
Home » STMicroelectronics » STMicroelectronics STM32WBA Series Getting Started User Manual

Contents
1 STMicroelectronics STM32WBA Series Getting
Started
2 Product Information
3 Product Usage Instructions
4 FAQ
5 Introduction
6 General information
7 STM32CubeWBA main features
8 STM32CubeWBA architecture overview

8.1 Level 0
8.2 Level 1

9 STM32CubeWBA firmware package overview
9.1 Firmware package overview

10 Getting started with STM32CubeWBA
10.1 Running a first HAL example
10.2 Developing a custom application

11 FAQ
12 Documents / Resources

12.1 References
13 Related Posts

STMicroelectronics STM32WBA Series Getting Started

STMicroelectronics STM32WBA Series Getting Started User
Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/stmicroelectronics
https://manuals.plus/stmicroelectronics/stm32wba-series-getting-started-manual.pdf
https://manuals.plus/#stmicroelectronics_stm32wba_series_getting_started
https://manuals.plus/#product_information
https://manuals.plus/#product_usage_instructions
https://manuals.plus/#faq
https://manuals.plus/#introduction
https://manuals.plus/#general_information
https://manuals.plus/#stm32cubewba_main_features
https://manuals.plus/#stm32cubewba_architecture_overview
https://manuals.plus/#level_0
https://manuals.plus/#level_1
https://manuals.plus/#stm32cubewba_firmware_package_overview
https://manuals.plus/#firmware_package_overview
https://manuals.plus/#getting_started_with_stm32cubewba
https://manuals.plus/#running_a_first_hal_example
https://manuals.plus/#developing_a_custom_application
https://manuals.plus/#faq1
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

Product Information

Specifications:

Product Name: STM32CubeWBA MCU Package

Manufacturer: STMicroelectronics

Compatibility: STM32WBA series microcontrollers

Licensing: Open-source BSD license

Product Usage Instructions

Main Features of STM32CubeWBA MCU Package:
The STM32CubeWBA MCU Package provides all the necessary embedded software components for developing
applications on STM32WBA series microcontrollers. It is highly portable within the STM32 series and comes with
HAL and LL APIs, examples, and middleware components.

Architecture Overview:
The architecture of the STM32CubeWBA MCU Package consists of three levels – Applications, Library and
protocol-based components, Hardware abstraction layer, BSP drivers, Core drivers, andLow-layer APIs.

FAQ

What is included in the STM32CubeWBA MCU Package?

The package includes low-layer (LL) and hardware abstraction layer (HAL) APIs, examples, applications,

middleware components like FileX/LevelX, NetX Duo, mbed-crypto libraries, and more.

Is the STM32CubeWBA MCU Package compatible with STM32CubeMX code generator?

Yes, the package is fully compatible with the STM32CubeMX code generator for generating initialization code.

Introduction

STM32Cube is an STMicroelectronics original initiative to improve designer productivity significantly by

reducing development effort, time, and cost. STM32Cube covers the whole STM32 portfolio.

STM32Cube includes:

A set of user-friendly software development tools to cover project development from conception to

realization, among which are:

STM32CubeMX, a graphical software configuration tool that allows the automatic generation of C

initialization code using graphical wizards

STM32CubeIDE, an all-in-one development tool with peripheral configuration, code generation,

code compilation, and debug features

STM32CubeCLT, an all-in-one command-line development toolset with code compilation, board

programming, and debug features

STM32CubeProgrammer (STM32CubeProg), a programming tool available in graphical and

command-line versions

STM32CubeMonitor (STM32CubeMonitor, STM32CubeMonPwr, STM32CubeMonRF,

STM32CubeMonUCPD), powerful monitoring tools to fine-tune the behavior and performance of

STM32 applications in real time

STM32Cube MCU and MPU Packages, comprehensive embedded-software platforms specific to each

microcontroller and microprocessor series (such as STM32CubeWBA for the STM32WBA series), which

include:

STM32Cube hardware abstraction layer (HAL), ensuring maximized portability across the STM32

portfolio

STM32Cube low-layer APIs, ensuring the best performance and footprints with a high degree of

user control over hardware

A consistent set of middleware components such as ThreadX, FileX / LevelX, NetX Duo, USBX,

touch library, mbed-crypto, TFM, MCUboot, OpenBL, and STM32_WPAN (including Bluetooth®

Low Energy profiles and services, Mesh, Zigbee®, OpenThread, Matter, and 802.15.4 MAC layer)

All embedded software utilities with full sets of peripheral and applicative examples

STM32Cube Expansion Packages, which contain embedded software components that complement the

functionalities of the STM32Cube MCU and MPU Packages with:

Middleware extensions and applicative layers

Examples running on some specific STMicroelectronics development boards

This user manual describes how to get started with the STM32CubeWBA MCU Package.

