
Home » sparkfun » SparkFun DEV-13712 Particle Photon With Holes For Soldering User Guide

Contents
1 SparkFun DEV-13712 Particle Photon With Holes For
Soldering
2 Specifications
3 Product Usage Instructions
4 Introduction
5 SparkFun Wish List
6 Hardware Overview
7 Interface
8 SPI
9 Hardware Hookup
10 Project Hardware Connection
11 Arduino Sketches
12 Firmware
13 Command Set
14 System Settings
15 Configuration File
16 Troubleshooting
17 Emergency Reset
18 Check with the Community
19 Resources and Going Further
20 Frequently Asked Questions
21 Documents / Resources

21.1 References

SparkFun DEV-13712 Particle Photon With Holes For Soldering

SparkFun DEV-13712 Particle Photon With Holes For
Soldering User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/sparkfun
https://manuals.plus/sparkfun/dev-13712-particle-photon-with-holes-for-soldering-manual.pdf
https://manuals.plus/#sparkfun_dev-13712_particle_photon_with_holes_for_soldering
https://manuals.plus/#specifications
https://manuals.plus/#product_usage_instructions
https://manuals.plus/#introduction
https://manuals.plus/#sparkfun_wish_list
https://manuals.plus/#hardware_overview
https://manuals.plus/#interface
https://manuals.plus/#spi
https://manuals.plus/#hardware_hookup
https://manuals.plus/#project_hardware_connection
https://manuals.plus/#arduino_sketches
https://manuals.plus/#firmware
https://manuals.plus/#command_set
https://manuals.plus/#system_settings
https://manuals.plus/#configuration_file
https://manuals.plus/#troubleshooting
https://manuals.plus/#emergency_reset
https://manuals.plus/#check_with_the_community
https://manuals.plus/#resources_and_going_further
https://manuals.plus/#frequently_asked_questions
https://manuals.plus/#documents_resources
https://manuals.plus/#references

Specifications

Product Name: OpenLog Data Logger

Model: DEV-13712

Power Input: 3.3V-12V (Recommended 3.3V-5V)

RXI Input Voltage: 2.0V-3.8V

TXO Output Voltage: 3.3V

Idle Current Draw: ~2mA-5mA (without microSD card), ~5mA-6mA (with microSD card)

Active Writing Current Draw: ~20-23mA (with microSD card)

Product Usage Instructions

Materials Required:

Arduino Pro Mini 328 – 3.3V/8MHz

SparkFun FTDI Basic Breakout – 3.3V

SparkFun Cerberus USB Cable – 6ft

microSD Card with Adapter – 16GB (Class 10)

microSD USB Reader

Female Headers

Jumper Wires Premium 6 M/M Pack of 10

Break Away Male Headers – Right Angle

Recommended Reading:

How to Solder: Through-Hole Soldering

Serial Communication Basics

Serial Peripheral Interface (SPI)

Serial Terminal Basics

Hardware Overview:
The OpenLog runs at the following settings:

https://manuals.plus/#
https://manuals.plus/#
https://manuals.plus/#
https://manuals.plus/#

VCC Input RXI I
nput

TXO O
utput Idle Current Draw Active Writing Curr

ent Draw

3.3V-12V
(Recommended 3.3V-5
V)

2.0V-
3.8V 3.3V ~2mA-5mA (w/out microSD card), ~5mA-6

mA (w/ microSD card)
~20- 23mA (with/ mic
roSD card)

Introduction

Heads up! This tutorial is for the Open Log for serial UART [DEV-13712]. If you are using the Qwiic OpenLog for I
C [DEV-15164], please refer to the Qwiic OpenLog Hookup Guide.

The OpenLog Data Logger is a simple-to-use, open-source solution for logging serial data from your projects. The
OpenLog provides a simple serial interface to log data from a project to a microSD card.

SparkFun OpenLog
DEV-13712

SparkFun OpenLog with Headers
DEV-13955

No product found

Materials Required
In order to fully work through this tutorial, you will need the following parts. You may not need everything though
depending on what you have. Add it to your cart, read through the guide, and adjust the cart as necessary.

OpenLog Hookup Guide

SparkFun Wish List

Recommended Reading
If you are not familiar or comfortable with the following concepts, we recommend reading through these before
continuing on with the OpenLog Hookup Guide.

How to Solder: Through-Hole Soldering. This tutorial covers everything you need to know about through-hole

soldering.

Serial Communication Asynchronous serial communication concepts: packets, signal levels, baud rates,

UARTs, and more!

Serial Peripheral Interface (SPI) SPI is commonly used to connect microcontrollers to peripherals such as

sensors, shift registers, and SD cards.

