Manuals+ — User Manuals Simplified.

tuya Prepare for Integration with Matter Device User Guide

Home » Tuya » tuya Prepare for Integration with Matter Device User Guide U

tuya'

Prepare for Integration with Matter Device
Version: 20230719
Online Version

Contents
1 Prepare for Integration with Matter Device
2 Prerequisites
3 Configure and integrate with main project
4 Configure and integrate with Extension
Target
5 Configure Matter capabilities
6 Documents / Resources

6.1 References

Prepare for Integration with Matter Device

Before the integration of a Matter device into your project, you must configure the project. For the pairing process
implemented by Tuya, Matter devices are classified into Tuya-enabled Matter devices and third-party Matter
devices. For a thirdparty Matter device, add an extension target to your Xcode project.

Prerequisites

« Before you start, the steps in Fast Integration with Smart Life App SDK must be finished.
« If you require Ul BizBundles, the version of Smart Life App SDK must be the same as that of the Ul BizBundles

to ensure stable pairing and control of devices.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/tuya
https://manuals.plus/tuya/prepare-for-integration-with-matter-device-manual.pdf
https://manuals.plus/#prepare_for_integration_with_matter_device
https://manuals.plus/#prerequisites
https://manuals.plus/#configure_and_integrate_with_main_project
https://manuals.plus/#configure_and_integrate_with_extension_target
https://manuals.plus/#configure_matter_capabilities
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://developer.tuya.com/en/docs/app-development/integrate-sdk?id=Ka5d52ewngdoi
https://developer.tuya.com/en/docs/app-development/introduction?id=Ka8j28bal9erw

Configure and integrate with main project

2.1 Configure entitlements

1. Open the project settings in Xcode.
2. Choose the target of the main project> Signing& Capabilities, and click + Capability.

2
Signing & Capabilities

TarceTs ® |capabilities

&) TuyaAppSDKSampl...

o 1k
MDM Managed Associated Do... A &

Messages Collaboration
Matter Allow Setup Payload

Multipath Allows apps to pass setup code information to pair Matter
ies to their or Apple Home without

Near Field C e having to scan a QR code.

Network Extensions

Personal VPN

Push Naotifications

)} Push to Talk

3. Add the entitlement Matter Allow Setup Payload that is used to handle parsing of Matter QR codes.

4. Add the App Groups entitlement that is used to share data with Matter Extension Target. Set App Group ID to
the same value as Matter Extension Target.

5. Add the Background Modes entitlement and select Uses Bluetooth LE accessories that is used to ensure stable
communication over Bluetooth.

The following figure shows these steps.

~ w= App Groups

AppGroups @ goupem m 9w

Audio, AirPlay, and Picture in Picture
" Location updates

Voice over IP

External accessory communication
Uses Bluetooth LE accessories

Acts as a Bluetooth LE accessory
 Background fetch
| Remote notifications

Background processing
| Uses Nearby Interaction

Push to Talk

3
3% Matter Allow Setup Payload

2.2 Configure Info.plist

1. Open the project settings in Xcode.
2. Choose the target of the main project> Info> Custom iOS Target Prop- erties.

k§ Privacy - Bluetooth Peripheral Usage Description et Use the Bluetooth

500 Amay (4 items)
-meshcop._udp
_matter._tcp
—matterc._udp
_matterd._udp

« Privacy — Bluetooth Peripheral Usage Description
Add the entitlement NSBluetoothPeripheralUsageDescription that is used for privacy and permission purposes
and to provide a user-facing description of the reason for requesting access to Bluetooth peripherals.

« Bonjour services
Matter has a strong dependency on communication on a LAN. In light of this, you must configure Bonjour

services in the file Info.plist of the main project. Example:

<key>NSBonjourServices</key>
<array>
<string>_meshcop._udp</string>
<string> _matter._tcp</string>
<string>_matterc._udp</string>
<string>_matterd._udp</string>
</array>

2.3 Use CocoaPods for fast integration

1. We recommend that you update CocoaPods to the latest version.
2. Add the following code block to the Podfile:

platform :ies, '9.0°

target 'Your_Project_Name' do
poed "ThingSmartMatterKit"

end

3. In the root directory of your project, run pod update.

For more information about CocoaPods, see CocoaPods Guides.

2.4 Initialize module
Follow the instructions in Fast Integration with Smart Life App SDK for iOS and initialize the SDK. Then,
initialize the Matter module.

