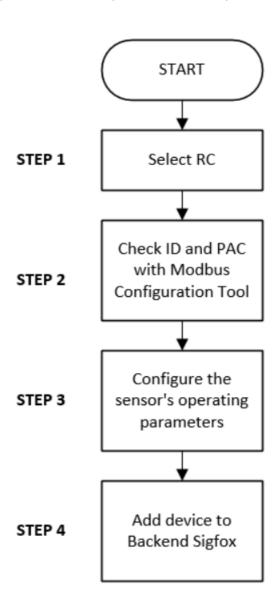


Sigfox WSSFC-AG Tilt Sensor User Guide

Home » Sigfox » Sigfox WSSFC-AG Tilt Sensor User Guide 🖫

Sigfox WSSFC-AG Tilt Sensor


Contents

- **1 Configuration Check List**
- 2 Functions Change Log
- 3 Introduction
- **4 Specification**
- **5 Dimensions**
- **6 Operation Principle**
 - 6.1 LED meaning
 - **6.2 Button Function**
 - 6.3 RC technical details
 - 6.4 Add a device to the Backend Sigfox
 - **6.5 Measurement principle of Sigfox Sensor**
 - **6.6 Configuration Parameters**
 - 6.7 Payload Data
- 7 Offline configuration
- 8 Installation
 - 8.1 Locate the good place for Radio signal
 - 8.2 Process mounting
 - 8.3 Battery installation
- 9 Troubleshooting
- 10 Support contacts
- 11 Documents / Resources
 - 11.1 References
- **12 Related Posts**

Configuration Check List

This document is applied for the following products

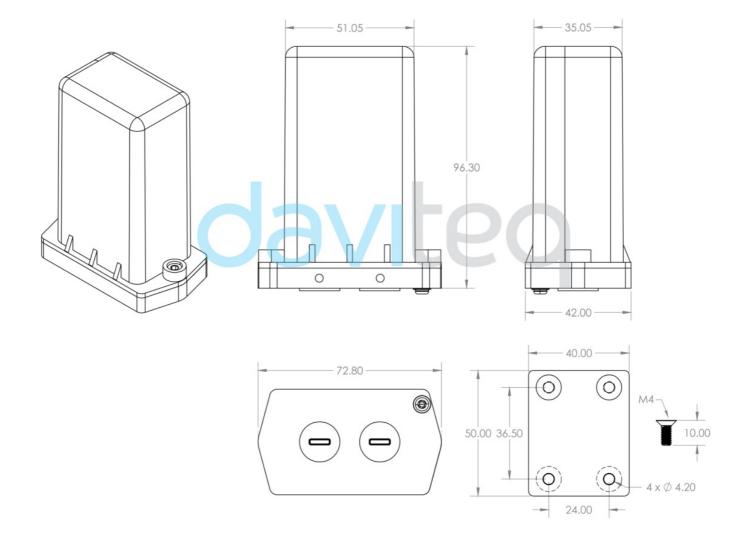
SKU	WSSFC-AG	HW Ver.	1.0	FW Ver.	1.02		
Item Code	WSSFC-AG-9-0	Sigfox XYZ Tilt sensor, Internal antenna, Type AA battery 1.5VDC, IP67, RC2-RC3-RC4-RC5 zones					
Item Code	WSSFC-AG-8-0	Sigfox XYZ Tilt se RC1-RC6-RC7 zo	ensor, Internal anter ones	nna, Type AA batte	ry 1.5VDC, IP67,		

STEP 1: Select RC	
Select RC zone using Modbus Configuration Cable	RC zones selection 1, 2, 4 is RCZ1, RCZ2, RCZ4 (ref er to register address 270)
2. Select RC zone using button	Refer to the button configuration
STEP 2: Check ID and PAC	
Use Modbus Configuration Cable to read the ID and P AC values	Refer to register address 8 and 10 (DEC)
STEP 3: Configure the sensor's operating paramet ers	
Configure parameters like cycle send data, alarm, a, b	Refer to the configuration section using the Modbus Configuration Cable
STEP 4: Add device to Backend Sigfox	
refer to section 5.4 for details	