Section 2 STM32CubeWBA main features describes the main features of the STM32CubeWBA MCU

Package.

Section 3 STM32CubeWBA architecture overview provides an overview of the STM32CubeWBA

architecture and the MCU Package structure.

General information

The STM32CubeWBA MCU Package runs on STM32 32-bit microcontrollers based on the Arm® Cortex®-M33
processor with Arm® TrustZone® and FPU.
Note: Arm and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

STM32CubeWBA main features

The STM32CubeWBA MCU Package runs on STM32 32-bit microcontrollers based on the Arm® Cortex®-M33

processor with TrustZone® and FPU.

The STM32CubeWBA gathers, in a single package, all the generic embedded software components required to

develop an application for the STM32WBA series microcontrollers. In line with the STM32Cube initiative, this

set of components is highly portable, not only within the STM32WBA series microcontrollers but also to other

STM32 series.

The STM32CubeWBA is fully compatible with the STM32CubeMX code generator, to generate initialization

code. The package includes low-layer (LL) and hardware abstraction layer (HAL) APIs that cover the

microcontroller hardware, together with an extensive set of examples running on STMicroelectronics boards.

The HAL and LL APIs are available in an open-source BSD license for user convenience.

The STM32CubeWBA MCU Package also contains a comprehensive middleware component constructed

around Microsoft® Azure® RTOS middleware, and other in-house and open-source stacks, with the

corresponding examples.

They come with free, user-friendly license terms:

Integrated and full-featured Azure® RTOS: Azure® RTOS ThreadX

CMSIS-RTOS implementation with Azure® RTOS ThreadX

USB Host and Device stacks coming with many classes: Azure® RTOS USBX

Advanced file system and flash translation layer: FileX / LevelX

Industrial grade networking stack: optimized for performance coming with many IoT protocols: NetX Duo

OpenBootloader

Arm® Trusted Firmware-M (TF‑M) integration solution

mbed-crypto libraries

ST Netwok Library

STMTouch touch sensing library solution

Several applications and demonstrations implementing all these middleware components are also provided in

the STM32CubeWBA MCU Package.

The STM32CubeWBA MCU Package component layout is illustrated in Figure 1. STM32CubeWBA MCU

Package components .

STM32CubeWBA architecture overview

The STM32CubeWBA MCU package solution is built around three independent levels that easily interact as
described in Figure 2. STM32CubeWBA MCU package architecture.

Level 0

This level is divided into three sublayers:

Board support package (BSP).

Hardware abstraction layer (HAL):

HAL peripheral drivers

Low-layer drivers

Basic peripheral usage examples.

Board support package (BSP)
This layer offers a set of APIs relative to the hardware components in the hardware boards (such as LCD, Audio,\
microSD™, and MEMS drivers). It is composed of two parts:

Component driver:

This driver is related to the external device on the board, and not to the STM32 device. The component driver

provides specific APIs to theBSP driver external components and could be portable on any other board.

BSP driver:

The BSP driver allows linking the component drivers to a specific board, and provides a set of user-friendly

APIs. The API naming rule is BSP_FUNCT_Action().

Example: BSP_LED_Init(), BSP_LED_On()

BSP is based on a modular architecture allowing easy porting on any hardware by just implementing the low-

level routines.

Hardware abstraction layer (HAL) and low-layer (LL)
The STM32CubeWBA HAL and LL are complementary and cover a wide range of application requirements:

The HAL drivers offer high-level function-oriented highly portable APIs. They hide the MCU and peripheral

complexity to the end‑user.