// Initialize the SDK.
[[TuyaSmartSDK sharedInstance] startWithAppKey:<#your_app_key#> secr
etKey:<#your_secret_key#>];

// Initialize the Matter module.
[ThingSmartMatterActivatorConfig setMatterConfigKey:<#YOUR_APP_GROUP
SIDd>

API description
+ (void)setMatterConfigKey:(NSString *)configKey;

Parameters
Parameter Description
configkey The App Group ID of the project.
Example
Objective-C:
[ThingSmartMatterActivatorConfig setMatterConfigKey:<#YOUR_APP_GROUP
_ID#>];
Swift:

ThingSmartMatterActivatorConfig.setMatterKey(”YDUR_APP_GRDUP _ID")

Configure and integrate with Extension Target

3.1 Things to note

« Xcode 14.1 or later is required.
« i0OS 16.1 or later is required.
« Create Matter Extension Target and use the default code file to perform the steps described in the following

sections.

https://guides.cocoapods.org/
https://developer.tuya.com/en/docs/app-development/integrate-sdk?id=Ka5d52ewngdoi

« Matter Extension Target supports Swift projects only.

3.2 Configure entitlements

1. Open the project settings in Xcode.
2. Choose the target of the main project> Signing& Capabilities, and click + Capability.
3. Add the App Groups entitlement that is used to share data with the target of the main project. Set App Group ID

to the same value as the target of the main project.

3.3 Use CocoaPods for fast integration

1. We recommend that you update CocoaPods to the latest version.
2. Add the following code block to the Podfile:

platform :ios, '9.0'

target 'Your_Matter_ Extension_Target_Name' do
poed "ThingSmartMatterExtensionKit"

end

3. In the root directory of your project, run pod update.

For more information about CocoaPods, see CocoaPods Guides.

3.4 Initialize module
Open the file RequestHandler.swift in the ExtensionTarget project and rewrite the init method.

override imnit ()

API description

+ (void)setMatterConfigKey:(NSString *)configKey;

Parameters

Parameter Description

configKey The App Group ID of the project.
Example
Swift:

override init () {
super.init ()
ThingMatterExtensionSupport.shared.setMatterConfigKey(config Key: <
#YOQUR_APP_GROUP_ID#>)
}
3.5 Use Thing Smart Matter Extension Kit
After the Matter Extension Target project is generated, the file RequestHandler.swift appears in the Extension
project. Use the API methods provided by the system and call ThingSmartMatterExtensionKit as shown in the
following example.

1. Import ThingSmartMatterExtensionKit into the project.
import ThingSmartMatterExtensionKit

2. Make API requests with the methods that are automatically generated by the system, as shown in the following

code block.

https://guides.cocoapods.org/

The callback methods in Request Handler.swift are automatically generated by the system and cannot be

modified.
1 override func validateDeviceCredential(_ deviceCredential: i
Matte i
2 rAddDeviceExtensionRequestHandler.DeviceCredential) async throws {
£) ThingMatterExtensionSupport.shared.
validateDeviceCredential (‘
4 deviceCredential)
5 } |
6 override func selectWi-FiNetwork(from wifiScanResults: [
MatterAd
/ dDeviceExtensionRequestHandler .Wi-FiScanResult]) async throws ->
Mat
8 terAddDeviceExtensionRequestHandler.Wi-FiNetworkAssociation {
9 // Use this function to select a Wi-Fi network for the
devic
10 e if your ecosystem has special requirements.
il // Or, return ~.defaultSystemNetwork ™ to use the iOS
device”
12 s current network.
13 return ThingMatterExtensionSupport.shared.selectWi-
FiNetwork I
14 (from: wifiScanResults)
15 } |
16 override func selectThreadNetwork(from threadScanResults: [
Matte |
17 rAddDeviceExtensionRequestHandler.ThreadScanResult]) async throws
18 MatterAddDeviceExtensionRequestHandler.ThreadNetworkAssociat ion
{
19 // Use this function to select a Thread network for the
devi
20 ce if your ecosystem has special requirements.
il // Or, return ~.defaultSystemNetwork™ to use the default
Thr
272 ead network.
o return ThingMatterExtensionSupport.shared.

selectThreadNetwor
24 k(from: threadScanResults)

are
40 returning rooms that belong to the provided home.

25 }
26 override func commissionDevice(in home: MatterAddDeviceRequest
-H
2] ome?, onboardingPayload: String, commissioningID: UUID) async
throws
28 |
29 // Use this function to commission the device with your
Matt
30 er stack.
31 ThingMatterExtensionSupport.shared.commissionDevice (in:
home
32 , onboardingPayload: onboardingPayload, commissioningID:
commissioni
33 ngID)
34 } |
35 override func rooms(in home: MatterAddDeviceRequest.Home?)
async I
36 -> [MatterAddDeviceRequest1Ropg] { i
27 // Use this function to return the rooms your ecosystem
mana |
38 ges. |
39 // 1f your ecosystem manages multiple homes, ensure you
|
|

Configure

Due to the characteristics of a Matter device, all its capabilities are implemented based on Matter fabrics. Before a
Matter device can be paired, controlled, or managed, you must make API requests to configure basic information
about the Matter device. This configuration must be finished before any Matter services are implemented.