Serial Terminal Basics This tutorial will show you how to communicate with your serial devices using a variety

of terminal emulator applications.

Hardware Overview

Power
The OpenLog runs at the following settings:

OpenLog Power Ratings

The OpenLog’s current draw is about 20mA to 23mA when writing to a microSD. Depending on the size of the
microSD card and its manufacturer, the active current draw can vary when the OpenLog is writing to the memory
card. Increasing the baud rate will also pull more current.

Microcontroller
The OpenLog runs off an onboard ATmega328, running at 16MHz, thanks to the onboard crystal. The ATmega328
has the Optiboot bootloader loaded on it, which allows the OpenLog to be compatible with the
“Arduino Uno” board settings in the Arduino IDE.

Interface

Serial UART
The primary interface with the OpenLog is the FTDI header on the board edge. This header is designed to plug
directly into an Arduino Pro or Pro Mini, which allows the microcontroller to send the data over a serial connection
to the OpenLog.

Warning! Because of the pin ordering that makes it compatible with the Arduinos, it cannot plug directly into an
FTDI breakout board.

For more information, make sure to check out the next section on the Hardware Hookup.

SPI

There are also four SPI test points broken out on the opposite end of the board. You can use these to reprogram
the bootloader on the ATmega328.

The latest OpenLog (DEV-13712) breaks out these pins on smaller plated through holes. If you need to use an

ISP to reprogram or upload a new bootloader to the OpenLog, you can use pogo pins to connect to these test

points.

The final interface for communicating with the OpenLog is the microSD card itself. To communicate, the

microSD card requires SPI pins. Not only is this where the data is stored by the OpenLog, but you can also

update the OpenLog’s configuration via the config.txt file on the microSD card.

microSD Card

All data logged by the OpenLog is stored on the microSD card. The OpenLog works with microSD cards that have
the following features:

64MB to 32GB

FAT16 or FAT32

There are two status LEDs on the OpenLog to help you with troubleshooting.

STAT1 – This blue indicator LED is attached to Arduino D5 (ATmega328 PD5) and toggles on/off when a new

character is received. This LED blinks when Serial communication is functioning.

STAT2 – This green LED is connected to Arduino D13 (SPI Serial Clock Line/ ATmega328 PB5). This LED only

blinks when the SPI interface is active. You will see it flash when the OpenLog records 512 bytes to the

microSD card.

Hardware Hookup

There are two main methods for connecting your OpenLog to a circuit. You will need some headers or wires to
connect. Make sure that you solder to the board for a secure connection.

Basic Serial Connection

Tip: If you have a female header on the OpenLog and a female header on the FTDI, you will need M/F jumper
wires to connect.

This hardware connection is designed for interfacing with an OpenLog if you need to reprogram the board or log
data over a basic serial connection.

Make the following connections:
OpenLog → 3.3V FTDI Basic Breakout

GND → GND

GND → GND

VCC → 3.3V

TXO → RXI

RXI → TXO

DTR → DTR

Notice that it is not a direct connection between the FTDI and OpenLog – you must switch the TXO and RXI pin
connections.

Your connections should look like the following:

Once you have the connections between the OpenLog and the FTDI Basic, plug your FTDI board into a USB cable
and your computer. Open up a serial terminal, connect to the COM port of your FTDI Basic, and go to town!

Project Hardware Connection

Tip: If you have the female headers soldered on the OpenLog, you can solder male headers to the Arduino Pro
Mini to plug the boards together without the need for wires.

While interfacing with the OpenLog over a serial connection is important for reprogramming or debugging, the
place where OpenLog shines is in an embedded project. This general circuit is how we recommend you hook up
your OpenLog to a microcontroller (in this case, an Arduino Pro Mini) that will write serial data out to the OpenLog.

First, you will need to upload the code to your Pro Mini you intend to run. Please check out the Arduino Sketches
for some example code that you can use.

Note: If you are unsure how to program your Pro Mini, please check out our tutorial here.

Using the Arduino Pro Mini 3.3V

This tutorial is your guide to all things Arduino Pro Mini. It explains what it is, what it’s not, and how to get

started using it.

Once you have programmed your Pro Mini, you can remove the FTDI board and replace it with the OpenLog.

Make sure to connect the pins labeled BLK on both the Pro Mini and OpenLog (the pins labeled GRN on both

will also match up if done correctly).

If you cannot plug the OpenLog directly into the Pro Mini (due to mismatched headers or other boards in the

way), you can use jumper wires and make the following connections.

