TRINAMIC TMC2160-EVAL Evaluation Kit User Guide Home » TRINAMIC » TRINAMIC TMC2160-EVAL Evaluation Kit User Guide 1 #### **Contents** - 1 TRINAMIC TMC2160-EVAL Evaluation Kit - **2 Product Information** - **3 Product Usage Instructions** - 4 Features - **5 Applications** - 6 Simplified Block Diagram - 7 Getting Started - 7.1 First Start-Up - **8 Hardware Information** - 9 Evaluation Features in the TMCL-IDE - **10 Revision History** - 11 Documents / Resources **TRINAMIC TMC2160-EVAL Evaluation Kit** #### **Product Information** The TMC2160-EVAL is an evaluation board designed for evaluating all features of the TMC2160. It is part of TRINAMIC's user-friendly plug-in system for chip evaluation. The board can be connected to Landungsbruecke, the associated base board, using the dedicated connector board called Eselsbruecke. Eselsbruecke offers test points for every connector pin. The evaluation board features a simplified block diagram, diagnostic outputs, SPI interface, power supply charge pump, control register set, CLK oscillator/selector, step/direction inputs, step multiplier, standstill current reduction, protection & diagnostics, spread cycle, stealthChop, stallGuard2, coolStep, and dcStep. It also includes a MOSFET driver and differential sensing. The board requires the TMCL-IDE software for configuration and control. ## **Product Usage Instructions** ## **Getting Started** 1. Connect Landungsbruecke or Startrampe and the TMC2160 evaluation board using Eselsbruecke as shown in Figure 1. #### NOTICE: The Landungsbruecke or Startrampe operates on USB Power Supply. All other voltages are generated from V_M. The evaluation kit only works when V_M is applied. ## First Start-Up 1. Make sure that the latest version of the TMCL-IDE is installed. The TMCL-IDE can be downloaded from #### www.trinamic.com/support/software/tmcl-ide/. - 2. Open the TMCL-IDE and connect the Landungsbruecke or Startrampe via USB to the computer. For Windows 10, no driver is needed. On Windows 7 and 8 systems, the TMCL-IDE will install the driver automatically. - 3. Verify that the Landungsbruecke or Startrampe is using the latest firmware version. The firmware version is shown in the device tree displayed in the TMCL-IDE main window. Refer to Figure 2 for reference. - 4. The TMCL-IDE 3.0 provides a Register Browser window that allows access to the registers of the TMC2160. Open the Register Browser window by clicking on the Register Browser entry in the tree view on the left side of the TMCL-IDE main window. #### **Hardware Information** All design files for the evaluation boards are available for free. ECAD files, Gerber data, BOM, and PDF copies can be obtained. The ECAD files are typically in KiCAD format, but some older boards may be available in Eagle, Altium, or PADS format. Please refer to the schematics for jumper settings and input/output connector descriptions. ## TMC2160-EVAL Evaluation Kit The TMC2160-EVAL is designed for evaluating all features of the TMC2160. The evaluation board is part of TRINAMICs user-friendly plug-in system for chip evaluation. Just connect the TMC2160-EVAL with Landungsbruecke, the associated base board. Therefore, use the dedicated connector board, called Eselsbruecke. Eselsbruecke o'ers test points for every connector pin. ## **Features** - 2-phase stepper motor up to 4.6A coil current (6.5A peak) - Supply Voltage 8. . . 55V DC - SPI interface - Step/Direction interface with microstep interpolation MicroPlyer™ - StealthChop™ silent PWM mode - SpreadCycle™ smart mixed decay - StallGuard2™ load detection - CoolStep™ automatic current scal-ing ## **Applications** - Laboratory Automation - Factory Automation - Sewing Machines - 3D Printers - O°ce Automation - Liquid Handling - CCTV - ATM - Pumps and Valves ## **Simplified Block Diagram** ## **Getting Started** ## You need - TMC2160-EVAL - Landungsbruecke or Startrampe with latest firmware (We recommend using the Landungs-bruecke as it o'ers faster USB communication.) - Eselsbruecke - · Stepper motor - Power Supply - · PC with USB interface - Latest TMCL-IDE V3.0 and PC - · Cables for interface, motor and power ## **Precautions** - Do not mix up connections or short-circuit pins. - Avoid bounding I/O wires with motor wires. - Do not exceed the maximum rated supply sup-ply voltage! - Do not connect or disconnect the motor while powered! - · Start with power supply off! Connect together Landungsbruecke or Startrampe and the TMC2160 evaluation board using the Esels-bruecke as shown infigure 1. Figure 1: Getting started ## **NOTICE** The Landungsbruecke or Startrampe operates on USB Power Supply. All other voltages are generated from V_M. The evaluation kit only works when V_M is applied. ## First Start-Up - 1. Make sure that the latest version of the