Functions Change Log

HW Ver.	FW Ver.	Release Date	Functions Change	
1.0	1.02	DEC-2020		

Introduction


WSSFC-AG is a Sigfox Tilt Sensor, can be used to measure 3 tilt angles X, Y, Z of any object as Tower, Building, Tree, Electricity Tower, Telecom Tower, Bridges... The Tilt sensor utilises the combination of advanced Accelerometer and Gyro meter to deliver high accuracy and stable measurement of Tilt angle of 03 axis X,Y,Z. The Ultra-Low Power Power design and smart firmware allow the sensor to last up to 10 years with 02 x AA battery (depending on configuration). The sensor will transmit data in kilo-meters distance to Sigfox basestation. WSSFC-AG can support all regions of Sigfox network in over the World, RC1, RC2, RC3, RC4, RC5, RC6, RC7.

Specification

SENSORS SPECIFICATION:	
Tilt Sensor	Built-in advanced accelerometer and gyro meter to deliver tilt angle measurement of X, Y, Z
Measurement range	± 90° of XYZ
Repeatibility	± 0.25°
Sensor sampling rate	1Hz max
Alarm setting	setting the alarm threshold for each angle
Sigfox SPECIFICATION:	
Sigfox zones	select RC2-RC3-RC4-RC5 or RC1-RC6-RC7
Antenna	Internal Antenna 2dbi
Battery	02 x AA Type 1.5VDC, working time up to 10 years (de pends on configuration)
RF Module complies to	CE, FCC, ARIB
Working temperature	-40°C+60°C (using Energizer Lithium Ultimate AA bat tery)
Dimensions	H97xW73xD42
Net-weight	250 grams
Housing	Polycarbonate & POM plastic, IP67

Dimensions

Operation Principle

Upon power on, the Sigfox node has60 seconds to wait foroff-line configuration (via cable with ModbusRTU protocol)

After 1 minute 30 seconds later the device will send the first data packet and at the same time wait for the downlink packet from the Base Station.

Then during the operation, there are 03 cases of sending data to base station:

1. When the sensor sampling time interval is reached, the Sigfox node will read the data from Input or sensor and performing the calculation. After that it will check calculated value with alarm thresholds. If the calculated was out off the threshold values (Lo or Hi), called alarm, and the number of times of alarm did not pass the limit of number of alarms, then it will send data to Base station immediately;

NOTE:

Once sending the data to base station by this alarm event, the timer of sending time interval will be reset;

- 2. When the sending time interval is reached, it will send data to Base station immediately, regardless of value;
- 3. By using the magnet key, the Sigfox node can be triggered to send data to base station immediately. There will be a beep sound from the buzzer meaning the data has been sent.

REED SWITCHS FUNCTIONS (activated by magnet):

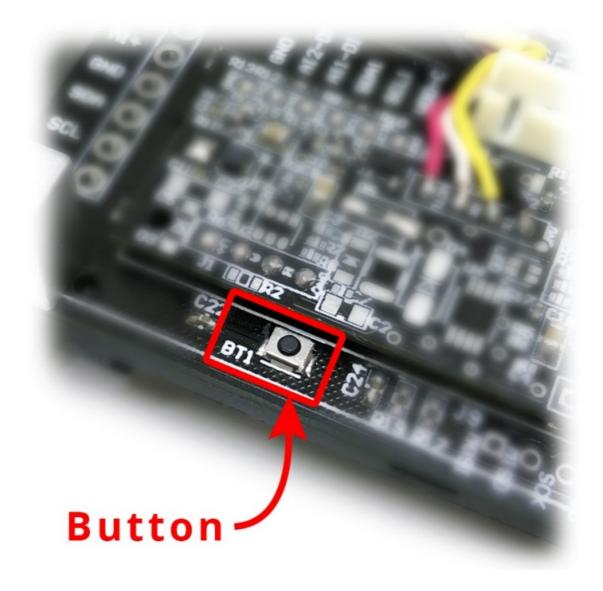
EVENT	PRE-CONDITIO N	ACTION	LED STATUS	ACTIVITIES	POST-CONDITI ON
FORCE_DATA	Any state	Move Magnet K ey to contact poi nt of REED SWI TCH. Led blink SKY B LUE, move Mag net Key away.	Blink SKY BLU E	See FW specs	Back to previous state
PARAMETERS_ UPDATE	Any state	Move Magnet K ey to contact poi nt of REED SWI TCH. Led blink SKY B LUE, hold Magn et Key 5s. Led b link PURPLE, m ove Magnet Key away.	Blink PURPLE	See FW specs	Back to previous state

NOTE:

Once sending the data to base station by the magnet key, the timer of sending time interval will be reset; The shortest time interval between the two manual triggers is5s. if shorter than 5s, there will be no data sending.