OpenLog → Arduino Pro/Arduino Pro Mini

GND → GND

GND → GND

VCC → VCC

TXO → RXI

RXI → TXO

DTR → DTR

Once you’re finished, your connections should look like the following with the Arduino Pro Mini and Arduino Pro.
The Fritzing diagram shows the OpenLogs with the headers mirrored. If you flip the microSD socket relative to the
Arduino’s top view, they should match the programming header like an FTDI.

Note that the connection is a straight shot with the OpenLog “upside-down” (with the microSD facing up).

Note: Since Vcc and GND between the OpenLog and Arduino are being occupied by the headers, you’ll need to
connect to power to the other pins available on the Arduino. Otherwise, you could solder wires to the exposed
power pins on either board.

Power up your system, and you are ready to start logging!

Arduino Sketches

There are six different example sketches included that you can use on the Arduino when connected to an
OpenLog.

OpenLog_Benchmarking — This example is used to test OpenLog. This sends very large amounts of data at

115200bps over multiple files.

OpenLog_CommandTest — This example shows how to create and append a file via command line control

through the Arduino.

OpenLog_ReadExample — This example runs through how to control the OpenLog via the command line.

OpenLog_ReadExample_LargeFile — Example of how to open a large stored file on OpenLog and report it

over a local Bluetooth connection.

OpenLog_Test_Sketch — Used to test OpenLog with lots of serial data.

OpenLog_Test_Sketch_Binary — Used to test OpenLog with binary data and escape characters.

Firmware

The OpenLog has two primary pieces of software on board: the bootloader and the firmware.

Arduino Bootloader

Note: If you are using an OpenLog that was purchased prior to March 2012, the onboard bootloader is compatible
with the “Arduino Pro or Pro Mini 5V/16MHz w/ ATmega328” setting in the Arduino IDE.

As mentioned previously, the OpenLog has the Optiboot serial bootloader on board. You can treat the OpenLog

just like an Arduino Uno when uploading example code or new firmware to the board.

If you end up bricking your OpenLog and need to reinstall the bootloader, you will also want to upload Optiboot

onto the board. Please check out our tutorial on installing an Arduino Bootloader for more information.

Compiling and Loading Firmware onto the OpenLog

Note: If this is your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide to manually install the libraries.

If for any reason you need to update or reinstall the firmware on your OpenLog, the following process will get

your board up and running.

First, please download the Arduino IDE v1.6.5. Other versions of the IDE may work to compile the OpenLog

firmware, but we have verified this as a known good version.

Next, download the OpenLog firmware and the required libraries bundle.

DOWNLOAD OPENLOG FIRMWARE BUNDLE (ZIP)

Once you have the libraries and firmware downloaded, install the libraries into Arduino. If you are unsure how

to manually install the libraries in the IDE, please check out our tutorial: Installing an Arduino Library: Manually

Installing a Library.

Note:

We are using modified versions of the SdFat and SerialPort libraries in order to arbitrarily declare how big the

TX and RX buffers should be. The OpenLog requires the TX buffer to be very small (0), and the RX buffer

needs to be as large as possible.

Using these two modified libraries together allows increased performance of the OpenLog.

Looking for the Latest Versions?
If you would prefer the most up-to-date versions of the libraries and firmware, you can download them directly from
the GitHub repositories linked below. The SdFatLib and Serial Port libraries are not visible in the Arduino board
manager so you will need to manually install the library.

GitHub: OpenLog > Firmware > OpenLog_Firmware

Bill Greiman’s Arduino Libraries

SdFatLib-beta

SerialPort

Next, to take advantage of the modified libraries, modify the SerialPort.h.h file found in the

\Arduino\Libraries\SerialPort directory. Change BUFFERED_TX to 0 and ENABLE_RX_ERROR_CHECKING

to 0. Save the file, and open up the Arduino IDE.

If you haven’t yet, connect your OpenLog to the computer via an FTDI board. Please double-check the example

circuit if you are not sure how to do this properly.

Open the OpenLog sketch you would like to upload under Tools>Board menu, select the “Arduino/Genuino

Uno”, and select the proper COM port for your FTDI board under Tools>Port.

Upload the code.

That’s it! Your OpenLog is now programmed with new firmware. You can now open up a serial monitor and

interact with the OpenLog. On power up, you will see either 12> or 12<. 1 indicates the serial connection is

established, 2 indicates the SD card has successfully initialized, < indicates OpenLog is ready to log any

received serial data, and > indicates OpenLog is ready to receive commands.

OpenLog Firmware Sketches
There are three included sketches you can use on the OpenLog, depending on your particular application.

OpenLog – This firmware ships by default on the OpenLog. Sending the? Command will show the firmware

version loaded onto a unit.

OpenLog_Light – This version of the sketch removes the menu and command mode, allowing the receive

buffer to be increased. This is a good option for high-speed logging.