The HAL drivers provide generic multi-instance feature-oriented APIs, which simplify user application

implementation by providing ready‑to‑use processes. For example, for the communication peripherals (I2S,

UART, and others), it provides APIs allowing initializing and configuring the peripheral, managing data transfer

based on polling, interrupting, or DMA process, and handling communication errors that may arise during

communication. The HAL driver APIs are split into two categories:

1. Generic APIs, which provide common and generic functions to all the STM32 series microcontrollers.

2. Extension APIs, which provide specific and customized functions for a specific family or a specific part

number.

The low-layer APIs provide low-level APIs at the register level, with better optimization but less portability.

They require a deep knowledge of MCU and peripheral specifications.

The LL drivers are designed to offer a fast lightweight expert-oriented layer that is closer to the hardware

than the HAL. Contrary to the HAL, LL APIs are not provided for peripherals where optimized access is

not a key feature, or for those requiring heavy software configuration or complex upper-level stack.

The LL drivers feature:

A set of functions to initialize peripheral main features according to the parameters specified in data

structures.

A set of functions to fill initialization data structures with the reset values corresponding to each

field.

Function for peripheral deinitialization (peripheral registers restored to their default values).

A set of inline functions for direct and atomic register access.

Full independence from HAL and capability to be used in standalone mode (without HAL drivers).

Full coverage of the supported peripheral features.

Basic peripheral usage examples
This layer encloses the examples built over the STM32 peripherals using only the HAL and BSP resources.

Level 1

This level is divided into two sublayers:

Middleware components

Examples based on the middleware components

Middleware components

The middleware is a set of libraries covering Bluetooth® Low Energy (Linklayer, HCI, Stack), Thread®,

Zigbee®,

Matter, OpenBootloader, Microsoft® Azure® RTOS, TF‑M, MCUboot, and mbed-crypto.

Horizontal interaction between the components of this layer is done by calling the featured APIs.

Vertical interaction with the low-layer drivers is done through specific callbacks and static macros implemented

in the library system call interface.

The main features of each middleware component are as follows:

Microsoft® Azure® RTOS

Azure® RTOS ThreadX: A real-time operating system (RTOS), designed for embedded systems

with two functional modes.

Common mode: Common RTOS functionalities such as thread management and

synchronization, memory pool management, messaging, and event handling.

Module mode: An advanced user mode that allows loading and unloading of prelinked

ThreadX modules on the fly through a module manager.

NetX Duo

FileX

USBX

Bluetooth® Low Energy (BLE): Implements the Bluetooth® Low Energy protocol for the Link and Stack

layers.

MCUboot (open-source software)

Zigbee® protocols for the stack and related clusters.

Thread® protocol stack and link layer.

Arm® trusted firmware-M, TF‑M (open-source software): Reference implementation of the Arm® platform

security architecture (PSA) for TrustZone® with the associated secure services.

mbed-crypto (open-source software): The mbed-crypto middleware provides a PSA cryptography API

implementation.

STM32 Touch sensing library: Robust STMTouch capacitive touch sensing solution, supporting proximity,

touchkey, linear and rotary touch sensors. It is based on a proven surface charge transfer acquisition

principle.

Examples based on the middleware components
Each middleware component comes with one or more examples (also called applications) showing how to use it.
Integration examples that use several middleware components are provided as well.

STM32CubeWBA firmware package overview

Supported STM32WBA series devices and hardware

STM32Cube offers a highly portable hardware abstraction layer (HAL) built around a generic architecture. It

allows the build-upon layers principle, such as using the middleware layer to implement their functions without

knowing, in-depth, what MCU is used. This improves the library code reusability and ensures an easy portability

to other devices.

In addition, thanks to its layered architecture, the STM32CubeWBA offers full support of all STM32WBA series.

The user has only to define the right macro in stm32wbaxx.h.

Table 1 shows the macro to define depending on the STM32WBA series device used. This macro must also be

defined in the compiler preprocessor.

Table 1. Macros for STM32WBA series

Macro defined in stm32wb

axx.h
STM32WBA series devices

stm32wba52xx
STM32WBA52CGU6, STM32WBA52KGU6, STM32WBA52CEU6,

STM32WBA52KEU6

stm32wba55xx
STM32WBA55CGU6, STM32WBA55CGU6U, STM32WBA55CGU7, STM32

WBA55CEU6, STM32WBA55CEU7

STM32CubeWBA features a rich set of examples and applications at all levels making it easy to understand

and use any HAL driver or middleware components. These examples run on the STMicroelectronics boards

listed in Table 2.

