
Home » tp-link » tp-link Linux Installation Guide

tp-link Linux Installation Guide

tp-link Linux Installation Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/tp-link
https://manuals.plus/tp-link/linux-manual.pdf

Contents
1 Development Environment
2 Compile the Driver

2.1 Compilation tool and kernel sources
2.2 Compile the Driver

3 Load the Driver
4 Development Environment
5 Compile the Driver

5.1 Compilation tool and kernel sources
5.2 Compile the Driver

6 Load the Driver
7 Development Environment
8 Compile the Drive

8.1 Compile Kernel source
8.2 Compile the Driver Source

9 Load the Driver
10 Development Environment
11 Compile the Driver

11.1 Install the Kernel Header File
12 Load the Driver
13 Use the Graphical Interface
14 Identify the Device
15 Create the Interface

15.1 Change the Interface Status to Up
16 Start wpa_supplicant in the
background

16.1 Scan Wireless Networks (SSID)
16.2 Connect to the AP
16.3 Enable DHCP client

17 Documents / Resources
17.1 References

18 Related Posts

Development Environment

The development environment in Ubuntu is required as follows:

Development Environment

OS Ubuntu 16.04 LTS

Kernel version 4.13.0-36-generic

Gcc version 5.4.0

Compile the Driver

Compilation tool and kernel sources

Before you compile the driver, please make sure you have the correct compile tool and kernel sources. In Ubuntu
16.04 LTS, we can install compile tool gcc by command “apt-get install gcc

$ apt-get install gcc

Note: We recommend you install the same version tool to compile the driver. For example:

According to the command “cat /proc/version”, you could see your Ubuntu 16.04 LTS system is compiled by
gcc5.4.0. By default, gcc5.4.0 is already installed in Ubuntu 16.04 LTS, you could use gcc5.4.0 to compile the
driver directly.

Generally, compatible kernel headers are already built in Ubuntu 16.04 LTS, so you don’t need to separately
download and compile the kernel sources. However, if no related kernel headers are integrated in your system,
please install the kernel sources first.

Compile the Driver

Use Terminal to go to the driver directory and run the following commands to compile the driver.

$ make clean

$ make

After compiling, you can see a name of the chip.ko file is stored in the directory of the driver.

Load the Driver

Here we show the 88x2bu.ko wireless driver loading process as an example. Run the following command to load
the driver.

$ sudo cp 88x2bu.ko /lib/modules/[kernel version]/kernel/drivers/net/wireless/ #[kernel version] is the directory

name of the system kernel version

$ sudo depmod –a

$ sudo modprobe 88x2bu.ko

Or directly use insmod to load the driver.

$ sudo insmod 88x2bu.ko

After loading the driver, run the following command to check if the driver is successfully loaded.

$ lsmod

Mint 18.03

Development Environment

The development environment in Mint is required as follows�

Development Environment

OS Mint 18.03

Kernel version 4.10.0-38.generic

Gcc version 5.4.0

Compile the Driver

Compilation tool and kernel sources

Before you compile the driver, please make sure you have the correct compile tool and kernel sources. In Mint, we
can install compile tool gcc by command “apt-get install gcc”

$ apt-get install gcc

Note: We recommend you install the same version tool to compile the driver. For example:

According to the command “cat /proc/version”, you could see your Mint system is compiled by gcc5.4.0, so we
should use gcc5.4.0 to compile the driver. Generally, compatible kernel headers are already built in Mint, so you
don’t need to separately download and compile the kernel sources. However, if no related kernel headers are
integrated in your system, please install the kernel sources first.

Compile the Driver

Use Terminal to go to the driver directory and run the following commands to compile the driver.

$ make clean

$ make

After compiling, you can see a name of the chip.ko file is stored in the directory of the driver.

Load the Driver

Here we show the 88x2bu.ko wireless driver loading process as an example. Run the following command to load
the driver.

$ sudo cp 88x2bu.ko /lib/modules/[kernel version]/kernel/drivers/net/wireless/

$ sudo depmod -a

$ sudo modprobe 88x2bu

Or directly use insmod to load the driver

$ sudo insmod 88x2bu.ko

After loading the driver, run the following command to check if the driver is successfully loaded.

$ lsmod

Raspberry Pi3

Development Environment

The development environment in Raspberry Pi 3 is required as follows

Development Environment

OS Kali 2018.1

Kernel Source Version 4.14.0-kali3-amd64

Compile the Drive

Before you compile the driver, please make sure you have the correct compile tool and kernel sources.

 Compile Kernel source

Here we illustrate the instructions for local building to compile the driver for Linux.