TMCL-IDE is installed. The TMCL-IDE can be downloaded from www.trinamic.com/support/software/tmcl-ide/. - 2. Open the TMCL-IDE and connect the Landungsbruecke or Startrampe via USB to the computer. For Windows 10 no driver is needed, on Windows 7 and 8 systems the TMCL-IDE will install the driver automatically. - 3. Verify that the Landungsbruecke or Startrampe is using the latest firmware version. The firmware version is shown in the device tree which is displayed in the TMCL-IDE main window. Figure 2: Firmware Version - 4. The TMCL-IDE 3.0 needs room to show all important information and to provide a good overview. Therefore, arrange the main window related to your needs. We recommend using full screen. For evaluation boards it is essential to have access to the registers of the TMC2160. Therefore open the Register Browser window by clicking on the Register Browser entry in the tree view on the left side of the TMCL-IDE main window. - 5. On the top edge of the evaluation board you can find a pin header for connecting an external step/di-rection generator (for example a signal generator or a microcontroller board or some other motion controller). These external step/direction inputs are ORed toghether with the step/direction signals that the Landungsbruecke or Startrampe can generate. Hence it is possible to use the position mode and the velocity mode in the TMCL-IDE for the first tests. Later an external step/direction generator can be used while still using the Landungsbruecke or Startrampe togehter with the TMCL-IDE for configuring the TMC2160. Figure 3: Pin Headers on the TMC2160-EVAL ## **Hardware Information** All design files for our evaluation boards are available for free. We o'er the original ECAD files, Gerber data, the BOM, and PDF copies. Typically, the ECAD files are in KiCAD format. Some (older) evaluation boards may only be available in Eagle, Altium, or PADS format. - Please check schematics for Jumper settings and input/output connector description. - These files can be downloaded from the evaluation boards' website directly at https://www.trinamic.com/support/eval-kits/. #### Note If a file should be missing on the website or anything else should be wrong please send us a note. ## **Evaluation Features in the TMCL-IDE** This chapter gives some hints and tips on using the functionality of the TMCL-IDE, e.g., how to use the velocity mode or using the wizards. #### Note In order to achieve good settings please refer to descriptions and cowcharts in the TMC2160 data sheet. The register browser of the TMCL-IDE provides help-ful information about any currently selected parameter. Beyond that, the data sheet explains concepts and ideas which are essential for understanding how the registers are linked together and which setting will fit for which kind of appli-cation. For getting more familiar with the evaluation kit in the beginning of your examinations, drive the motor using velocity mode and/or positioning mode first. Beyond this, the direct mode function can be used. This way, TMCL commands can be sent to the evaluation board system. #### **Velocity Mode** To move the motor in velocity mode, open the velocity mode tool by clicking the appropriate entry in the tool tree. In the velocity mode tool you can enter the desired velocity and acceleration and then move the motor using the arrow buttons. The motor can be stopped at any time by clicking the stop button. Open the velocity graph tool to get a graphical view of the actual velocity. #### Note In order to get a more accurate graphical velocity view, close the register browser window when using the velocity graph. Figure 4: Driving the motor in velocity mode (TMCL-IDE provides similar view for TMC2160-EVAL) ## **Position Mode** To move the motor in position mode, open the position mode tool by clicking the appropriate entry in the tool tree. In the position mode tool you can enter a target position and then start positioning by clicking the Absolute or Relative Move button. The speed and acceleration used for positioning can also be ad-justed here. Open the position graph tool to get a graphical view of the actual position. #### Note In order to get a more accurate graphical position view, close the register browser window when using the position graph. Figure 5: Driving the motor in position mode (TMCL-IDE provides similar view for TMC2160-EVAL) ## **Revision History** #### **Document Revision** | Version | Date | Author | Description | |---------|-------------|--------|--| | 1.00 | 2018-AUG-30 | ОК | Initial release. | | 1.01 | 2019-MAR-19 | ОК | Maximum motor current value corrected. | | 1.02 | 2020-FEB-27 | OK | Changed voltage range. | ©2020 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at www.trinamic.com. ## **Documents / Resources**