Table 2. Boards for STM32WBA series

Board Board STM32WBA supported devices

NUCLEO-WBA52CG STM32WBA52CGU6

NUCLEO-WBA55CG STM32WBA55CGU6

STM32WBA55-DK1 STM32WBA55CGU7

The STM32CubeWBA MCU package can run on any compatible hardware. The user simply updates the BSP

drivers to port the provided examples on the board, if the latter has the same hardware features (such as LED,

LCD display, and buttons).

Firmware package overview

The STM32CubeWBA package solution is provided in one single zip package having the structure shown in

Figure 3. STM32CubeWBA firmware package structure.

For each board, a set of examples is provided with preconfigured projects for EWARM, MDK-ARM, and

STM32CubeIDE toolchains.

Figure 4. STM32CubeWBA examples overview shows the project structure for the NUCLEO‑WBA52CG,

NUCLEO-WBA55CG and STM32WBA55G-DK1 boards.

The examples are classified depending on the STM32Cube level that they apply to, and they are named as

follows:

Level 0 examples are called Examples, Examples_LL, and Examples_MIX. They use respectively HAL

drivers, LL drivers, and a mix of HAL and LL drivers without any middleware component.

Level 1 examples are called Applications. They provide typical use cases of each middleware

component. Any firmware application for a given board can be quickly built thanks to template projects

available in the Templ ates and Templates_LL directories.

TrustZone® enabled projects

TrustZone® enabled Examples names contain the _TrustZone prefix. The rule is applied also for Applicatio ns

(except for TFM and SBSFU, which are natively for TrustZone®).

TrustZone®-enabled Examples and Applications are provided with a multiproject structure composed of secure

and nonsecure subprojects as presented in Figure 5. Multiproject secure and nonsecure project structure.

TrustZone®-enabled projects are developed according to the CMSIS-5 device template, extended to include

the system partitioning header file partition_<device>.h, who is mainly responsible for the setup of the secure

attribute unit (SAU), the FPU, and the secure/nonsecure interrupts assignment in the secure execution state.

This setup is performed in the secure CMSIS SystemInit() function, which is called at startup before entering

the secure application main() function. Refer to Arm® TrustZone®-M documentation of software guidelines.

The STM32CubeWBA package firmware package provides default memory partitioning in the partition

_<device>.h files available under: \Drivers\CMSIS\Device\ST\STM32WBAxx\Include\T emplates

In these partition files, the SAU is disabled by default. Consequently, the IDAU memory mapping is used for

security attribution. Refer to figure Secure/non-secure partitioning using TrustZone® technology in the RM0495

reference manual.

If the user enables the SAU, a default SAU regions configuration is predefined in partition files as follows:

SAU region 0: 0x08080000 – 0x081FFFFF (nonsecure secure half of flash memory (512 Kbytes))

SAU region 1: 0x0BF88000 – 0x0BF97FFF (nonsecure system memory)

SAU region 2: 0x0C07E000 – 0x0C07FFFF (secure, nonsecure callable)

SAU region 3: 0x20010000 – 0x2001FFFF (nonsecure SRAM2 (64 Kbytes))

SAU region 4: 0x40000000 – 0x4FFFFFFF (nonsecure peripheral mapped memory)

To match the default partitioning, the STM32WBAxx series devices must have the following user option bytes

set:

TZEN = 1 (TrustZone®-enabled device)

SECWM1_PSTRT = 0x0 SECWM1_PEND = 0x3F (64 out of 128 pages of internal flash memory set as

secure) Note: The internal flash memory is fully secure by default in TZEN = 1. The user option bytes

SECWM1_PSTRT/ SECWM1_PEND must be set according to the application memory configuration

(SAU regions, if SAU is enabled). Secure/nonsecure applications project linker files must also be aligned.

All examples have the same structure:

\Inc folder containing all header files.

Src folder containing the source code.

\EWARM, \MDK-ARM, and \STM32CubeIDE folders containing the preconfigured project for each

toolchain.

readme.md and readme.html describing the example behavior and needed environment to make it work.

ioc file that allows users to open most of the firmware examples within STM32CubeMX.