Download and Install Tools

Note: Before local building, make sure your raspberrypi system is connected to the internet

Install Git, bc and other related tools.

$ sudo apt-get install git bc

Get Kernel source

Click the following links to download raspberrypi kernel source and other related tools.

https://github.com/raspberrypi/linux

https://github.com/raspberrypi/tools

Before local building, make sure if you need to update the kernel. If your adapter supports the current kernel
version, you don’t need to update the kernel, and just download the kernel sources of this version. If you have to
update the kernel, choose the kernel sources of the desired version. Here we download the version 4.9 kernel

https://github.com/raspberrypi/linux
https://github.com/raspberrypi/tools

sources. Create Linux-src directory in the local user’s root directory to store kernel sources. If you have installed
Git, you can use Git to obtain Linux kernel sources from Github; if you directly download the .zip file, use the
following jar command to decompress this file.

$ sudo jar –xf XXX.zip

Note: It is recommended not to use the unzip software to decompress the .zip file.

Modify Kernel

Run the following commands to modify Linux kernel. You can also modify the kernel according to your demands.

$ cd linux /* go the directory of kernel sources */

$ KERNEL=kernel7

$ make bcm2709_defconfig

Note: The instructions for Raspberry Pi3 and other versions of Raspberry are slightly different, for details of other
versions, please refer to the instructions on Raspberry official website .

Compile the Kernel

Run the following commands to compile and install the kernel and related device tree. It may take a few minutes.

$ make –j4 zImage modules dtbs

$ sudo make modules_install

$ sudo cp arch /arm/boot/dts/*.dtb /boot/$ sudo cp

arch/arm/boot/dts/overlays/*.dtb* /boot/overlays/

$ sudo cp arch/arm/boot/dts/overlays/README /boot/overlays/

$ sudo cp arch/arm/boot/zImage /boot/$KERNEL.img

Note: “-j4” refers to using Raspberry Pi3 and 4 to compile to accelerate the compilation process.

Power off the development board of Raspberry Pi3 and then run the following command to confirm the kernel
version.

$ uname –a

or

$ cat /proc/version

Compile the Driver Source

Go to the driver’s directory, open the Makefile file to support Raspberry Pi3. By default, the

CONFIG_PLATFORM_I386_PC macro is enabled. Set the value for

CONFIG_PLATFORM_BCM2709 to y, and set the value for

CONFIG_PLATFORM_I386_PC to n.

CONFIG_PLATFORM_BCM2709 = y

CONFIG_PLATFORM_I386_PC = n

CONFIG_PLATFORM_ANDROID_X86 = n

After setting the parameters, use Terminal to go to the directory in which the driver source file is stored. Run the
following commands to compile the driver.

$ make clean

$ make

Load the Driver

Here we show the 8192eu.ko wireless driver loading process as an example. Run the following command to load
the driver.

$ sudo cp 8192eu.ko /lib/modules/[kernel version]/kernel/drivers/net/wireless/

$ sudo depmod -a

$ sudo modprobe 8192eu

Or directly use insmod to load the driver.

$ sudo insmod 8192eu.ko

After loading the driver, run the following command to check if the driver is successfully loaded.

Kali 2018.1

Development Environment

The development environment in Kali 2018.1 is required as follows

Development Environment

OS Kali 2018.1

Kernel Source Version 4.14.0-kali3-amd64

Compile the Driver

 Install the Kernel Header File

Before compiling the driver in Kali 2018, make sure you have installed and compiled the right Linux header file.
Follow the instructions to install and compile the Linux header file.

Update the Software Source

Run the following commands to update the software source and related tools

$ sudo apt-get clean

$ sudo apt-get update

$ sudo apt-get upgrade

Install the Kernel Header File

1. Method 1: Run the following command to install the kernel header file.

$ sudo apt-get install linux-headers-$(uname -r)

After running this command, the system will automatically find the matched kernel header file to download and

install it. If the Kali server is updated, you may not find the specific file, in this case, you can manually

download and install the header file

2. Method 2: Manually Download and Compile to Install

Find the matched kernel header file in the download source of your Kali software. Click the following link to go

to the official website to download Linux header file and related tools.

http://http.kali.org/kali/pool/main/l/linux

Check the system version of Kal

$ uname -r

The system version we used here is shown as below

Download and compile linux-kbuild In the Kali download links, find the linux kbuild file of your system. Here we

choose linux-kbuild 4.14_4.14.17.-1kali_amd64.deb as an example.

After downloading the file, use Terminal to go to the directory and run the following command to install the file.