LED meaning

Whenever the data is sent to base station, the LED will lit with color codes as below:


• RC1: RED colour

• RC2: GREEN colour

• RC4: BLUE colour

Button Function

the push button can only be used for the first60 seconds after powering up.

Menu configuration

There are 3 configuration menus: tx_repeat, downlink_flag, radio configuration. We use the button to enter the menus as follows:

tx_repeat

Press and hold the button2s -> When the Red LED is on, it means entering thetx_repeat configuration menu. Then release to configure it.

Press to configure. After pressing if the Red LED flashes once, $tx_{e} = 0$ (send 1 time). After pressing if the Red LED blinks twice, it is $tx_{e} = 1$ (send 3 times).

downlink_flag

Press and hold the button5s -> When the Green LED is on, it means entering the downlink_flag configuration menu. Then release to configure it.

Press to configure. After pressing if the Green LED flashes once, it is downlink_flag = 0 (downlink is not allowed). After pressing if the Red LED blinks twice, it is downlink_flag = 1 (downlink is allowed).

radio configuration

Press and hold the button10s -> Blue LED is on, it means entering the Radio Configuration menu. Then release to configure it.

Press to configure. After pressing if the Blue LED blinks once, it is Radio Configuration = 1. After pressing if the Blue LED flashes twice, it is Radio Configuration = 2. After pressing if the Blue LED flashes 4 times, it is Radio Configuration = 4.

Exit the menu:

There are 3 ways to exit the menu:

- Press and hold for 3s, the LED turns off to exit the menu;
- Wait 30 seconds, then exit the menu;
- Take out the battery, it all starts over (outside the menu)).

RC technical details

The RF transmit power will be automatically set as the max value as allowed by the Zone.

Sigfox Radio Configuration (RC) defines the radio parameters in which the device shall operate: Sigfox operating frequencies, output power, spectrum access mechanism, throughput, coexistence with other radio technologies, etc.

Each radio configuration includes 4 uplink classes: 0u, 1u, 2u, and 3u.

The Sigfox network globally works within the ranges from 862 to 928 MHz. But not all RCs require such a wide range of operation.

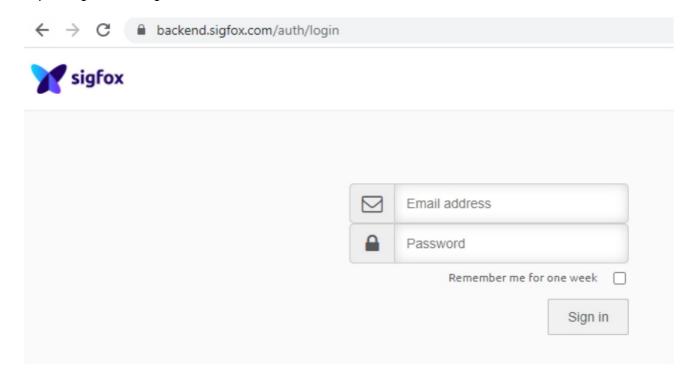
	RC1	RC2	RC4
Uplink center frequency (MHz)	868.130	902.200	920.800
Downlink center frequency (MHz)	869.525	905.200	922.300
Uplink data rate (bit/s)	100	600	600
Downlink data rate (bit/s)	600	600	600
Sigfox recommended EIRP (dBm)	16	24	24
Specifics	Duty cycl e 1% *	Frequency hopping *	Frequency hopping **

^{*} Duty cycle is 1% of the time per hour (36 seconds). For an 8 to 12 bytes payload, this means 6 messages per hour, 140 per day.

