

## stryker Blueprint Scan Protocol Software User Guide

Home » stryker » stryker Blueprint Scan Protocol Software User Guide 🖺



#### **Contents**

- 1 stryker Blueprint Scan Protocol Software User Guide
  - 1.1 Introduction
  - 1.1.1 Blueprint scan protocol
  - 1.2 Patient preparation and scan instructions
    - 1.2.1 Patient prep
    - 1.2.2 Breathing instructions
    - 1.2.3 Scan range
    - 1.2.4 Metal Artifact Reduction (MAR)/metal suppression software
  - 1.3 Blueprint scan protocols
    - 1.3.1 GE scanners
    - 1.3.2 Siemens scanners
    - 1.3.3 Toshiba/Canon scanners
    - 1.3.4 Philips scanners
  - 1.4 Uploading DICOM images via the Blueprint cloud
    - 1.4.1 How to register for a Blueprint CT scan technologist account
    - 1.4.2 Accessing your online account (the place where you upload DICOM
    - 1.4.3 Adding an ordering physician to your upload list
    - 1.4.4 Uploading a DICOM to the ordering physician's Blueprint account
- 2 Documents / Resources
  - 2.1 References
- **3 Related Posts**

stryker Blueprint Scan Protocol Software User Guide

# *s*tryker

**Blueprint** ®

Scan protocol



#### Introduction

#### Blueprint scan protocol

This document describes the guidelines and parameters for a shoulder CT scan (without contrast) following the Blueprint protocol and how the images are then processed in the Blueprint software.

The software creates a 3D model (using only the thin axial images) which the surgeon uses to "virtually" plan a shoulder replacement surgery utilizing the Stryker implant portfolio.



The thin axial images can be uploaded directly into the ordering physician's Blueprint account via our secure cloud.

If the physician requests the images be uploaded to the Blueprint Cloud, please refer to page 7 for full instructions. Should you not be able to upload to the physician's Blueprint account, the thin axial images may need to be burned to a CD or USB drive if the facilities PACS software will not allow the surgeon to download the entire axial DICOM series.

If you have any questions or require any assistance, please contact the Blueprint Team.

Email: Blueprint\_us@stryker.com

Phone: 855.378.1459

Managed 8:00am-5:00pm CST

If you would like to see what else we are accomplishing at Stryker utilizing the Blueprint software, please visit <a href="https://www.shoulderblueprint.com">www.shoulderblueprint.com</a>

## Patient preparation and scan instructions

#### Patient prep

Place patient supine on the table with humerus along the trunk of the patient. Arm/humerus is in the neutral position with the patient's thumb up.

ISO-center the patient to avoid any out of field artifact. You may place a small pillow between the humerus and the trunk of the patient.

If the patient is unable to be positioned with the humerus along their trunk in neutral position, they can bend the elbow with the hand across the stomach.



Position of the patient in the machine

Full scan of the scapula

#### **Breathing instructions**

Patient is to hold their breath. If a breath hold is not possible, shallow breathing is necessary to prevent motion.

#### Scan range

## Without metal or a cement spacer in the shoulder

Start the scan a few slices above the AC joint, include the entire scapula and a few slices below the inferior angle of the scapula. The medial border of the scapula must be shown in the scan. The DFOV must be between 25 cm and 32 cm.

## With metal or a cement spacer in the shoulder

Start the scan a few slices above the AC joint, include the entire scapula and 10 cm below the current implant (when possible) without exceeding the maximum DFOV of 32 cm. The medial border of the scapula must be shown in the scan.



Full scan 10 cm below current metal implant

Metal Artifact Reduction (MAR)/metal suppression software

We strongly recommend patients with metal to be done on CT scanners using metal artifact reduction/ suppression software, if available.

No gantry tilt. Reformatted images are not accepted in the software.

#### Note:

Axial slice thickness must not be greater than 1.25 mm. The entire glenohumeral joint and scapula must be scanned. See parameters for scan range and DFOV.

## **Blueprint scan protocols**

### **GE** scanners

Start the scan a few slices above the AC joint, include the entire scapula and a few slices below the inferior angle of the scapula. The medial border of the scapula must be shown in the scan.

If an implant is present, include the entire scapula and 10 cm below the current implant (when possible) without exceeding the maximum DFOV of 32 cm. The medial border of the scapula must be shown in the scan.

## Important:

- · No gantry tilt
- No contrast
- · All slices must have the same field of view and same slice spacing
- Blueprint requires 1.25 x 1.25 mm axial images (do not exceed 1.25 mm)
- · No interval/overlapping slices
- Matrix must be 512 x 512
- · No reformatted images will be accepted

#### **Metal Artifact Reduction**

We strongly recommend patients with metal to be done on CT scanners using metal artifact reduction/suppression software, if available.