A fabric is a group of networked devices (also known as nodes) that share the same security domain. This
enables secure communications among these nodes within the fabric. Nodes in the same fabric share the same
Certificate Authority’s (CA) top-level certificate (Root of Trust) and within the context of the CA, a unique 64-bit

Matter capabilities

identifier named Fabric ID.
4.1 Sequence diagram
The following figure shows the sequence in which basic Matter information is configured.

4.2 Prepare

Information about Matter is bound with homes. Therefore, at the end of the operation of switching between homes
or initially loading a home, call — loadFabricWithSpaceld to get information about the fabric that is bound with the

home.

sequenceDiagram

participant user as User

participant app as App

participant sdk as SDK

user ->> app: Initially load home or switch between homes

app -»> sdk: Load information about home

sdk -->> app: Return information about home

app -»> sdk: Request loading list of devices

sdk -->> app: Return list of devices

rect rgb(206, 235, 252)
note over app, sdk: Handle Matter capabilities
app —-»> sdk: Prepare information about fabric

sdk --> app: Fabric information loaded
app —->»> sdk: Prepare information about devices
sdk -->> app: Device information prepared

end

user ->> app: Use Matter capabilities

information about fabric

API description

@interface ThingSmartMatterManager : NSObject
+ (instancetype)sharedInstance;
- (void)loadFabricWithSpacelId: (long long)spaceld
success:(ThingSuccessHandler)success
failure: (ThingFailureError)failure;

@end
Parameters
Parameter Description
spaceld The value of HomelD for the current home.
success The success callback.
failure The failure callback.
Example

Objective-C:

- (void)loadMatterCurrentHomeFabric:(long long)homeId {
// Called at the end of the operation of switching between homes
or initially loading a home.
[[ThingSmartMatterManager sharedInstance] loadFabricWithSpaceId:
homeId success: {
NSLog(@"load fabric success");
} failure:"(NSError #*error) {
NSLog(@"load fabric fail");
1;

Swift:

func loadMatterCurrentHomeFabric(homeId: Int64) {
// Called at the end of the operation of switching between homes
or initially loading a home.
ThingSmartMatterManager.sharedInstance().loadFabric(withSpac eId:
homeId) {
print("load fabric success")
} failure: { error in
print("load fabric fail")
}
i

4.3 Prepare information about devices

Different from other types of Tuya-enabled devices, certain information about Matter devices must be prepared in
advance. For this purpose, at the end of loading home information and fabric information, call —
getDevicesFabricNodesWithdevlds :callback: to handle Matter devices for the specified home.

API description

@interface ThingSmartMatterShareManager : NSObject

+ (instancetype)sharedInstance;

- (void)getDevicesFabricNodesWithdevIds: (NSArray <NSString #*>%)devId
s callback:(void (") (NSArray <ThingSmartMatterDeviceNodeModel #*>*resu
1t))callback;

@end
Parameters
Parameter Description
devlds The list of device IDs.

Example
Objective-C:
- (void)loadMatterDeviceInfo {

// Called at the end of "- loadFabric~ and loading devices in th
e home.

[[ThingSmartMatterShareManager sharedInstance] getDevicesFabriclN
odesWithdevIds:deviceIdList callback:” (NSArray<ThingSmartMatterDevic
eNodeModel *> =*result) {

NSLog(@"load matter device node succes");
H;
+
Swift:
func loadMatterDeviceInfo(){
// Called at the end of “- loadFabric~ and loading devices in the
home .

ThingSmartMatterShareManager.sharedInstance() .getDevicesFabr icNode
sWithdevIds (deviceIdList) { modellist in
print("load matter device info success")

Documents / Resources

Prapar o Itegration with Mter Device

tuya Prepare for Integration with Matter Device [pdf] User Guide
Prepare for Integration with Matter Device, Integration with Matter Device, Matter Device

References

. Fast Integration with Smart Life App SDK for iOS-loT App SDK-Tuya Developer
What is Ul BizBundle SDK for i0S?-loT App SDK-Tuya Developer

. Prepare for Integration with Matter Device-loT App SDK-Tuya Developer
« B CocoaPods Guides - Home

« User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/729ad007038e7406565f335ad80da6c663a6dd3fe39fbab1621002d98b04bba8
https://manuals.plus/m/729ad007038e7406565f335ad80da6c663a6dd3fe39fbab1621002d98b04bba8_optim.pdf
https://developer.tuya.com/en/docs/app-development/integrate-sdk?id=Ka5d52ewngdoi
https://developer.tuya.com/en/docs/app-development/introduction?id=Ka8j28bal9erw
https://developer.tuya.com/en/docs/app-development/matter_project_config?id=Kcr4lk8akert0
https://guides.cocoapods.org/
https://manual.tools/?p=12116452#MTA0LjI4LjIzNC4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	tuya Prepare for Integration with Matter Device User Guide
	Prepare for Integration with Matter Device
	Prerequisites
	Configure and integrate with main project
	Configure and integrate with Extension Target
	Configure Matter capabilities
	Documents / Resources
	References