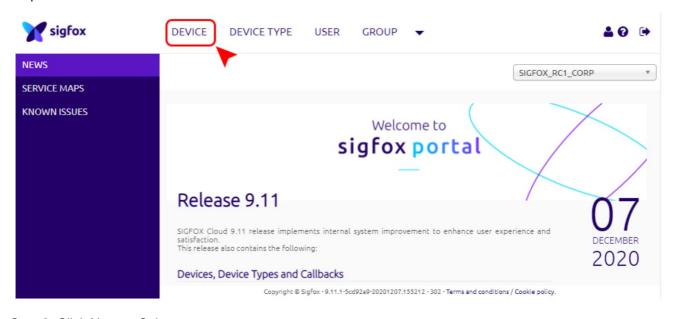
Sigfox's high limit EIRP recommendation is included in each column although regulations sometimes allow for more radiated power than the Sigfox recommendation.

Sigfox's recommendation is set to comply with the Sigfox technological approach of:

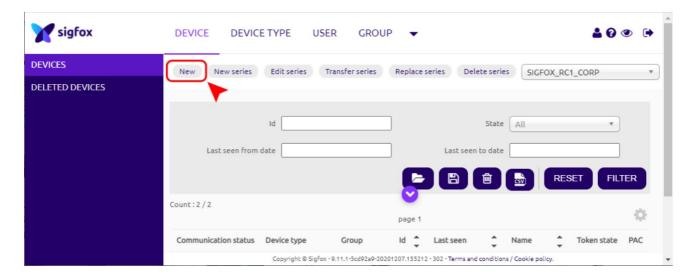
Low current consumption

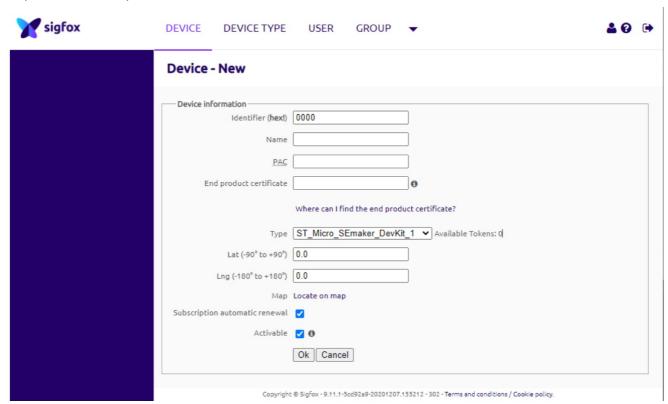

^{**} Frequency hopping: The device broadcasts each message 3 times on 3 different frequencies. Maximum On time 400 ms per channel. No new emission before 20 s.

^{***} Listen Before Talk: Devices must verify that the Sigfox-operated 200 kHz channel is free of any signal stronger than –80 dBm before transmitting.

