting Addr
ess Hi | Starting Addre | No.of Register
s Hi | No.of Register
s Lo | CRC16 L
SB | CRC16
MSB | | | | | | 0x61 | 0x06 | RegAddr_H | RegAddr_L | Data_H | Data_L | CRC16_
L | CRC16_
H | | | | | # **Example** 1. Modify baud rate | Query I | Query Message from Master (Write) | | | | | | | | | | | |-------------|-----------------------------------|-------------------------|----------------|------------------------|------------------------|---------------|--------------|--|--|--|--| | Addre
ss | Function C ode (Write) | Starting Addr
ess Hi | Starting Addre | No.of Register
s Hi | No.of Register
s Lo | CRC16 L
SB | CRC16
MSB | | | | | | 0x61 | 0x06 | 0x00 | 0x65 | 0x00 | 0x03 | 0xD0 | 0x74 | | | | | | Respor | Response Message from Slave | | | | | | | | | | | | Addre
ss | Function C ode (Write) | Starting Addr
ess Hi | Starting Addre | No.of Register
s Hi | No.of Register
s Lo | CRC16 L
SB | CRC16
MSB | | | | | | 0x61 | 0x06 | 0x00 | 0x65 | 0x00 | 0x03 | 0xD0 | 0x74 | | | | | $0x0000: 1200 \\ bps, 0x0001: 2400 \\ bps, 0x0002: 4800 \\ bps, 0x0003: 9600 \\ bps, 0x0004: 19200 192$ 2. Read status register | Query | Query Message from Master (Read) | | | | | | | | | | | |-------------|----------------------------------|-------------------------|----------------------------|------|--------------------|-----------|------------------------|--------------|--------------|--|--| | Addr
ess | Function
Code (R
ead) | Starting A
ddress Hi | Starting Addre
ss
Lo | | No.of Registers Hi | | No.of Regis
ters Lo | CRC16
LSB | CRC16
MSB | | | | 0x61 | 0x03 | 0x00 | 0x27 | 7 | 0x00 | | 0x01 | 0x3D | 0xA1 | | | | Respo | Response Message from Slave | | | | | | | | | | | | Addr
ess | Function
Code (R
ead) | Byte Count | Count Data1 MSE | | В | Data1 LSB | | CRC16
LSB | CRC16
MSB | | | | 0x61 | 0x03 | 0x02 | | 0x00 | 0x01 | | 0x01 | | 0xDD | | | 00 : Status register not ready01 : Status register ready3. Read version number | Query | Query Message from Master (Read) | | | | | | | | | | | |-------------|----------------------------------|----------------------|--------------|------------|--------------------|------------------------|--------------|--------------|--------------|--|--| | Addr
ess | Function
Code (R
ead) | Starting A ddress Hi | Star
ss L | ting Addre | No.of Registers Hi | No.of Regis
ters Lo | CRC16
LSB | CRC16
MSB | | | | | 0x61 | 0x03 | 0x00 | 0x88 | 3 | 0x00 | 0x01 | 0x0D | 0x80 | | | | | Respo | Response Message from Slave | | | | | | | | | | | | Addr
ess | Function
Code (R
ead) | Byte Count | | Data1 MS | B Data1 | | Data1 LSB | | CRC16
MSB | | | | 0x61 | 0x03 | 0x02 | | 0x01 | | 0x02 | | 0xB8 | 0x1D | | | #### 4. Read data | Query Message from Master (Read) | | | | | | | | | | | | | |---|-----------------------------|----------------------|------------|----------------------|---------------------|--|--------------------|--------------|------|---------------------|-----------------|---------------------| | Addr
ess | Function
Code (R
ead) | Starting Ad dress Hi | | | Starting Address Lo | | No.of Registers Hi | | | f Regist
.o | CRC16
LSB | CRC16
MSB | | 0x61 | 0x03 | 0x00 | | 0x28 | 0x00 | | | 0x06 | | 0x4C | 0x60 | | | Response Message from Slave (CO2: 439ppm, Temperature: 27.2"C, Humidity: 48.8%) | | | | | | | | | | | | | | Addr
ess | Function
Code (R
ead) | Byte C
ount | CO2
MSI | 2_Hi
B | CO2_Hi LSB | | CO2_L
o MSB | CO2
LSB | _Lo | Temp_
Hi MS
B | Temp_
Hi LSB | Temp_
Lo MS
B | | 0x61 | 0x03 | 0x0C | 0x4 | 43 0xDB | | | 0x8C | 0x2E | | 0x41 | 0xD9 | 0xE7 | | Tem
p_Lo
LSB | Hum_Hi
MSB | Hum_
Hi LSB | Hun
MSI | m_Lo
B Hum_Lo LSB | | | CRC1
6 LSB | CRC16
MSB | | | | | | 0x2E | 0x42 | 0x43 | 0x3 | Α | 0x1B | | 0x50 | 0x07 | 0x07 | | | | #### www.ubibot.com # **Documents / Resources** **UBIBOT CO2 Probe Concentration Measuring and Monitoring** [pdf] User Guide CO2 Probe Concentration Measuring and Monitoring, CO2 Probe, Concentration Measuring an d Monitoring, Measuring and Monitoring, Monitoring #### References # User Manual Manuals+,