OpenLog_Minimal – The baud rate must be set in code and uploaded. This sketch is recommended for

experienced users but is also the best option for the highest speed logging.

Command Set

You can interface with the OpenLog via a serial terminal. The following commands will help you read, write, and
delete files, as well as change the settings of the OpenLog. You will need to be in Command Mode to use the
following settings.

While the OpenLog is in Command Mode , STAT1 will toggle on/off for every character received. The LED will stay
on until the next character is received.

New File – Creates a new file named File in the current directory. Standard 8.3 filenames are supported. For

example, “87654321.123” is acceptable, while “987654321.123” is not.

Example: new file1.txt

Append File – Append text to the end of the File. Serial data is then read from the UART in a stream and added

to the file. It is not echoed over the serial terminal. If the File does not exist when this function is called, the file

will be created.

Example: append newfile.csv

Write File OFFSET – Write text to the File from the location OFFSET within the file. The text is read from the

UART, line by line, and echoed back. To exit this state, send an empty line.

Example: write logs.txt 516

rm File – Deletes the File from the current directory. Wildcards are supported.

Example: rm README.txt

size File – Output size of File in bytes.

Example: size Log112.csv

Output: 11

Read File + START+ LENGTH TYPE – Output the content of File starting from START and going for LENGTH. If

START is omitted, the entire file is reported. If LENGTH is omitted, the entire contents from the starting point are

reported. If TYPE is omitted, the OpenLog will default to reporting in ASCII. There are three output TYPEs:

ASCII = 1

HEX = 2

RAW = 3

You may leave off some trailing arguments. Check the following examples.

Basic read + omitted flags:

Example: read LOG00004.txt

Output: Accelerometer X=12 Y=215 Z=317

Read from start 0 with a length of 5:

Example: read LOG00004.txt 0 5

Output: Accel

Read from position 1 with a length of 5 in HEX:

Example: read LOG00004.txt 1 5 2

Output: 63 63 65 6C

Read from position 0 with a length of 50 in RAW:

Example: read LOG00137.txt 0 50 3

Output: André– -þ Extended Character Test

Cat File – Write the content of a file in hex to the serial monitor for viewing. This is sometimes helpful to see

that a file is recording correctly without having to pull the SD card and view the file on a computer.

Example: cat LOG00004.txt

Output: 00000000: 41 63 65 6c 3a 20 31

Directory Manipulation

ls – Lists all contents of the current directory. Wildcards are supported.

Example: ls

Output: \src

md Subdirectory – Create a Subdirectory in the current directory.

Example: md Example_Sketches

cd Subdirectory – Change to Subdirectory.

Example: cd Hello_World

cd .. – Change to a lower directory in the tree. Note that there is a space between ‘cd’ and ‘..’. This allows the

string parser to see the CD command.

Example: cd ..

rm Subdirectory – Deletes Subdirectory. The directory must be empty for this command to work.

Example: rm temps

rm -rf Directory – Deletes the Directory and any files contained within it.

Example: rm -rf Libraries

Low-Level Function Commands

? – This command will pull up a list of available commands on the OpenLog.

Disk – Show card manufacturer ID, serial number, manufacture date, and card size. Example output is:

Card type: SD2 Manufacturer ID: 3

OEM ID: SD

Product: SU01G

Version: 8.0

Serial number: 39723042 Manufacturing date: 1/2010 Card Size: 965120 KB

init – Reinitialize the system and reopen the SD card. This is helpful if the SD card stops responding.

Sync – Synchronizes the current contents of the buffer to the SD card. This command is useful if you have less

than 512 characters in the buffer and want to record those on the SD card.

Reset – Jumps OpenLog to location zero, reruns the bootloader, and then the init code. This command is

helpful if you need to edit the config file, reset the OpenLog, and start using the new configuration. Power

cycling is still the preferred method for resetting the board, but this option is available.

System Settings

These settings can be manually updated or edited in the config.txt file.

Echo STATE – Changes the state of the system, and is stored in system memory. STATE can either be on or off.

While on the OpenLog will echo received serial data on the command prompt. While off, the system does not

read back received characters.

Note: During normal logging, echo will be turned off. The system resource demands for echoing the received data
are too high during logging.

Verbose STATE – Changes the state of verbose error reporting. STATE can either be on or off This command is

stored in memory. By turning off verbose errors, OpenLog will respond with only a ! if there is an error, rather

than an unknown command: C OMMAND.D..TThe hecharacterss are easier for embedded systems to parse

than the full error. If you are using a terminal, leaving verbose on will allow you to see full error messages.

baud – This command will open up a system menu allowing the user to enter a baud rate. Any baud rate

between 300bps and 1Mbps is supported. The baud rate selection is immediate, and the OpenLog requires a

power cycle for the settings to take effect. The baud rate is stored to EEPROM and is loaded every time

OpenLog powers up. The default is 9600 8N1 .