Getting started with STM32CubeWBA

Running a first HAL example

This section explains how simple it is to run the first example within STM32CubeWBA. It uses as an illustration the
generation of a simple LED toggle running on the NUCLEO-WBA52CG board:

1. Download the STM32CubeWBA MCU package.

2. Unzip it into a directory of your choice.

3. Make sure not to modify the package structure shown in Figure 1. It is also recommended to copy the package

at a location close to your root volume (meaning C:\ST or G:\Tests), as some IDEs encounter problems when

the path length is too long.

Running a first TrustZone® enabled example

Before loading and running a TrustZone® enabled example, it is mandatory to read the example readme file for

any specific configuration, which ensures that the security is enabled as described in Section 4.2.1 TrustZone®

enabled projects (TZEN=1 (user option byte)).

1. Browse to \Projects\NUCLEO-WBA52CG\Examples.

2. Open \GPIO, then \GPIO_IOToggle_TrustZone folders.

3. Open the project with your preferred toolchain. A quick overview on how to open, build, and run an

example with the supported toolchains is given below.

4. Rebuild in sequence all secure and nonsecure project files and load the secure and nonsecure images

into the target memory.

5. Run the example: regularly, the secure application toggles LD2 every second, and the nonsecure

application toggles LD3 twice as fast. For more details, refer to the readme file of the example.

To open, build and run an example with the supported toolchains, follow the steps below:

EWARM:

1. Under the example folder, open \EWARM subfolder.

2. Launch the Project.eww workspace

3. Rebuild the xxxxx_S secure project files: [Project]>[Rebuild all].

4. Set the xxxxx_NS nonsecure project as Active application (right click on xxxxx_NS project [Set as

Active])

5. Rebuild the xxxxx_NS nonsecure project files: [Project]>[Rebuild all].

6. Flash the nonsecure binary with [Project]>[Download]>[Download active application] .

7. Set the xxxxx_S as Active application (right click on xxxxx_S project [Set as Active].

8. Flash the secure binary with the [Download and Debug] (Ctrl+D).

9. Run the program: [Debug]>[Go(F5)]

MDK-ARM:

1. Open the \MDK-ARM toolchain.

2. Open the Multiprojects workspace file Project.uvmpw.

3. Select the xxxxx_s project as Active application ([Set as Active Project]).

4. Build the xxxxx_s project.

5. Select the xxxxx_ns project as Active project ([Set as Active Project]).

6. Build the xxxxx_ns project.

7. Load the nonsecure binary ([F8]). This downloads \MDK-ARM\xxxxx_ns\Exe\xxxxx_ns.axf to flash

memory)

8. Select the Project_s project as Active project ([Set as Active Project]).

9. Load the secure binary ([F8]). This downloads \MDK-ARM\xxxxx_s\Exe\xxxxx_s.axf to flash

memory).

10. Run the example.

STM32CubeIDE:

1. Open the STM32CubeIDE toolchain.

2. Open the Multiprojects workspace file .project.

3. Rebuild the xxxxx_Secure project.

4. Rebuild the xxxxx_NonSecure project.

5. Launch the [Debug as STM32 Cortex-M C/C++] application for the secure project.

6. In the[Edit configuration] window, select the [Startup] panel, and add load the image and symbols of

the nonsecure project.

Important: The nonsecure project must be loaded before the secure project.

7. Click [Ok].

8. Run the example on debug perspective.

Running a first TrustZone® disabled example

Before loading and running a TrustZone® disabled example, it is mandatory to read the example readme file for

any specific configuration. If there are no specific mentions, ensure that the board device has security disabled

(TZEN=0 (user option byte)). See FAQ for doing the optional regression to TZEN = 0

1. Browse to \Projects\NUCLEO-WBA52CG\Examples.

2. Open \GPIO, then \GPIO_EXTI folders.

3. Open the project with your preferred toolchain. A quick overview on how to open, build, and run an

example with the supported toolchains is given below.

4. Rebuild all files and load your image into the target memory.

5. Run the example: Each time the [USER] push‑button is pressed, the LD1 LED toggles. For more details,

refer to the readme file of the example.