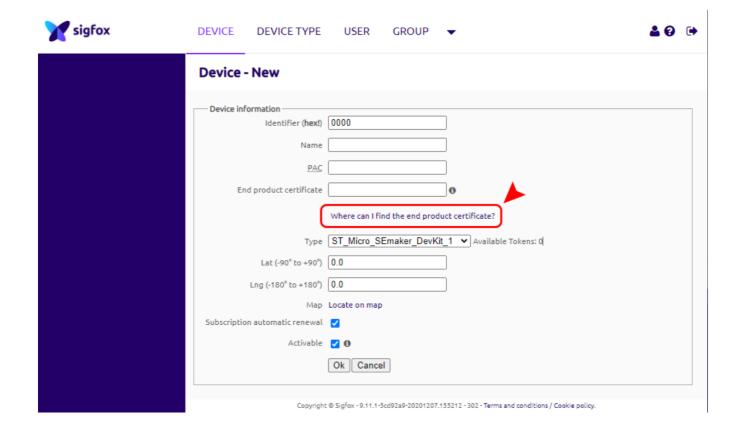

• Balanced link budget between uplink and downlink communication

Add a device to the Backend Sigfox

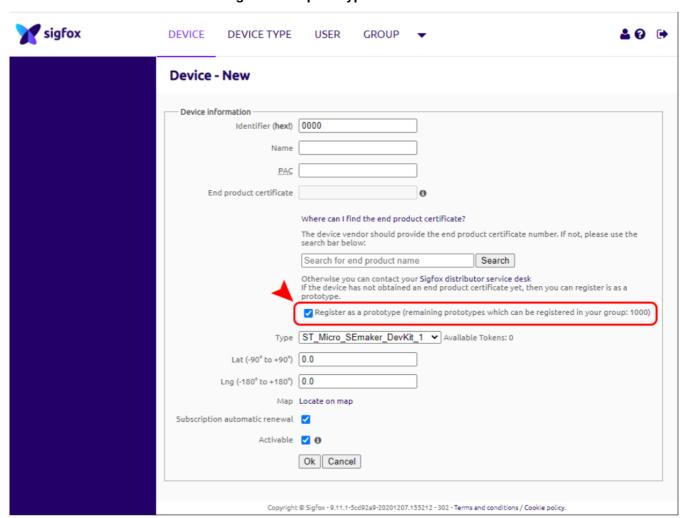

• Step 1: Log in to the sigfox backend website


• Step 2: Click on Device

• Step 3: Click New → Select a group



• Step 4: Fill in the required information



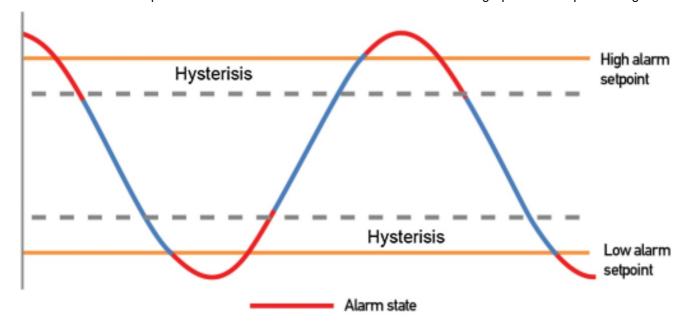
Note: Some of our products may not have end product certification in time, to add the product to Backend Sigfox please follow the steps below.

Click on the text as shown below

Check the box as shown below to register as a prototype

When the sensor sampling time interval is reached, for example 2 minutes, the Sigfox node will wake up and switch ON the power supply to supply the energy to external sensor to start the measurement. Depends on the type and characteristic of external sensor, the sensor will take a certain time to finish the measurement.

Once reading the value, it can be scaled to any engineering value by the following formula:


Y = aX + b

Where:

- X: the raw value from sensor
- Y: the calculated value will be sent to Sigfox base station in the payload data.
- a: constant (default value is 1)
- b: constant (default value is 0)

So, if there is no user setting for aand b ==> Y = X

The Y value will be compared with Lo and Hi threshold. Please refer below the graph of alarm processing.

Configuration Parameters

Parameter	Description	Possible values	Default value	Length (in bits)
LED_BUZZER_ENA BLE	Enable/Disable LED s and Buzzersintera ctions for action not triggered by the ree d switch	0b0 = LEDs and Bu zzers are OFF 0b1 = LEDs and Bu zzers are ON	0b1 = LEDs and Bu zzers are ON	1

HEARTBEAT_PERI OD	IND HEARTBEAL BY I Obtool 30 on 70b / I		0b011 = every 24h (1 day)	3
MEASURE_PERIO D	Period of time to me asure sensor	0b0000 = every 1s 0 b0001 = every 2s 0b 0010 = every 5s 0b0 011 = every 10s 0b0 100 = every 20s 0b0 101 = every 30s 0b0 110 = every 1min 0b 0111 = every 2min 0 b1000 = every 5min 0b1001 = every 10min 0b1010 = every 10min 0b1011 = every 30min 0b1101 = every 1h 0b1101 = every 3h 0b1111 = every 6h	0b1001 = every 10min	4
TX_REPEAT	Sigfox TX repeat	0b0 = Send RF 1 ti me 0b1 = Send RF 3 time	0b1 = Send RF 3 ti me	1
CYCLIC_DATA_PE RIOD	Period of time to se nd CYCLIC_DATA e vent	0b000 = every 10mi n 0b001 = every 30 min 0b010 = every 1 h 0b011 = every 2h 0b100 = every 3h 0b101 = every 6h 0b110 = every 12h 0b111 = every 24h	0b000 = every 10mi n	3
DEVICE_RESET	Once this parameter is set, the device sh all restart once after having received the Downlink.	0b1010 = 0xA = forc e device reset others = do nothing	0b0000 = do nothing	4
DOWNLINK_TYPE	Downlink type	4-bit unsigned integ er See Sigfox Downlink tab	0b0000	4

Payload Data

The following is the format of payload data that will be sent to the Sigfox server.

