
Home » Tektronix » Tektronix Simplifying Test Automation With tm_ Devices And Python User Guide

Simplifying Test
Automation with

tm_devices and Python
HOW-TO GUIDE

Tektronix Simplifying Test Automation With tm_ Devices And
Python User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/tektronix
https://manuals.plus/tektronix/simplifying-test-automation-with-tm_-devices-and-python-manual.pdf

Contents
1 Simplifying Test Automation With tm_ Devices And
Python
2 What is a Programmatic Interface?
3 What is the tm_devices Package?
4 Setting up your Environment
5 Example Code
6 Using IntelliSense/Code Completion
7 Docstring Help
8 Extra Resources
9 Troubleshooting
10 Appendix A – Offline Installation of tm_devices
11 Documents / Resources

11.1 References

Simplifying Test Automation With tm_ Devices And Python

HOW-TO GUIDE
Simplifying Test Automation with tm_devices and Python
Engineers across many industries use automation to extend the capabilities of their test instruments. Many
engineers choose the free programming language Python to accomplish this. There are many significant
advantages that make Python a great programming language for automation:

Versatility

Easy to teach and learn

Code readability

Widely available knowledge bases and modules

There are two main use cases for automation:

Routines that mimic human behavior to automate the front panel and save time e.g., automated compliance

testing.

Rather than sitting down at the scope, adding appropriate measurements, and writing down the results every

time you need to test a new part, the engineer develops a script that does all of that and displays the result.

Uses that extend the functionality of the instrument; for example: measurement logging, validation, or quality

assurance.

Automation allows the engineer to execute complex tests without many of the downsides inherent to those

tests. There’s no need for an operator to set up the scope and manually record the results, and the test can be

performed the same way every time.

This how-to guide will cover what you need to get started programming scopes in Python, including the basics

of programmatic interfaces and how to download and run an example.

What is a Programmatic Interface?

A programmatic interface (PI) is a boundary or set of boundaries between two computing systems that can be
programmed to execute specific behaviors. For our purposes, it ’s the bridge between the computer that runs
every piece of Tektronix test equipment, and the applicatiowritten by an end user. To narrow this even further, it is a
sof commands that can be sent remotely to an instrument which then processes those commands and executes a
corresponding task. The PI Stack (Figure 1) shows the flow of information from the host controller down to the

https://manuals.plus/#simplifying_test_automation_with_tm_devices_and_python
https://manuals.plus/#what_is_a_programmatic_interface
https://manuals.plus/#what_is_the_tm_devices_package
https://manuals.plus/#setting_up_your_environment
https://manuals.plus/#example_code
https://manuals.plus/#using_intellisensecode_completion
https://manuals.plus/#docstring_help
https://manuals.plus/#extra_resources
https://manuals.plus/#troubleshooting
https://manuals.plus/#appendix_a_-_offline_installation_of_tm_devices
https://manuals.plus/#documents_resources
https://manuals.plus/#references

instrument. The application code written by the end user defines the behavior of the target instrument. This is
usually written in one of the development platforms popula in the industry such as Python, MATLAB, LabVIEW,
C++, or C#. This application will send data using the Standard Commands for Programmable Instrumentation
(SCPI) format, which is a standard supported by most test and measurement equipment. SCPI commands are
often sent through a Virtual Instrument Software Architecture (VISA) layer, which is used to facilitate the transfer of
data by including additional robustness (e.g., error checking) to the communication protocol. In some cases,
applications may call a driver which will then send one or more SCPI commands to the VISA layer.

Figure 1. The programmatic interface (PI) stack shows the flow of information between a host controller and
instrument.

What is the tm_devices Package?

tm_devices is a device management package developed by Tektronix that includes a multitude of commands and
functions to help users easily automate tests on Tektronix and Keithley products using the programming language
Python. It can be used in the most popular IDEs for Python and supports code-completion aids. This package
makes coding and test automation simple and easy for engineers with software skills of any level. Installation is
also simple and uses pip, Python’s package-management system.

Setting up your Environment

This section will guide you through the prerequisites and installations to prepare you to do development work with
tm_devices. It also includes instructions that support virtual environments in Python (venvs) to make your projects
easier to manage and maintain, especially if you are just trying this package out before committing to its usage.
Note: If you have an environment without direct access to the internet you will have to modify your steps using the
commands in the appendix. If you are having problems feel free to post in the github discussions for assistance.