To open, build and run an example with the supported toolchains, follow the steps below:

EWARM:

1. Under the example folder, open \EWARM subfolder.

2. Launch the Project.eww workspace (the workspace name may change from one example to

another).

3. Rebuild all files: [Project]>[Rebuild all].

4. Load the project image: [Project]>[Debug].

5. Run program: [Debug]>[Go (F5)].

MDK-ARM:

1. Under the example folder, open the \MDK-ARM subfolder.

2. Launch the Project.uvproj workspace (the workspace name may change from one example to

another).

3. Rebuild all files:[Project]>[Rebuild all target files].

4. Load the project image: [Debug]>[Start/Stop Debug Session].

5. Run program: [Debug]>[Run (F5)].

STM32CubeIDE:

1. Open the STM32CubeIDE toolchain.

2. Click [File]>[Switch Workspace]>[Other] and browse to the STM32CubeIDE workspace directory.

3. Click [File]>[Import] , select [General]>[Existing Projects into Workspace], and then click [Next].

4. Browse to the STM32CubeIDE workspace directory and select the project.

5. Rebuild all project files: Select the project in the [Project Explorer] window then click the [Project]>

[Build project] menu.

6. Run the program: [Run]>[Debug (F11)]

Developing a custom application

Note: Software must enable the instruction cache (ICACHE) to get a 0 wait-state execution from flash memory,
and reach the maximum performance and a better power consumption.

Using STM32CubeMX to develop or update an application

In the STM32CubeWBA MCU package, nearly all project examples are generated with the STM32CubeMX tool

to initialize the system, peripherals, and middleware.

The direct use of an existing project example from the STM32CubeMX tool requires STM32CubeMX 6.10.0 or

higher:

After the installation of STM32CubeMX, open and if necessary update a proposed project. The simplest

way to open an existing project is to double-click on the *.ioc file so that STM32CubeMX automatically

opens the project and its source files.

STM32CubeMX generates the initialization source code of such projects. The main application source

code is contained by the comments “USER CODE BEGIN” and “USER CODE END”. In case the IP

selection and setting are modified, STM32CubeMX updates the initialization part of the code but

preserves the main application source code.

For developing a custom project in the STM32CubeMX, follow the step-by-step process:

1. Select the STM32 microcontroller that matches the required set of peripherals.

2. Configure all the required embedded software using a pinout-conflict solver, a clock-tree setting helper, a

power consumption calculator, and the utility performing MCU peripheral configuration (such as GPIO or

USART) and middleware stacks (such as USB).

3. Generate the initialization C code based on the selected configuration. This code is ready to use within

several development environments. The user code is kept at the next code generation.

For more information about STM32CubeMX, refer to the user manual STM32CubeMX for STM32 configuration

and initialization C code generation (UM1718).

For a list of the available project examples for STM32CubeWBA, refer to the application note STM32Cube

firmware examples for STM32WBA series (AN5929).

Driver applications

HAL application
This section describes the steps required to create a custom HAL application using STM32CubeWBA:

1. Create a project

To create a new project, start either from the Template project provided for each board under \Projects\

<STM32xxx_yyy>\Templates or from any available project under \Projects\<STM32xxy_yyy>\Exam ples

or \Projects\<STM32xx_yyy>\Applications (where <STM32xxx_yyy> refers to the board name, such as

STM32CubeWBA).

The Template project provides an empty main loop function. However, it is a good starting point to

understand the STM32CubeWBA project settings. The template has the following characteristics:

It contains the HAL source code, CMSIS, and BSP drivers, which are the minimum set of

components required to develop a code on a given board.

It contains the included paths for all the firmware components.

It defines the supported STM32WBA series devices, allowing the CMSIS and HAL drivers to be

configured correctly.

It provides ready‑to‑use user files preconfigured as shown below:

HAL initialized with the default time base with Arm® core SysTick. SysTick ISR implemented for

HAL_Delay() purpose.

Note: When copying an existing project to another location, make sure all the included paths are

updated.

2. Add the necessary middleware to the user project (optional)

To identify the source files to be added to the project file list, refer to the documentation provided for each

middleware. Refer to the applications under \Projects\STM32xxx_yyy\Applications\<MW_Stack> (where

<MW_Stack> refers to the middleware stack, such as ThreadX) to know which source files and include paths

must be added.

