

SILICON LABS TS1108 Coulomb Counter User Guide

Home » SILICON LABS » SILICON LABS TS1108 Coulomb Counter User Guide 🖫

Contents

- 1 SILICON LABS TS1108 Coulomb
- Counter
- **2 Product Information**
- **3 Product Usage Instructions**
- **4 KEY FEATURES**
- **5 ORDERING INFORMATION**
- **6 ABOUT PRODUCT**
- 7 Description
- **8 Component List**
- 9 Quick Start Procedure
- 10 Disclaimer
- 11 Trademark Information
- 12 ABOUT COMPANY
- 13 Documents / Resources
- **14 Related Posts**

SILICON LABS TS1108 Coulomb Counter

Product Information

- The TS1108 Coulomb Counter is an electronic device that calculates the number of ampere-hours (Ah) of charge that has passed through it. It uses a comparator interrupt pulse to measure the charge passed through it and provides an output waveform with a periodic pulsing pattern. The device has the following key features:
 - · Calculates ampere-hours of charge passed through it
 - Uses comparator interrupt pulse to measure charge
 - Provides periodic pulsing waveform output
- The package includes one TS1108 Coulomb Counter, a circuit schematic, a component list, and a quick start
 procedure. The component list lists all the components included in the package and their quantities. The quick
 start procedure provides step-by-step instructions on how to start using the device.

Product Usage Instructions

- 1. Refer to the component list to ensure all components are included in the package.
- 2. Connect the power supply to VIN and GND as per the circuit schematic provided.
- 3. Connect a 1 V voltage source to VBIAS.
- 4. Connect a load to VLOAD and GND.
- 5. Adjust RSENSE to provide accurate charge measurement for the load connected.
- 6. Adjust CINT and RINT based on the desired frequency of comparator interrupt pulses.
- 7. Verify that VOUT equals 1 V.
- 8. Connect an oscilloscope to COUT to observe the periodic pulsing waveform output.

KEY FEATURES

• RSENSE: $50 \text{ m}\Omega \pm 0.5\%$

- Compatible for Both Gain Options
- 20 V/V
- 200 V/V

ORDERING INFORMATION

- TS1108-20DB
- TS1108-200DB

ABOUT PRODUCT

- The TS1108 coulomb counter accurately measures battery depletion while also indicating the battery charging polarity. The battery discharge current is monitored by a current-sense amplifier through an external sense resistor. Utilizing an Integrator and a Comparator plus a Monoshot, the TS1108 voltage-to-frequency converter provides a series of 90 µs output pulses at COUT, which represents an accumulation of coulombs flowing out of the battery. The charge count frequency is adjustable by the integration resistor and capacitor.
- The TS1108 CSA requires a very low 1.2 μA supply current, while also combining a 150 μV VOS(MAX) with a 0.6% gain error (MAX) for high precision current measurements. The TS1108 provides a buffered CSA output which can be connected with a RC Filter to reduce noise. The VDD supply requires a typical supply current of 1.93 μA when VREF is disabled.
- The TS1108 is fully specified to operate over the -40 °C to +85 °C temperature range and is available in a low-profile thermally-enhanced 16-pin 3 x 3 mm TQFN package with an exposed back-side paddle.

Description

The TS1108 Evaluation Board is intended for evaluating the coulomb counter functionality of the TS1108. The TS1108 Coulomb Counter function utilizes an Integrator and a Comparator plus a 90 µs Monoshot. The CSA's buffered output is applied to the integrator's

input. This signal is integrated by the comparator until it reaches a level which trips the comparator. The comparator's trip level is determined by the voltage applied to the comparator's non-inverting terminal, CIN+. The Monoshot produces a 90 μ s output pulse at COUT and the integrator is reset. Therefore, each COUT 90 μ s pulse represents an accumulation of coulombs (Please refer to Coulomb

Counter Equations in Applications Information). The TS1108 Integrator works best when the 90 μ s Monoshot represents less than 2%

of the total integration period. Therefore, the minimum integration time for a full-scale VSENSE should be limited to 4.7 ms. To guarantee stable operation of the OUT buffer, an integration capacitance of 0.1 μ F should be used for integration capacitor, CINT. The TS1108's Coulomb Counting interrupt is provided by the internal comparator with a push-pull output configuration.