$ sudo dpkg -i linux-kbuild-4.14_4.14.17-1kali_amd64.deb

http://http.kali.org/kali/pool/main/l/linux

Download and compile linux-header-common In the Kali download links, find the linux-header-common file of your
system. Here we choose linux-header-4.14.0-kali3-common_4.14.17-1kali_all.deb as an example.

After downloading the file, use Terminal to go to the directory and run the following command to install the file.

$ sudo dpkg -i linux-header-4.14.0-kali3-amd64_4.14.17-1kali_amd64.deb

Run the following command to check if the kernel header file is successfully installed.

$ dpkg-query -s linux-headers-$(uname -r)

detailed linux-header information.

Check the /lib/modules/<kernel-version>/ directory and you will see a build link file.

Compile Driver Source

Use Terminal to go to the driver directory. Run the following commands to compile the driver.

$ make clean

$ make

After compiling, you can see a name of the chip.ko file is stored in the directory of the driver.

Load the Driver

Here we show the 88x2bu.ko wireless driver loading process as an example. Run the following command to load
the driver.

$ sudo cp 88x2bu.ko /lib/modules/[kernel version]/kernel/drivers/net/wireless/

$ sudo depmod -a

$ sudo modprobe 88x2bu

Or directly use insmod to load the driver.

$ sudo insmod 88x2bu.ko

After loading the driver, run the following command to check if the driver is successfully loaded.

$ lsmod

Use the Graphical Interface

Ubuntu, Mint, Raspberry Pi and Kali all provide friendly graphical interface. After the adapter driver is successfully
installed, you can use the graphical interface to manage your wireless settings. The interfaces for different system
version are slightly different and here we use the interfaces for Kali 2018.1 as an example for illustration.

1. After successfully loading the driver, you will see a network connection icon in the task bar. Choose Wi-Fi Not

Connected > Wi-Fi Settings to display the available wireless networks.

2. Select TP-Link_D003_5G and enter its password to connect to this network

3. After connecting to this network, you can check its detailed wireless settings.

Use the Command Line

You can use commands to manage your wireless setting in Linux. Here we use the interfaces for Kali 2018.1 as
an example for illustration.

Identify the Device

Inert the USB wireless adapter, and run the following command to check if the adapter is identified.

$ lsusb

Create the Interface

Run the following command to check if the wireless network interface is created.

Change the Interface Status to Up

Check if the WLAN interface is up. If not, run the following command. Here we use wlan1 as an example.

$ ifconfig wlan1 up

If it failed to change to up, run the following command to set the state again.

$ rfkill unblock wifi

$ ifconfig wlan1 up

Start wpa_supplicant in the background

Run the following command:

$ wpa_supplicant –Dnl80211 –iwlan1 –c ./ wpa_0_8.conf -B

Note: wpa_0_8.conf is a file in the current driver directory, go to the driver directory when running the command.

If the command above is not effective, run the following command to end the wpa_supplicant procedure and then
run the above command again.

$ killall wpa_supplicant

If your Linux kernel does not support 802.11, run the following command.

$ wpa_supplicant -Dwext -iwlan0 -c ./wpa_0_8.conf -B

Scan Wireless Networks (SSID)

Run the following commands.

$ wpa_cli –p /var/run/wpa_supplicant scan

$ wpa_cli –p /var/run/wpa_supplicant scan_results

Connect to the AP

1. Open

Run the following commands

$ wpa_cli –p /var/run/wpa_supplicant remove_network 0

$ wpa_cli –p /var/run/wpa_supplicant ap_scan 1

$ wpa_cli –p /var/run/wpa_supplicant add_network

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 ssid ‘”tplink”‘ //tplink is the SSID of the desired AP.

The SSID is in double quotation marks and then as a whole enclosed by single quotation marks.