3. Configure the firmware components

The HAL and middleware components offer a set of build‑time configuration options using macros #define

declared in a header file. A template configuration file is provided within each component, which has to be

copied to the project folder (usually the configuration file is named xxx_conf_template.h, the word _template

needs to be removed when copying it to the project folder). The configuration file provides enough information

to understand the impact of each configuration option. More detailed information is available in the

documentation provided for each component.

4. Start the HAL library

After jumping to the main program, the application code must call HAL_Init() API to initialize the HAL library,

which carries out the following tasks:

Configuration of the flash memory prefetch and SysTick interrupt priority (through macros defined in st

m32wbaxx_hal_conf.h).

Configuration of the SysTick to generate an interrupt every millisecond at the SysTick interrupt priority

TICK_INT_PRIO defined in stm32wbaxx_hal_conf.h.

Setting of NVIC group priority to 0.

Call of HAL_MspInit() callback function defined in stm32wbaxx_hal_msp.c user file to perform global low-

level hardware initializations.

5. Configure the system clock

The system clock configuration is done by calling the two APIs described below:

HAL_RCC_OscConfig(): this API configures the internal and external oscillators. The user chooses to

configure one or all oscillators.

HAL_RCC_ClockConfig(): this API configures the system clock source, the flash memory latency, and

AHB and APB prescalers.

6. Initialize the peripheral

First write the peripheral HAL_PPP_MspInit function. Proceed as follows:

Enable the peripheral clock.

Configure the peripheral GPIOs.

Configure the DMA channel and enable DMA interrupt (if needed).

Enable peripheral interrupt (if needed).

Edit the stm32xxx_it.c to call the required interrupt handlers (peripheral and DMA), if needed.

Write process complete callback functions, if a peripheral interrupt or DMA is planned to be used.

In user main.c file, initialize the peripheral handle structure then call the function HAL_PPP_Init() to

initialize the peripheral.

7. Develop an application

At this stage, the system is ready and the user application code development can start.

The HAL provides intuitive and ready-to-use APIs to configure the peripheral. It supports polling,

interrupts, and a DMA programming model, to accommodate any application requirements. For more

details on how to use each peripheral, refer to the rich example set provided in the STM32CubeWBA

MCU package.

Caution: In the default HAL implementation, the SysTick timer is used as a timebase: it generates

interrupts at regular time intervals. If HAL_Delay() is called from the peripheral ISR process, make sure

that the SysTick interrupt has a higher priority (numerically lower) than the peripheral interrupt.

Otherwise, the caller ISR process is blocked. Functions affecting timebase configurations are declared as

__weak to make override possible in case of other implementations in the user file (using a

general‑purpose timer, for example, or another time source). For more details, refer to the

HAL_TimeBase example.

LL application
This section describes the steps needed to create a custom LL application using STM32CubeWBA.

1. Create a project

To create a new project, either start from the Templates_LL project provided for each board under

\Projects\<STM32xxx_yyy>\Templates_LL, or from any available project under \Projects\<STM32xxy_yy

y>\Examples_LL (<STM32xxx_yyy> refers to the board name, such as NUCLEO-WBA52CG).

The template project provides an empty main loop function, which is a good starting point to understand

the project settings for STM32CubeWBA. Template main characteristics are the following:

It contains the source codes of the LL and CMSIS drivers, which are the minimum set of

components needed to develop code on a given board.

It contains the included paths for all the required firmware components.

It selects the supported STM32WBA series device and allows the correct configuration of the

CMSIS and LL drivers.

It provides ready-to-use user files that are preconfigured as follows:

◦ main.h: LED and USER_BUTTON definition abstraction layer.

◦ main.c: System clock configuration for maximum frequency.

2. Port an existing project to another board

To support an existing project on another target board, start from the Templates_LL project provided for each

board and available under \Projects\<STM32xxx_yyy>\Templates_LL.

Select an LL example: To find the board on which LL examples are deployed, refer to the list of LL

examples STM32CubeProjectsList.html.

3. Port the LL example:

Copy/paste the Templates_LL folder – to keep the initial source – or directly update the existing Temp

lates_LL project.

Then porting consists principally in replacing Templates_LL files by the Examples_LL targeted project.