Payload Fields

Data name	Description	Encoding or Possible va	Length (in bits)
EVENT_ID	Unique ID identifying the device event	4-bit unsigned integer 0 = START_UP 1 = HEARTBEAT 2 = PARAMETERS_UPD ATE 3 = FORCE_DATA 4 = CYCLIC_DATA 5 = ALARM	4
HW_VERSION	Indicate HW version	4-bit unsigned integer 11	4
FW_VERSION	Indicate FW version	8-bit unsigned integer 12 55	8
LATEST_SIGFOX_DOW NLINK	Latest received and valid sigfox downlink frame = Current configuration	64-bit encoded field See Sigfox Downlink tab	64
HW_ERROR	HW error	0b0 = no error 0b1 = error	1
BATTERY_LEVEL	Battery level	2-bit unsigned integer 03	2
X_TILT_VALUE_X10	X Tilt value	16-bit signed integer X_TI LT_VALUE = X_TILT_VAL UE_X10 / 10 Range: -90.0 to 90.0	16
Y_TILT_VALUE_X10	Y_TILT_VALUE_X10 Y Tilt value		16
Z_TILT_VALUE_X10	Z Tilt value	16-bit signed integer Z_TI LT_VALUE = Z_TILT_VAL UE_X10 / 10 Range: -90.0 to 90.0	16

Size					
	START_UP	(led blink WHITE)			
	Payload	EVENT_ID	HW_VERSION	FW_VERSION	LATEST_SIGF OX_ DOWNLIN K
10.0	bits	4	4	8	64
	Value	0b0000 = 0	yes	yes	yes
	HEARTBEAT	(led blink GREE N)			
	Payload	EVENT_ID	HW_VERSION	FW_VERSION	LATEST_SIGF OX_ DOWNLIN K
10.0	bits	4	4	8	64
	Value	0b0001 = 1	yes	yes	yes
	PARAMETERS_ UPDAT	(led blink PURPLE)			
	Payload	EVENT_ID	HW_VERSION	FW_VERSION	LATEST_SIGF OX_ DOWNLIN K
10.0	bits	4	4	8	64
	Value	0b0010 = 2	yes	yes	yes

	FORCE_DAT	(led blink SKY BL UE)							
	Payload	EVENT_ ID	HW_ER ROR	reserve d	BATTER Y_LE	reserve d	X_TILT_ VAL	U Y_TIL T_VALU	Z_TILT_ VALU
8.0	bits	4	1		2	4	16	16	16
	Value	0b0011 = 3	yes	zeros	yes	zeros	yes	yes	yes
	CYCLIC _DAT	(led blink SKY BL UE)							
	Payload	EVENT_ ID	HW_ER ROR	reserve d	BATTER Y_LE	reserve d	X_TILT_ VAL	Y_TILT_ VALU	Z_TILT_ VALU
8.0	bits	4	1	5	2	4	16	16	16
	Value	0b0100 = 4	yes	zeros	yes	zeros	yes	yes	yes

Payload for Downlink, length is 8 bytes.

The Sigfox node is only able to receive max 04 downlinks a day, each downlink will be waiting in every 06 hours.

User can set the down link data in Sigfox back-end system in advance, whenever the Sigfox node connected to base stations and with downlink waiting is enable at that time (one time in 6 hours), the downlink data will be loaded to Sigfox node.

The downlink data can be any configuration parameter.

Please pay attention when send downlink data. If there was a mistake in sending wrong data, it would cause the Sigfox node not working properly and user need to configure it by offline cable!!

Size									
	DOWNLI NK_TYP E = 0								
	Payload	reserved	LED_BU ZZER	HEARTB EAT	MEASU RE	TX_REP EAT	CYCLIC _DAT	DEVICE _RES	DOWNLI NK
8.0	bits	44	1	3	4	1	3	4	4
	Value	zeros	yes	yes	yes	yes	yes	yes	0b0000 = 0

	DOWNLINK_ TYPE = 5					
	Payload	PRM_ADDRE SS	PRM_LENGT H	PRM_VALUE	reserved	DOWNLINK_ TYPE
8.0	bits	8	8	16	28	4
	Value	yes	0x02 = 2	yes	zeros	0b0101 = 5
	Payload	PRM_ADDRE SS	PRM_LENGT H	PRM_VALUE	reserved	DOWNLINK_ TYPE
8.0	bits	8	8	32	12	4
	Value	yes	0x04 = 4	yes	zeros	0b0101 = 5

Offline configuration

Using the configuration cable to connect to the sensor as below picture.