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 key_mgmt NONE

$ wpa_cli –p /var/run/wpa_supplicant select_network 0

2. WEP40 with open system

$ wpa_cli –p /var/run/wpa_supplicant remove_network 0

$ wpa_cli –p /var/run/wpa_supplicant ap_scan 1

$ wpa_cli –p /var/run/wpa_supplicant add_network

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 ssid ‘”tplink”‘

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 key_mgmt NONE

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 wep_key0 1234567890

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 wep_tx_keyidx 0

$ wpa_cli –p /var/run/wpa_supplicant select_network 0

3. WEP40 with shared key

$ wpa_cli –p /var/run/wpa_supplicant remove_network 0

$ wpa_cli –p /var/run/wpa_supplicant ap_scan 1

$ wpa_cli –p /var/run/wpa_supplicant add_network

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 ssid ‘”tplink”‘

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 key_mgmt NONE

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 wep_key0 1234567890

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 wep_tx_keyidx 0

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 auth_alg SHARED

$ wpa_cli –p /var/run/wpa_supplicant select_network 0

4. WEP 104 with open system

$ wpa_cli –p /var/run/wpa_supplicant remove_network 0

$ wpa_cli -p /var/run/wpa_supplicant ap_scan 1

$ wpa_cli -p /var/run/wpa_supplicant add_network

$ wpa_cli -p /var/run/wpa_supplicant set_network 0 ssid ‘”tplink”‘

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 key_mgmt NONE

$ wpa_cli -p /var/run/wpa_supplicant set_network 0 wep_key0

12345678901234567890123456

$ wpa_cli -p /var/run/wpa_supplicant set_network 0 wep_tx_keyidx 0

$ wpa_cli -p /var/run/wpa_supplicant select_network 0

5. WEP 104 with open system

$ wpa_cli –p /var/run/wpa_supplicant remove_network 0

$ wpa_cli –p /var/run/wpa_supplicant ap_scan 1

$ wpa_cli –p /var/run/wpa_supplicant add_network

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 ssid ‘”tplink”‘

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 key_mgmt NONE

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 wep_key0

12345678901234567890123456

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 wep_tx_keyidx 0

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 auth_alg SHARED

$ wpa_cli –p /var/run/wpa_supplicant select_network 0

Note:

If the WEP key is ASCII, run the following command: #WEP40: wpa_cli -p/var/run/wpa_supplicant

set_network 0 wep_key0 ‘”12345″‘ #WEP104: wpa_cli -p/var/run/wpa_supplicant set_network 0

wep_key0 ‘”1234567890123″‘ If the index for WEP key is 0-3, run the following command #wpa_cli -

p/var/run/wpa_supplicant set_network 0 wep_keyX 12345678901234567890123456 #wpa_cli

p/var/run/wpa_supplicant set_network 0 wep_tx_keyidx X

6. TIKP/AES

$ wpa_cli –p /var/run/wpa_supplicant remove_network 0

$ wpa_cli –p /var/run/wpa_supplicant ap_scan 1

$ wpa_cli –p /var/run/wpa_supplicant add_network

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 ssid ‘”tplink”‘

$ wpa_cli –p /var/run/wpa_supplicant set_network 0 psk ‘”12345678″‘

$ wpa_cli –p /var/run/wpa_supplicant select_network 0

Enable DHCP client

Run the following command

$ dhclient wlan1

After running the command, the adapter will get an IP assigned by the AP. Then you can run the ping command to
check if the wireless connection is successful.

Note:

1. Run the commands under the root account.

2. If you use if config command to confirm you have obtained the IP address and use ping command to confirm

you wireless connection is successful, but the internet is still unavailable, you can run the following commands

to change the default system

gateway to the router’s LAN IP.

$ route del default wlan0 : //Delete the default gateway of wlan0

$ route add default gw 192.168.1.1 : //Add the router’s LAN IP as the default gateway.

Documents / Resources

tp-link Linux [pdf] Installation Guide
Linux

https://manuals.plus/m/adf16209ef94c87d19d8efb9ec7992235576463e96663bf55cf1831ae5b4a59f
https://manuals.plus/m/adf16209ef94c87d19d8efb9ec7992235576463e96663bf55cf1831ae5b4a59f_optim.pdf

References

 Index of /kali/pool/main/l/linux

 GitHub - raspberrypi/linux: Kernel source tree for Raspberry Pi Foundation-provided kernel builds.

Issues unrelated to the linux kernel should be posted on the community forum at

https://www.raspberrypi.org/forum

 GitHub - raspberrypi/tools

Manuals+,

http://http.kali.org/kali/pool/main/l/linux
https://github.com/raspberrypi/linux
https://github.com/raspberrypi/tools
https://manuals.plus/

	tp-link Linux Installation Guide
	Development Environment
	Compile the Driver
	Compilation tool and kernel sources
	Compile the Driver

	Load the Driver
	Development Environment
	Compile the Driver
	Compilation tool and kernel sources
	Compile the Driver

	Load the Driver
	Development Environment
	Compile the Drive
	Compile Kernel source
	Compile the Driver Source

	Load the Driver
	Development Environment
	Compile the Driver
	Install the Kernel Header File

	Load the Driver
	Use the Graphical Interface
	Identify the Device
	Create the Interface
	Change the Interface Status to Up

	Start wpa_supplicant in the background
	Scan Wireless Networks (SSID)
	Connect to the AP
	Enable DHCP client

	Documents / Resources
	References