Keep all board specific parts. For reasons of clarity, board specific parts are flagged with specific tags:

Thus, the main porting steps are the following:

Replace the stm32wbaxx_it.h file

Replace the stm32wbaxx_it.c file

Replace the main.h file and update it: Keep the LED and user button definition of the LL template

under BOARD SPECIFIC CONFIGURATION tags.

Replace the main.c file and update it:

Keep the clock configuration of the SystemClock_Config() LL template function under BOARD SPECIFIC

CONFIGURATION tags.

Depending on the LED definition, replace each LDx occurrence with another LDy available in the main.h

file.

With these modifications, the example now runs on the targeted board

Security applications
This package is delivered with security applications.

SBSFU applications

SBSFU provides a Root of Trust solution, including Secure Boot and Secure Firmware Update functionalities

(based on MCUboot).

The solution is used before executing the application.

The solution provides an example of a secure service (GPIO toggle), that is isolated from the nonsecure

application. The nonsecure application at runtime can still use this solution.

TFM applications
The TFM provides a Root of Trust solution including Secure Boot and Secure Firmware Update functionalities
(based on MCUboot). The solution is used before executing the application. The solution provides TFM secure
services that are isolated from the nonsecure application. The nonsecure application at runtime can still use this
solution.

RF applications
The RF application is described in this application note: Building wireless applications with STM32WBA series
microcontrollers (AN5928).

Getting STM32CubeWBA release updates
The latest STM32CubeWBA MCU package releases and patches are available from STM32WBA Series. They
may be retrieved from the CHECK FOR UPDATE button in STM32CubeMX. For more details, refer to Section 3 of
the user manual STM32CubeMX for STM32 configuration and initialization C code generation (UM1718).

FAQ

When should I use HAL instead of LL drivers?

HAL drivers offer high‑level and function‑oriented APIs, with a high level of portability. Product or

peripheral complexity is hidden for end users.

LL drivers offer low-layer register level APIs, with better optimization but less portable. They require

in‑depth knowledge of product or IP specifications.

Can I use HAL and LL drivers together? If I can, what are the constraints?

It is possible to use both HAL and LL drivers. Use the HAL for the IP initialization phase and then manage

the I/O operations with LL drivers.

The major difference between HAL and LL is that HAL drivers require to create and use handles for

operation management while LL drivers operate directly on peripheral registers. The Examples_MIX

example illustrates how to mix HAL and LL.

How are LL initialization APIs enabled?

The definition of LL initialization APIs and associated resources (Structures, literals, and prototypes) is

conditioned by the USE_FULL_LL_DRIVER compilation switch.

To be able to use LL initialization APIs, add this switch in the toolchain compiler preprocessor.

How can STM32CubeMX generate code based on embedded software?

STM32CubeMX has built-in knowledge of STM32 microcontrollers, including their peripherals and software that

allows providing a graphical representation to the user and generating *.h or *.c files based on user

configuration.

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections,

enhancements, modifications, and improvements to ST products and/or to this document at any time without

notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST

products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability

for application assistance or the design of purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty

granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to

www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of

this document.

© 2023 STMicroelectronics – All rights reserved

Documents / Resources

STMicroelectronics STM32WBA Series Getting Started [pdf] User Manual
STM32WBA Series Getting Started, Getting Started, Started

References

 Today I Learned for programmers - Tiloid

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/333fb3bf19f64382d8c4ff76633357b1f36c5ac9a4734cc409f5826764b5f734
https://manuals.plus/m/333fb3bf19f64382d8c4ff76633357b1f36c5ac9a4734cc409f5826764b5f734_optim.pdf
http://readme.md
https://manual.tools/?p=13168510#MTA0LjI4LjIzNC4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	STMicroelectronics STM32WBA Series Getting Started User Manual
	STMicroelectronics STM32WBA Series Getting Started
	Product Information
	Product Usage Instructions
	FAQ
	Introduction
	General information
	STM32CubeWBA main features
	STM32CubeWBA architecture overview
	Level 0
	Level 1

	STM32CubeWBA firmware package overview
	Firmware package overview

	Getting started with STM32CubeWBA
	Running a first HAL example
	Developing a custom application

	FAQ
	Documents / Resources
	References