## If MAR is not available, increase KVP to 140.

| Parameter         | Setting                        |
|-------------------|--------------------------------|
| Modality          | CT Shoulder without contrast   |
| Kernel /algorithm | Bone                           |
| KVP               | 120 or 140 if metal is present |
| mA                | Auto                           |
| Slice thickness   | 1.25 mm x 1.25 mm              |
| Detector coverage | Maximum                        |
| Pitch             | 0.9 or less                    |
| Rotation time     | 1 second or less               |
| Exposure time     | 1000 ms                        |
| Matrix            | 512 x 512                      |
| DFOV              | 25 cm to 32 cm                 |
| Bits allocated    | 16                             |

Set DICOM tag "study description" to "Blueprint thin axials."

#### Note:

If the scan is ordered as "bilateral shoulders," each shoulder must be scanned separately.



DFOV (frontal plane)



DFOV (axial plane)



Full scan 10 cm below current metal implant

#### Siemens scanners

Start the scan a few slices above the AC joint, include the entire scapula and a few slices below the inferior angle of the scapula. The medial border of the scapula must be shown in the scan.

If an implant is present, include the entire scapula and 10 cm below the current implant (when possible) without exceeding the maximum DFOV of 320 mm. The medial border of the scapula must be shown in the scan.

## Important:

- · No gantry tilt
- No contrast
- · All slices must have the same field of view and same slice spacing
- Blueprint requires 1x1 mm axial images
- · No interval/overlapping slices
- Matrix must be 512 x 512
  - All Siemens scanners must be manually set to a squared matrix
- · No reformatted images will be accepted

#### **Metal Artifact Reduction**

We strongly recommend patients with metal to be done on CT scanners using metal artifact reduction/suppression software, if available.

If MAR is not available, increase KVP to 140.

| Parameter         | Setting                                                                      |
|-------------------|------------------------------------------------------------------------------|
| Modality          | CT shoulder without contrast                                                 |
| Kernel /algorithm | Bone 70's – set window to bone                                               |
| KVP               | 120 or 140 if metal present                                                  |
| mA                | Auto                                                                         |
| Slice thickness   | 1 mm x 1 mm or thinner                                                       |
| Detector coverage | Maximum                                                                      |
| Pitch             | 0.9 or less                                                                  |
| Rotation time     | 1 second or less                                                             |
| Exposure time     | 1000 ms                                                                      |
| Matrix            | 512 x 512 – all Siemens scanners must be<br>manually set to a squared matrix |
| DFOV              | 250 mm to 320 mm                                                             |
| Bits allocated    | 16                                                                           |

Set DICOM tag "study description" to "Blueprint thin axials."

#### Note:

If the scan is ordered as "bilateral shoulders," each shoulder must be scanned separately.



DFOV (frontal plane)



DFOV (axial plane)



Full scan 10 cm below current metal implant

#### Toshiba/Canon scanners

Start the scan a few slices above the AC joint, include the entire scapula and a few slices below the inferior angle of the scapula. The medial border of the scapula must be shown in the scan.

If an implant is present, include the entire scapula and 10 cm below the current implant (when possible) without exceeding the maximum DFOV of 320 mm. The medial border of the scapula must be shown in the scan.

### Important:

- No gantry tilt
- No contrast
- · All slices must have the same field of view and same slice spacing
- Blueprint requires 1×1 mm axial images (do not exceed 1×1 mm)
- No interval/overlapping slices
- Matrix must be 512 x 512
- Standard bone volumes are required
- · No reformatted images will be accepted
- Only standard bone volumes are utilized for Blueprint scans

#### **Metal Artifact Reduction**

We strongly recommend patients with metal to be done on CT scanners using metal artifact reduction/suppression software, if available.

## If MAR is not available, increase KVP to 140.

| Parameter         | Setting                                          |
|-------------------|--------------------------------------------------|
| Modality          | CT Shoulder without contrast                     |
| Kernel/algorithm  | Bone Standard                                    |
| KVP               | 120/130 - 135/140<br>(depending on your scanner) |
| mA                | Auto                                             |
| Slice thickness   | 1 mm x 1 mm (do not exceed)                      |
| Detector coverage | Maximum                                          |
| Pitch             | 0.9 or less                                      |
| Rotation time     | 1 second or less                                 |
| Exposure time     | 1000 ms                                          |
| Matrix            | 512 x 512                                        |
| DFOV              | 250 mm to 320 mm                                 |
| Bits allocated    | 16                                               |

Set DICOM tag "study description" to "Blueprint thin axials."

#### Note:

If the scan is ordered as "bilateral shoulders," each shoulder must be scanned separately.



DFOV (frontal plane)



DFOV (axial plane)



Full scan 10 cm below current metal implant

#### Philips scanners

Start the scan a few slices above the AC joint, include the entire scapula and a few slices below the inferior angle of the scapula. The medial border of the scapula must be shown in the scan.

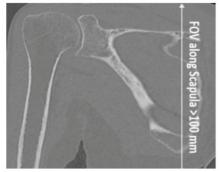
If an implant is present, include the entire scapula and 10 cm below the current implant (when possible) without exceeding the maximum DFOV of 320 mm. The medial border of the scapula must be shown in the scan.

