
Home » tekmodul » tekmodul BG95M3-QPython EVB Development Board Instruction Manual

Contents
1 tekmodul BG95M3-QPython EVB Development
Board
2 Differences from MicroPython
3 Differences from CPython (normale Python)
4 EVB Connection
5 Start-Up Qpython Functions and Commands
6 Documents / Resources

6.1 References
7 Related Posts

tekmodul BG95M3-QPython EVB Development Board

tekmodul BG95M3-QPython EVB Development Board
Instruction Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/tekmodul
https://manuals.plus/tekmodul/bg95m3-qpython-evb-development-board-manual.pdf
https://manuals.plus/#tekmodul_bg95m3-qpython_evb_development_board
https://manuals.plus/#differences_from_micropython
https://manuals.plus/#differences_from_cpython_normale_python
https://manuals.plus/#evb_connection
https://manuals.plus/#start-up_qpython_functions_and_commands
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

Differences from MicroPython

QuecPython is essentially MicroPython running on Quectel modules. Due to the lack of a comprehensive standard
specification in MicroPython, the built-in libraries and the usage of various functions may vary depending on the
developers and hardware platforms. Some QuecPython users may have prior experience developing with
MicroPython on modules such as ESP32, ESP8266, and STM32. To facilitate the migration for these users, the
known differences between QuecPython and MicroPython are listed below:

Some MicroPython standard or dedicated libraries, such as framebuf and network, are not implemented or

built-in in QuecPython.

Some MicroPython standard libraries, such as utime, may have different implementations and feature

completeness in QuecPython compared to modules like ESP32, resulting in differences in performance or

other detailed characteristics.

The organization of certain features in QuecPython may differ from MicroPython. For example, ADC

functionality is generally included in the machine library in MicroPython, but in QuecPython, it is included in the

misc library.

APIs related to specific hardware interfaces such as UART, I2C, and SPI have significant differences between

MicroPython and QuecPython and cannot be used interchangeably.

QuecPython currently does not include the upip functionality, so quick online installation of libraries is not

possible. Manual porting is required.

Compatibility with MicroPython IDE tools such as Thonny and uPyCraft is not guaranteed.

In summary, MicroPython code that runs successfully on modules like ESP32 usually cannot be directly copied

and run in the QuecPython environment without any modifications. Therefore, it is advisable to avoid directly

applying documentation and development experience from other MicroPython hardware modules to

QuecPython development.

Differences from CPython (normale Python)

Unlike traditional CPython development, QuecPython has a much smaller number of built-in libraries (standard

libraries). Although QuecPython does include basic libraries for tasks such as time setting and file

management, the quantity is significantly lower compared to CPython. The names and usage methods of these

standard libraries also have many differences and are not fully compatible.

QuecPython does not have built-in pip functionality, so quick online installation of libraries is not possible.

Manual porting is required.

Due to the syntax differences between QuecPython and CPython, as well as the fact that most QuecPython

libraries cannot run on desktop computers, tools such as VSCode and PyCharm on the desktop can only be

used for simple code editing. The completed scripts need to be manually downloaded to the module for

execution and debugging.

The syntax highlighting and code completion features provided by tools like VSCode and PyCharm are based

on CPython and may not be fully applicable to QuecPython. Therefore, for beginners who have no prior

experience with the Python language, it is not recommended to use overly intelligent IDE tools while writing

code, as the built-in suggestions may be misleading.

EVB Connection

Step 1: Connect EVB

Connect the EVB Type-C port to your PC USB port with a USB Type-C cable for power supply.

Step 2: Power on EVB

Short the two PWK_AUTO pins with a jumper cap to power on the board and it will turn on automatically, or

long press the PWK button after power-on. It is recommended that the time interval between power-on and

pressing the PWK button should be at least 30 ms. After performing the above operations, wait for the power

indicator on the main board to light up (LED PWR lights up blue, PWM lights up green, then EVB should be

recognized in Device Manager.).

SIM Choice
For BG95 EVB, an NB-IoT SIM card should be used. For test we used 1NCE SIM (It should recognize the Telekom
network, send SMS, and support National Roaming).
Tools

QPYcom. This tool is used for debugging code, analyzing logs, uploading python scripts to module, downloading
firmware, merging firmware, and more. Can not modify Python scripts!

VSCode: To write Python scripts. The python scripts written by VSCode must later be imported into QPYcom.

Firmware Flashing
Standard AT firmware or QuecOpen firmware is usually downloaded into a module when the module leaves the
factory. If you want to develop the module based on QuecPython, you need to manually re-download the
dedicated QuecPython firmware into it. https://python.quectel.com/en/download
Note: QuecPython requires a special firmware! It needs to be flashed separately. After flashing this firmware, the
board CANNOT be used for the AT command environment. If development with AT commands is desired, the
corresponding firmware must be flashed again.