Remember: If you get the board stuck in an unknown baud rate, you can tie RX to GND and power up OpenLog.
The LEDs will blink back and forth for 2 seconds and will then blink in unison. Power down the OpenLog, and
remove the jumper. OpenLog is now reset to 9600bps with an escape character of `CTRL-Z` pressed three
consecutive times. This feature can be overridden by setting the Emergency Override bit to 1. See config.txt for
more info.

Set – This command opens a system menu to select the bootup mode. These settings will occur at the next

power-on and are stored in non-volatile EEPROM.

New File Logging – This mode creates a new file each time OpenLog powers up. OpenLog will transmit 1

(UART is alive), 2 (SD card is initialized), then < (OpenLog is ready to receive data). All data will be

recorded to a LOG#####.txt. The ##### number increases every time OpenLog powers up (the max is

65533 logs). The number is stored in EEPROM and can be reset from the set menu. Not all received

characters are echoed. You can exit this mode and enter command mode by sending CTRL+z (ASCII

26). All buffered data will be stored.

Note: If too many logs have been created, OpenLog will output error **Too many logs**, exit this mode, and

drop to Command Prompt. The serial output will look like `12!Too many logs!

Append File Logging – Also known as sequential mode, this mode creates a file called SEQLOG.txt if it is

not already there, and appends any received data to the file. OpenLog will transmit 12< at which time

OpenLog is ready to receive data. Characters are not echoed. You can exit this mode and enter

command mode by sending CTRL+z (ASCII 26). All buffered data will be stored.

Command Prompt – OpenLog will transmit 12> at which time the system is ready to receive commands.

Note that the > sign indicates OpenLog is ready to receive commands, not data. You can create files and

append data to files, but this requires some serial parsing (for error checking), so we do not set this mode

by default.

Reset New File Number – This mode will reset the log file number to LOG000.txt . This is helpful if you

have recently cleared out a microSD card and want the log file numbers to start over again.

New Escape Character – This option allows the user to enter a character, such as CTRL+z or $, and set

this as the new escape character. This setting is reset to CTRL+z during an emergency reset.

Number of Escape Characters – This option allows the user to enter a character (such as 1, 3, or 17),

updating the new number of escape characters needed to drop to command mode. For example,

entering 8 will require the user to hit CTRL+z eight times to get to command mode. This setting is reset to

3 during an emergency reset.

Escape Characters Explanation: The reason OpenLog requires `CTRL+z` hit 3 times to enter command mode

is to prevent the board from accidentally being reset during upload of new code from the Arduino IDE. There is

the chance that the board would see the `CTRL+z` character coming through during bootloading (an issue we

saw in the early versions of the OpenLog firmware), so this aims to prevent that. If you ever suspect your board

has been bricked due to this, you can always do an emergency reset by holding the RX pin to ground during

power up.

Configuration File

If you would rather not use the serial terminal for modifying the settings on your OpenLog, you can also update the
settings by modifying the CONFIG.TXT file.

Note: This feature only functions on firmware version 1.6 or newer. If you have bought an OpenLog after 2012,
you will be running firmware version 1.6+

To do this, you will need a microSD card reader and a text editor. Open up the config.txt file (the capitalization

of the file name does not matter), and configure away! If you have never powered up your OpenLog with the SD

card before, you can also manually create the file. If you have powered up the OpenLog with the microSD card

inserted previously, you should see something like the following when you read the microSD card.

The OpenLog creates a config.txt and LOG0000.txt file on first power up.

The default configuration file has one line of settings and one line of definitions.

The default configuration file was written by the OpenLog.

Note that these are regular visible characters (there are no non-visible or binary values), and each value is

separated by a comma.

The settings are defined as follows:

baud : The communication baud rate. 9600 bps is the default. Acceptable values that are compatible with the

Arduino IDE are 2400, 4800, 9600, 19200, 38400, 57600, and 115200. You can use other baud rates, but you

will be unable to communicate with the OpenLog through the Arduino IDE serial monitor.

Escap:e The ASCII value (in decimal format) of the escape character. 26 is CTRL+z and is the default. 36 is $

and is a commonly used escape character.

Esc #: The number of escape characters required. By default, it is three, so you must hit the escape character

three times to drop to command mode. Acceptable values are from 0 to 254. Setting this value to 0 will disable

escape character checking completely.

Mode System mode. OpenLog starts in New Log mode(0) by default. Acceptable values are 0 =New Log, 1 =

Sequential Log, 2 = Command Mode.