Installation and Prerequisites Overview

1. Install Python

a. Python ≥ 3.8

2. PyCharm – PyCharm Installation, Starting a project, and tm_devices installation

3. VSCode – VSCode Installation, Starting a project, and tm_devices installation

PyCharm Community (free) edition
PyCharm is a is a popular Python IDE used by software developers across all industries. PyCharm has an
integrated unit tester which allows users to run tests by file, class, method, or all tests within a folder. Like most
modern IDE’s it has a form of code completion that speeds up your development tremendously over a basic text

https://github.com/tektronix/tm_devices/discussions

editor.
We will walk through the installation PyCharm community edition (free), followed by installing tm_devices in the
IDE and setting up a virtual environment to develop in.

1. Go to https://www.jetbrains.com/pycharm/

2. Scroll past PyCharm Professional to PyCharm Community Edition, click download

3. You should be able to proceed with just the default installation steps. We do not require anything unique.

4. Welcome to PyCharm!

5. Now you will need to create a new project and make sure to set up a virtual environment. Click “New Project”

6. Confirm path for project, make sure “Virtualenv ” is selected

https://www.jetbrains.com/pycharm/

7. Open a terminal. If your view does not include the labeled button at the bottom look for this:

8. Confirm virtual environment is set up by checking for (venv) before the prompt in your terminal

9. Install driver from the terminal

Type: pip install tm_devices

10. Your terminal should be error free! Happy hacking!

Visual Studio Code
Visual Studio Code is another popular free IDE that software developers across all industries use. It is great for
most languages and has extensions for most languages that make coding in this IDE very convenient and
efficient. Visual Studio Code provides IntelliSense which is an extremely useful tool when developing as it aids in
code completion, parameter information, and other information regarding objects and classes. Conveniently,
tm_devices supports code completion that describes the command tree of the objects and classes.
We have an excellent guide on the installation of both Python and Visual Studio Code, including information on
virtual environment setup here.

Example Code

In this section we will step through pieces of a simple code example and highlight some necessary components to
use tm_ devices effectively.
Imports

https://github.com/tektronix/keithley/blob/895b81cb2e84e46bbbf2ec6426b3dc095b243a2a/Instrument_Examples/General/Instructables/Get_Started_with_Instr_Control_Python/Getting%20Started%20with%20Instrument%20Control%20Using%20Python%203%20-%20VS%20Code%20Revision.pdf

These two lines are critical to the effective usage of tm_devices. In the first line we import the DeviceManager.
This will handle the boilerplate connecting and disconnecting of multiple device classes.
In the second line we import a specific driver, in this case the MSO5B.
We setup a context manager with the DeviceManager:

And then when we use the device manager and driver together:

We can instantiate an instrument with a specific command set that matches its model. Just input your instrument ’s
IP address (other VISA addresses work as well).
With these four lines complete, we are able to start writing meaningful and specific automation for the MSO5B!
Code Snippets
Let ’s take a look at a few simple actions –
Setting the Trigger type to Edge

Here’s how you would add and query a peak-to-peak measurement on CH1:

If you wanted to take an amplitude measurement on CH2:

Using IntelliSense/Code Completion

IntelliSense – Microsoft ’s name for Code Completion is a very powerful feature of IDE’s we have tried to exploit as
much as possible.
One of the core barriers to automation with test and measurement devices is the SCPI command set. It is a dated
structure with syntax not widely supported in the development community.
What we have done with tm_devices is create a set of Python commands for each SCPI command. This allowed
us to generate Python code from existing command syntax to avoid manual development of the drivers, as well as
create a structure that is familiar to existing SCPI users. It also maps to the lower-level code that might require
intentional debugging during your program creation. The structure of the Python commands mimics the SCPI (or in
some Keithley cases TSP) commands structure so if you are familiar with SCPI you will be familiar with these.
This is an example of how IntelliSense shows all the commands available with the previously typed command:
In the scrollable list that appears after the dot on scope we can see an alphabetical list of scope command
categories:

Choosing afg we are able to then see a list of AFG categories:

Final command written with the help of IntelliSense:

Docstring Help

As you code, or as you are reading someone else’s code, you can hover over different parts of the syntax to get
that level ’s specific help documentation. The closer you are to the full command syntax the more specific it will
get.

Depending on your IDE conditions you can display both IntelliSense and docstring help at the same time.

With this guide you have seen some of the benefits of Tek ’s python driver package tm_devices and can start your
automation journey. With the easy setup, code completion, and built-in help you will be able to learn without
leaving your IDE, speed up your development time, and code with higher confidence.
There are contribution guidelines in the Github repo if you wish to improve the package. There are plenty of more
advanced examples highlighted in the documentation and within the package contents in the Examples folder.