Example: BG95_M3 QPython Firmware Flash:

Port Connection BG95M3
REPL Port: REPL stands for Read-Eval-Print-Loop (interactive interpreter). You can debug QuecPython programs
in REPL. Kann python Befehle eingeben (z.B. 5+3) REPL, short for Read-Eval-Print Loop, is a simple interactive
programming environment. REPL typically provides a Command-Line Interface (CLI) that receives user input,
parses and executes it, and then returns the results to the user. In terms of functionality and usage, it is similar to

https://python.quectel.com/en/download

the Command Prompt (CMD) in Windows or the Shell in macOS/Linux.

DM Port: Digital Media Port. For Firmware Flashing.

Start-Up Qpython Functions and Commands

Network Registration (in QPYcom, REPL port)

Import net

net.operatorName() gets the operator information of the current network registration.

net.getModemFun() This method is used to obtain the current functional mode of the module.

net.getState() gets the network registration information. AT+CREG=?

Establish DataCall

Import dataCall

dataCall.getInfo(profileID, ipType)

profileID – PDP ID�range 1~3�

ipType – IP typ�0�IPV4 1�IPV6 2�IPV4&IPV6

If the output is (1, 0, [0, 0, ‘0.0.0.0’, ‘0.0.0.0’, ‘0.0.0.0’]), it means that the network is already registered, but the

data call is not set up. dataCall.setPDPContext(1,0,’iot.1nce.net’,”,”,1) -> return: 0 = successful

The PDP context with the appropriate APN must be set according to the SIM card manufacturer. (In our case,

the SIM card manufacturer is 1NCE, so you need to look for the APN settings for 1NCE).

Table:

Setting Value

APN: iot.1nce.net

Username: Not Required, Leave Empty

Password: Not Required, Leave Empty

Authentication Method: Password Authentication Protocol (PAP)

Internet Protocol: Internet Protocol Version 4 (IPv4)

dataCall.getPDPContext(1) -> return: 0 = successful
dataCall.activate(1) -> return: 0 = successful
dataCall.getInfo(1,0) -> return: (1, 0, [1, 0, ‘100.69.60.50’, ‘8.8.8.8’, ‘8.8.4.4’])

import checkNet
checkNet.waitNetworkReady(60) -> return: (3,1) network ready

References
https://python.quectel.com/doc/Getting_started/en/index.html
https://python.quectel.com/doc/Application_guide/en/background/iot-and-low-code.html

https://python.quectel.com/doc/Getting_started/en/index.html
https://python.quectel.com/doc/Application_guide/en/background/iot-and-low-code.html

https://python.quectel.com/doc/API_reference/en/iotlib/dataCall.html

www.tekmodul.de
quectel@tekmodul.de
089-904118290

Documents / Resources

tekmodul BG95M3-QPython EVB Development Board [pdf] Instruction Manual
BG95M3-QPython EVB Development Board, BG95M3-QPython, EVB Development Board, Dev
elopment Board, Board

References

 tekmodul GmbH | Connecting things. Support embedded.

 tekmodul GmbH | Connecting things. Support embedded.

 dataCall - Data Call - QuecPython

 Introduction to IoT and Low Code Development - QuecPython

 Getting Started with QuecPython - QuecPython

 Download | QuecPython

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://python.quectel.com/doc/API_reference/en/iotlib/dataCall.html
http://www.tekmodul.de
mailto:quectel@tekmodul.de
https://manuals.plus/m/453fafcb911ce675dc7746f0b3fe3bf1cff621d56b58f97ea912429da63e14b9
https://manuals.plus/m/453fafcb911ce675dc7746f0b3fe3bf1cff621d56b58f97ea912429da63e14b9_optim.pdf
http://www.tekmodul.de
http://www.tekmodul.de/
https://python.quectel.com/doc/API_reference/en/iotlib/dataCall.html
https://python.quectel.com/doc/Application_guide/en/background/iot-and-low-code.html
https://python.quectel.com/doc/Getting_started/en/index.html
https://python.quectel.com/en/download
https://manual.tools/?p=13580109#MTA0LjI4LjIzNC4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	tekmodul BG95M3-QPython EVB Development Board Instruction Manual
	tekmodul BG95M3-QPython EVB Development Board
	Differences from MicroPython
	Differences from CPython (normale Python)
	EVB Connection
	Start-Up Qpython Functions and Commands
	Documents / Resources
	References