Verb: Verbose mode. Extended (verbose) error messages are turned on by default. Setting this to 1 turns on

verbose error messages (such as unknown command: remove !). Setting this to 0 turns off verbose errors, but

will respond with a ! if there is an error. Turning off verbose mode is handy if you are trying to handle errors from

an embedded system.

Echo: Echo mode. While in command mode, characters are echoed by default. Setting this to 0 turns off

character echo. Turning this off is handy if handling errors, and you don’t want sent commands being echoed

back to the OpenLog.I I

iignoreRXEmergency Override. Normally, OpenLog will emergency reset when the RX pin is pulled low during

power up. Setting this to 1 will disable the checking of the RX pin during power up. This can be helpful for

systems that will hold the RX line low for various reasons. If Emergency Override is disabled, you will not be

able to force the unit back to 9600bps, and the configuration file will be the only way to modify the baud rate.

How OpenLog Modifies the Config File
There are five different situations for the OpenLog to modify the config.txt file.

Config file found: During power up, OpenLog will look for a config.txt file. If the file is found, OpenLog will use

the included settings and overwrite any previously stored system settings.

No config file found: If OpenLog cannot find the config.txt file then OpenLog will create config.txt and record the

currently stored system settings to it. This means if you insert a newly formatted microSD card, your system will

maintain its current settings.

Corrupt config file found: OpenLog will erase the corrupted config.txt file, and will rewrite both the internal

EEPROM settings and the config.txt settings file to the known-good state of 9600,26,3,0,1,1,0.

Illegal values in config file: If the OpenLog discovers any settings containing illegal values, OpenLog will

overwrite the corrupt values in config.txt file with the currently stored EEPROM system settings.

Changes through command prompt: If the system settings are changed through the command prompt (either

over a serial connection or via microcontroller serial commands) those changes will be recorded both to the

system EEPROM and to the config.txt file.

Emergency Reset: If the OpenLog is power cycled with a jumper between RX and GND, and the Emergency

Override bit is set to 0 (allowing emergency reset), OpenLog will rewrite both the internal EEPROM settings and

the config.txt settings file to the known-good state of 9600,26,3,0,1,1,0 .

Troubleshooting

There are several different options to check if you are having issues connecting over the serial monitor, having
issues with dropped characters in logs, or fighting a bricked OpenLog.

Check STAT1 LED Behavior
STAT1 LED shows different behavior for two different common errors.

3 Blinks: The microSD card failed to initialize. You may need to format the card with FAT/FAT16 on a computer.

5 Blinks: OpenLog has changed to a new baud rate and needs to be power cycled.

Double Check Subdirectory Structure

If you are using the default OpenLog.ino example, OpenLog will only support two subdirectories. You will need

to change FOLDER_TRACK_DEPTH from 2 to the number of subdirectories you need to support. Once you’ve

done this, recompile the code up, and upload the modified firmware.

Verify the Number of Files in the Root Directory

OpenLog will only support up to 65,534 log files in the root directory. We recommend reformatting your

microSD card to improve logging speed.

Verify the Size of your Modified Firmware

If you are writing a custom sketch for the OpenLog, verify that your sketch is not larger than 32,256. If so, it will

cut into the upper 500 bytes of Flash memory, which is used by the Optiboot serial bootloader.

Double Check File Names

All file names should be alpha-numeric. MyLOG1.txt is ok, but Hi !e _ .txtt may not work.

Use 9600 Baud

OpenLog runs off the ATmega328 and has a limited amount of RAM(2048 bytes). When you send serial

characters to OpenLog, these characters get buffered. The SD Group Simplified Specification allows an SD

card to take up to 250ms (section 4.6.2.2 Write) to record a data block to flash memory.

At 9600bps, that’s 960 bytes (10 bits per byte) per second. That is 1.04ms per byte. OpenLog currently uses a

512 byte receive buffer so it can buffer around 50ms of characters. This allows OpenLog to successfully

receive all characters coming at 9600bps. As you increase the baud rate, the buffer will last for less time.

OpenLog Buffer Overrun Time

Baud Rate Time per byte Time Until Buffer is Overrun

9600bps 1.04ms 532ms

57600bps 0.174ms 88ms

115200bps 0.087ms 44ms

Many SD cards have a faster record time than 250ms. This can be affected by the ‘class’ of the card and how
much data is already stored on the card. The solution is to use a lower baud rate or increase the amount of time
between the characters sent at the higher baud rate.

Format your MicroSD Card
Remember to use a card with few or no files on it. A microSD card with 3.1GB worth of ZIP files or MP3s has a
slower response time than an empty card. If you did not format your microSD card on a Windows OS, reformat the
microSD card and create a DOS filesystem on the SD card.