The following equation can be used to calculate how many ampere-hours (Ah) each comparator interrupt pulse represents:

$$Comparator Pulse = \frac{R_{INT}C_{INT}(V_{CIN} - V_{VBIAS})}{3600 \times GAIN \times R_{SENSE}} Ah$$

Designation	Quantity	Description
U1	1	TS1108-20, TS1108-200
RS1	1	50 mΩ ±0.5%, 1/2 W (1206)
C1, C6	2	1 μF ± 10%, 10 V (0603)
C2, C4, C7, C9, C10	5	0.1 μF ± 10%, 10 V (0603)
C3	1	1 nF ± 10%, 25 V (0603)
C5	1	0.47 μF ± 10%, 10 V (0603)
R1	1	$4.02 \text{ k}\Omega \pm 1\%$, 1/16 W (0603)
R2	1	47 kΩ ± 1%, 1/16 W (0603)
R4, R5, R6	3	2 MΩ ±1%, 1/10 W (0603)
J1, J2, J3, J4, J7, J8	6	Header 1×1
JP2, JP3, JP5	3	Header 1×3
JP4, JP6, JP7, JP8, JP9, JP10, JP 11, JP12	8	Jumper
JS1, JS2, JS3	3	Jumper Shunt

Quick Start Procedure

• Required Equipment

- 3 V Power Supply or 3 V Battery
- 。 2 Digital Multimeters
- 1 Oscilloscope
- 1 Potentiometer
- To use the TS1108 evaluation board, perform the following steps:
 - 1. Configure JP3 so that the Jumper Shunt is connecting VDD to VREF.

- 2. Configure JP5 so that the jumper shunt is connecting COUT and SW_RST.
- 3. Connect the 3 V power source to RS+ and VDD.
- 4. Use a voltmeter to measure the VVBIAS and the CIN- voltage. VVBIAS should be 50% of VDD, 1.5 V. CIN- should be 90% of VDD, 2.7 V.
- 5. Connect a voltmeter to measure VOUT. With no load connected VOUT should be equal to VVBIAS. The expression for the VOUT output voltage is defined by: VOUT = VBIAS í I LOAD \times 50m Ω \times GAIN
- 6. Connect an ammeter in series from RS- to a potentiometer. Adjust the POT until the ammeter reads:
 - TS1108-20: 500 mA
 - TS1108-200: 50 mA VOUT should equal 1 V.
- 7. Connect the oscilloscope to COUT. COUT should produce a periodic pulsing waveform with a period of 11.28 ms, where each monoshot pulse width is 90 μs (typ).

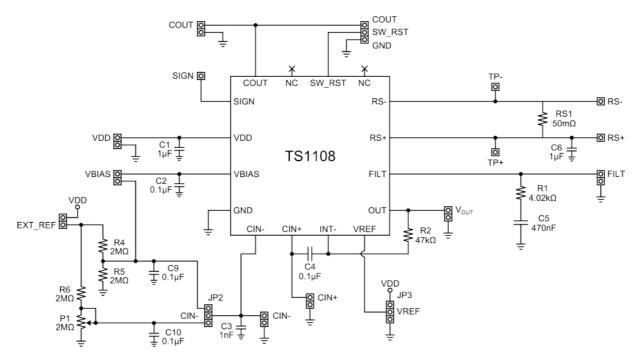


Figure 2.1. TS1108DB Circuit Schematic

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

ABOUT COMPANY

- Silicon Laboratories Inc.
- 400 West Cesar Chavez
- Austin, TX 78701
- USA
- http://www.silabs.com

Documents / Resources

SILICON LABS TS1108 Coulomb Counter [pdf] User Guide TS1108 Coulomb Counter, TS1108, Coulomb Counter, Counter

Manuals+,