Extra Resources

tm_devices · PyPI – Package driver download and information
tm_devices Github – Source code, issue tracking, contribution
tm_devices Github – Online Documentation

Troubleshooting

Upgrading pip is usually a good first step to troubleshooting:
In your terminal type: Python.exe -m pip install -upgrade pip
Error: whl looks like a filename, but file does not exist OR .whl is not a supported wheel on this platform.

Solution: Pip installing wheel so that it recognizes the file format.
In your terminal type: pip install wheel
If you are needing to install wheel offline you can follow similar instructions as Appendix A, but it requires the tar.gz
download instead of the .whl file.

Appendix A – Offline Installation of tm_devices

https://pypi.org/project/tm-devices/
https://github.com/tektronix/tm_devices
https://tm-devices.readthedocs.io/stable/

1. On a computer with internet, download the package along with all dependencies to the specified path location

using:

pip download –dest <path to destination> wheel setuptools tm_devices

2. Copy the files to your computer that does not have internet access

3. Then, follow the instructions from the main guide for whichever IDE you are using but swap the install command

for the following:

pip install –no-index –find-links <new path of files> tm_devices

Contact Information:
Australia 1 800 709 465
Austria* 00800 2255 4835
Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777
Belgium* 00800 2255 4835
Brazil +55 (11) 3530-8901
Canada 1 800 833 9200
Central East Europe / Baltics +41 52 675 3777
Central Europe / Greece +41 52 675 3777
Denmark +45 80 88 1401
Finland +41 52 675 3777
France* 00800 2255 4835
Germany* 00800 2255 4835
Hong Kong 400 820 5835
India 000 800 650 1835
Indonesia 007 803 601 5249
Italy 00800 2255 4835
Japan 81 (3) 6714 3086
Luxembourg +41 52 675 3777
Malaysia 1 800 22 55835
Mexico, Central/South America and Caribbean 52 (55) 88 69 35 25
Middle East, Asia, and North Africa +41 52 675 3777
The Netherlands* 00800 2255 4835
New Zealand 0800 800 238
Norway 800 16098
People’s Republic of China 400 820 5835
Philippines 1 800 1601 0077
Poland +41 52 675 3777
Portugal 80 08 12370
Republic of Korea +82 2 565 1455
Russia / CIS +7 (495) 6647564
Singapore 800 6011 473
South Africa +41 52 675 3777
Spain* 00800 2255 4835
Sweden* 00800 2255 4835
Switzerland* 00800 2255 4835
Taiwan 886 (2) 2656 6688
Thailand 1 800 011 931
United Kingdom / Ireland* 00800 2255 4835
USA 1 800 833 9200
Vietnam 12060128
* European toll-free number. If not
accessible, call: +41 52 675 3777
Rev. 02.2022

Find more valuable resources at TEK.COM
Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and
pending. Information in this publication supersedes that in all previously published material. Specification and

http://tek.com

price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade
names referenced are the service marks, trademarks or registered trademarks of their respective companies.
052124 SBG 46W-74037-1

Documents / Resources

Tektronix Simplifying Test Automation With tm_ Devices And Python [pdf] User Guide
48W-73878-1, Simplifying Test Automation With tm_ Devices And Python, Test Automation With
tm_ Devices And Python, Automation With tm_ Devices And Python, tm_ Devices And Python,
Devices And Python, Python

References

 Test and Measurement Equipment | Tektronix

 Test and Measurement Equipment | Tektronix

 PyCharm: the Python IDE for data science and web development

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/e486e9e15b89d943bdd7de1f3fd375cecd4a6a59f57f2a5a23068a6d75876e35
https://manuals.plus/m/e486e9e15b89d943bdd7de1f3fd375cecd4a6a59f57f2a5a23068a6d75876e35_optim.pdf
http://tek.com
http://www.tek.com
https://www.jetbrains.com/pycharm/
https://manual.tools/?p=13263977#MTA0LjI4LjIzNC4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	Tektronix Simplifying Test Automation With tm_ Devices And Python User Guide
	Simplifying Test Automation With tm_ Devices And Python
	What is a Programmatic Interface?
	What is the tm_devices Package?
	Setting up your Environment
	Example Code
	Using IntelliSense/Code Completion
	Docstring Help
	Extra Resources
	Troubleshooting
	Appendix A – Offline Installation of tm_devices
	Documents / Resources
	References