Swap MicroSD Cards
There are many different types of card manufacturers, relabeled cards, card sizes, and card classes, and they
may not all work properly. We typically use an 8GB class 4 microSD card, which works well at 9600bps. If you
need higher baud rates or larger storage space, you may want to try class 6 or above cards.

Add Delays Between Character Writes
By adding a small delay between Serial.print() statements, you can give OpenLog a chance to record its current
buffer.

For example:

Serial.begin(115200);

for(int i = 1 ; i < 10 ; i++) { Serial.print(i, DEC); Serial.println(“:abcdefghijklmnopqrstuvwxyz-!#”); }

may not log properly, as there are a lot of characters being sent right next to each other. Inserting a small delay of
15ms between large character writes will help OpenLog record without dropping characters.

Serial.begin(115200);

for(int i = 1 ; i < 10 ; i++) { Serial.print(i, DEC); Serial.println(“:abcdefghijklmnopqrstuvwxyz-!#”); delay(15); }

Add Arduino Serial Monitor Compatibility

If you are attempting to use the OpenLog with the built-in serial library or the SoftwareSerial library, you may
notice issues with command mode. Serial.println() sends both newline AND carriage return. There are two
alternative commands to overcome this.

The first is to use the \r command (ASCII carriage return):
Serial.print(“TEXT\r”);

Alternatively, you can send the value 13 (decimal carriage return):

Serial.print(“TEXT”);

Serial.write(13);

Emergency Reset

Remember, if you need to reset the OpenLog to a default state, you can reset the board by tying the RX pin to
GND, powering up the OpenLog, waiting until the LEDs begin to blink in unison, and then powering down the
OpenLog and removing the jumper.
If you have changed the Emergency Override bit to 1, you will need to modify the configuration file, as the
Emergency Reset will not work.

Check with the Community

If you are still having issues with your OpenLog, please check out the current and closed issues on our GitHub
repository here. There is a large community working with the OpenLog, so chances are that someone has found a
fix for the problem you are seeing.

Resources and Going Further

Now that you’ve successfully logged data with your OpenLog, you can set up remote projects and monitor all the
possible data coming. Consider creating your own Citizen Science project, or even a pet tracker to see what Fluffy
does when out and about!
Check out these additional resources for troubleshooting, help, or inspiration for your next project.

OpenLog GitHub

Illumitune Project

LilyPad Light Sensor Hookup

BadgerHack: Soil Sensor Add-On

Getting Started with OBD-II

Vernier Photogate

Need some more inspiration? Check out some of these related tutorials:

Photon Remote Water Level Sensor

Learn how to build a remote water level sensor for a water storage tank and how to automate a pump based off

the readings!

Blynk Board Project Guide

A series of Blynk projects you can set up on the Blynk Board without ever re-programming it.

Logging Data to Google Sheets with the Tessel 2

This project covers how to log data to Google Sheets two ways: using IFTTT with a web connection or a USB

pen drive and “sneakernet” without.

Graph Sensor Data with Python and Matplotlib

Use matplotlib to create a real-time plot of temperature data collected from a TMP102 sensor connected to a

Raspberry Pi.

If you have any tutorial feedback, please visit the comments or contact our technical support team at
TechSupport@sparkfun.com.

Frequently Asked Questions

What is the recommended power input for the OpenLog?

The recommended power input for the OpenLog is between 3.3V to 5V.

How much current does the OpenLog draw when idle?

The OpenLog draws approximately 2mA to 5mA when idle without a microSD card, and around 5mA to
6mA when a microSD card is inserted.

What is the purpose of the microSD USB Reaaboutn to the OpenLog?

The microSD USB Reader allows for easy transfer of data from the microSD card used with the OpenLog
to a computer.

Documents / Resources

SparkFun DEV-13712 Particle Photon With Holes For Soldering [pdf] User Guide
DEV-13712, DEV-13955, DEV-13712 Particle Photon With Holes For Soldering, DEV-13712, Pa
rticle Photon With Holes For Soldering, Holes For Soldering, For Soldering, Soldering

References

mailto:TechSupport@sparkfun.com
https://manuals.plus/m/403453d2432e14d077cd223c2e53a60360b8625c5fbb60c9b65894c29ba488b6
https://manuals.plus/m/403453d2432e14d077cd223c2e53a60360b8625c5fbb60c9b65894c29ba488b6_optim.pdf

 cdn.sparkfun.com/assets/learn_tutorials/4/9/8/configFile.JPG

 cdn.sparkfun.com/assets/learn_tutorials/4/9/8/defaultSdconfig.JPG

 cdn.sparkfun.com/assets/learn_tutorials/4/9/8/FTDI_Header.jpg

 cdn.sparkfun.com/assets/learn_tutorials/4/9/8/OpenLogFTDI.png

cdn.sparkfun.com/assets/learn_tutorials/4/9/8/SparkFun_OpenLog_and_Arduino_Pro_Mini_Fritzing_bb.jpg