#### Important:

- · No gantry tilt
- No contrast
- · All slices must have the same field of view and same slice spacing
- Blueprint requires the 1.25 mm or thinner axial images
- No interval/overlapping slices
- Matrix must be 512 x 512
- · No reformatted images will be accepted

#### **Metal Artifact Reduction**

We strongly recommend patients with metal to be done on CT scanners using metal artifact reduction/suppression software, if available.


If MAR is not available, increase KVP to 140.

| Parameter           | Setting                |
|---------------------|------------------------|
| Modality            | Body                   |
| Collimation         | 64 x .625              |
| Kernel /algorithm   | Bone                   |
| KVP                 | 120 or 140             |
| mA                  | Auto                   |
| Thickness/increment | 1.25/1.25              |
| Detector coverage   | Maximum                |
| Pitch               | 0.8                    |
| Rotation time       | 1                      |
| Exposure time       | 1000 ms                |
| Matrix              | 512 x 512              |
| DFOV                | 250 mm to 320 mm       |
| Resolution          | High                   |
| Filter              | Sharp                  |
| Bone window         | Set a preferred window |
| Bits allocated      | 16                     |

Set DICOM tag "study description" to "Blueprint thin axials."

#### Note:

If the scan is ordered as "bilateral shoulders," each shoulder must be scanned separately.



DFOV (frontal plane)



DFOV (axial plane)



Full scan 10 cm below current metal implant

## **Uploading DICOM images via the Blueprint cloud**

The thin axial images can to be uploaded directly into the ordering physician's Blueprint account via our secure cloud system. If the ordering physician has requested this, follow these instructions:

How to register for a Blueprint CT scan technologist account

#### Step 1:

Go to: <a href="https://oms.tornierblueprint.com/register">https://oms.tornierblueprint.com/register</a> and complete the registration form or **shoulderblueprint.com** and click Register near the top of the home page on the right side of the screen.

#### Step 2:

Once you receive the account activation email, verify your email address and create your password.

Accessing your online account (the place where you upload DICOM images)

#### Step 1:

Use Google Chrome as your browser.

Enter your credentials at: <a href="https://oms.tornierblueprint.com/auth/login">https://oms.tornierblueprint.com/auth/login</a> or go to shoulderblueprint.com and click "Sign In" near the top of the home page on the right side of the screen.

Adding an ordering physician to your upload list

#### Step 1:

Navigate to the "DICOM upload" tab from the left-hand menu, and search for the ordering physician by clicking "add a surgeon."

#### Note:

Search ordering physician by last name and verify their "center."

#### Note:

Searches can take up to 60 seconds to complete.



## Step 2:

Select the ordering physician's name and click:

Add Selected Surgeon

Uploading a DICOM to the ordering physician's Blueprint account

#### Step 1:

Select the ordering physician's name from the "Select Surgeon" list, then click



#### Step 2:

Drag and drop on the screen or upload the patient's DICOM file from your computer.



#### Important:

Files must be unzipped, extracted or uncompressed to be uploaded. Drag and drop functionality is not compatible with using Internet Explorer. Use Google Chrome or Mozilla Firefox.



#### Step 3:

After the DICOM files are selected, click:

De-identify & Upload →

#### Step 4:

Confirm you are uploading the correct patient and study to the correct surgeon and click:

Confirm

## Do not close the browser until the upload is complete!

Once the upload is complete, the files are automatically pre-processed for 3D reconstruction errors and sent to the surgeon's Blueprint account.

#### Note:

- Only the thin 1.25 mm (or thinner) DICOM axial images can be uploaded through the cloud.
- · No JPEG images will be accepted.
- · No reformatted images will be accepted.
- · If MAR was used, upload only that axial series.

## *s*tryker

This document is intended solely for the use of healthcare professionals. A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Stryker does not dispense medical advice and recommends that surgeons be trained in the use of any particular product before using it in surgery.

The information presented is intended to demonstrate the breadth of Stryker's product offerings. A surgeon must always refer to the package insert, product label and/or instructions for use, including the instructions for cleaning and sterilization (if applicable), before using any Stryker product. Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.

Stryker Corporation or its divisions or other corporate affiliated entities own, use or have applied for the following trademarks or service marks: Blueprint, Stryker. All other trademarks are trademarks of their respective owners or holders.

Content ID: AP-015122C 07-Jul-2022 Copyright © 2022 Stryker



#### Manufacturer:

Tornier SAS 161 Rue Lavoisier 38330 Montbonnot Saint Martin France

## **Documents / Resources**



<u>stryker Blueprint Scan Protocol Software</u> [pdf] User Guide Blueprint Scan Protocol Software, Scan Protocol Software, Protocol Software, Software

## References

- Blueprint | Stryker
- Marchational homepage | Stryker
- Blueprint | Stryker
- Stryker® Online Management System
- Stryker® Online Management System
- User Manual

Manuals+, Privacy Policy