 8.3 filename - Wikipedia

 GitHub - greiman/SdFat-beta: Beta SdFat for test of new features

 GitHub - greiman/SerialPort: Enhanced Serial Library for Arduino

 GitHub - sparkfun/OpenLog: Open Source Hardware Datalogger

 GitHub · Where software is built

 OpenLog/firmware/OpenLog_Firmware at master · sparkfun/OpenLog · GitHub

 BadgerHack: Sensor Add-On Kit - SparkFun Learn

 Blynk Board Project Guide - SparkFun Learn

 Graph Sensor Data with Python and Matplotlib - SparkFun Learn

 Installing an Arduino Bootloader - SparkFun Learn

 Installing an Arduino Bootloader - SparkFun Learn

 Installing an Arduino Library - SparkFun Learn

 Installing Arduino IDE - SparkFun Learn

 LilyPad Light Sensor Hookup Guide - SparkFun Learn

 Logging Data to Google Sheets with the Tessel 2 - SparkFun Learn

 Discuss Tutorial: OpenLog Hookup Guide - SparkFun Learn

 OpenLog Hookup Guide - SparkFun Learn

 OpenLog Hookup Guide - SparkFun Learn

 Serial Communication - SparkFun Learn

 Citizen Science | Tutorials - SparkFun Learn

 Serial Terminal Basics - SparkFun Learn

 Previous IDE Releases | Arduino

 SparkFun Electronics

 Female Headers

 Break Away Headers - Straight

 Break Away Male Headers - Right Angle

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://cdn.sparkfun.com/assets/learn_tutorials/4/9/8/configFile.JPG
https://cdn.sparkfun.com/assets/learn_tutorials/4/9/8/defaultSdconfig.JPG
https://cdn.sparkfun.com/assets/learn_tutorials/4/9/8/FTDI_Header.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/4/9/8/OpenLogFTDI.png
https://cdn.sparkfun.com/assets/learn_tutorials/4/9/8/SparkFun_OpenLog_and_Arduino_Pro_Mini_Fritzing_bb.jpg
https://en.wikipedia.org/wiki/8.3_filename
https://github.com/greiman/SdFat-beta
https://github.com/greiman/SerialPort
https://github.com/sparkfun/OpenLog
https://github.com/sparkfun/OpenLog/issues
https://github.com/sparkfun/OpenLog/tree/master/firmware/OpenLog_Firmware
https://learn.sparkfun.com/tutorials/badgerhack-sensor-add-on-kit
https://learn.sparkfun.com/tutorials/blynk-board-project-guide
https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib
https://learn.sparkfun.com/tutorials/installing-an-arduino-bootloader
https://learn.sparkfun.com/tutorials/installing-an-arduino-bootloader#connecting-the-programmer
https://learn.sparkfun.com/tutorials/installing-an-arduino-library/all#manually-installing-a-library---windows
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/lilypad-light-sensor-hookup-guide
https://learn.sparkfun.com/tutorials/logging-data-to-google-sheets-with-the-tessel-2
https://learn.sparkfun.com/tutorials/openlog-hookup-guide/discuss
https://learn.sparkfun.com/tutorials/openlog-hookup-guide#arduino-sketches
https://learn.sparkfun.com/tutorials/openlog-hookup-guide#hardware-hookup
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/tags/citizen-science
https://learn.sparkfun.com/tutorials/terminal-basics
https://www.arduino.cc/en/Main/OldSoftwareReleases#previous
https://www.sparkfun.com/
https://www.sparkfun.com/products/115
https://www.sparkfun.com/products/116
https://www.sparkfun.com/products/553
https://manual.tools/?p=16570005#MTA0LjI4LjIwMi4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	SparkFun DEV-13712 Particle Photon With Holes For Soldering User Guide
	SparkFun DEV-13712 Particle Photon With Holes For Soldering
	Specifications
	Product Usage Instructions
	Introduction
	SparkFun Wish List
	Hardware Overview
	Interface
	SPI
	Hardware Hookup
	Project Hardware Connection
	Arduino Sketches
	Firmware
	Command Set
	System Settings
	Configuration File
	Troubleshooting
	Emergency Reset
	Check with the Community
	Resources and Going Further
	Frequently Asked Questions
	Documents / Resources
	References