Serial port configuration on computer: 9600 baud, None parity, 1 stop bit.

Reading data by Function 3.

Writing data by Function 16.

During connection with Modbus configuration tool, the Sigfox node will send all data in realtime: Battery, Battery level, Vref, Button status, reed switch status, PCB temperature, Measured value, alarm status.

Step to configure & check data:

NOTE:

The Modbus configuration can be done in the first60s after power up the Sigfox node. After 60s, if user can not finish the configuration, user need to reset the power of Sigfox node again, by removing battery in at least 15s.

Step 1: Install the Modbus Configurator Software in the link below

 $\underline{https://filerun.daviteq.com/wl/?id=qK0PGNbY1g1fuxTqbFW9SXtEvCw7bpc6}$

How to use the Modbus configuration software

Step 2: Plug the configuration cable to Computer via USB port;

Step 3: Open the housing;

Step 4: Plug the connector to the configuration port;

Step 5: Import the configuration file by importing the csv file: Go to MENU:FILE / Import New / => select the file with name CONFIGURATION TEMPLATE FILE FOR SIGFOX.csv (in the link below). Then click Connect;

Here is the table of Data will be read by Modbus tool

Modb us R egist er (D ec)	Modb us R egist er (H ex)	Func tion Code (Rea d)	Func tion Code (Writ e)	# of Regi sters	Desc riptio n	Rang e	Defa ult	Form at	Prop erty	Comment	
2	2	3		4	FW_ VER SIO			string	Read		
6	6	3		2	HW_ VER SIO			string	Read		
8	8	3		2	DEVI CE_I D			hex	Read	Product ID	
10	A	3		4	DEVI CE_P AC			hex	Read	Product PAC	
14	E	3		1	SEN SOR _TY	1-255		uint1 6	Read	Sens or or I nput Type	

Here is the table for Configuration:

Modbu s Regis ter (De c)	Modbu s Regis ter (He x)	Functio n Code (Read)	Functio n Code (Write)	# of Re gisters	Descri ption	Range	Default	Format	Propert y	Comme nt
270	10E	3	16	4	CURR ENT_C			hex	Read / Write	
274	112	3	16	1	SERVE R_CO			uint16	Read / Write	0: Send to Sigfo x Netwo rk 1: Se nd to D ongle
276	114	3	16	1	RADIO _CON	1, 2, 4	4	uint16	Read / Write	RC zon es selec tion 1, 2 ,4 is RC Z1, RCZ2, RCZ4
277	115	3	16	1	TX_PO WER		20	int16	Read / Write	RF Tx power
286	11E	3	16	2	SENS OR_B O		200	uint32	Read / Write	Boot tim e of sen sor/inpu t in ms

Installation


Locate the good place for Radio signal

To maximize the distance of transmission, the ideal condition is Line-of-sight (LOS) between the Sigfox sensor and Base station. In real life, there may be no LOS condition. However, the Sigfox sensor still communicate with Base station, but the distance will be reduced significantly.

ATTENTION:

DO NOT install the Sigfox sensor or its antenna inside a completedmetallic box or housing, because RF signal can not pass through metallic wall. The housing is made from Non-metallic materials like plastic, glass, wood, leather, concrete, cement...is acceptable.

Process mounting

Bracket installation

Site Installation

The sensor must be securely fixed on the tilt angle measurement area.

The sensor only measures 3 axes from -90 degrees to 90 degrees

It is recommended to make a standard angle of 90 degrees for the sensor to achieve the best measurement results

TILT SENSOR FOR CRANE MONITORING

TILT SENSOR INSTALLED ON THE TREE

WSSFC-AG-H3.PNG

Battery installation

-18 .. + 60 oC working temperature 10-year shelf life 3000 mAH Capacity

Price: 1X

E91 AA Alkaline battery

-40 .. + 60 oC working temperature 20-year shelf life 3500 mAH Capacity Price: 3.5X

L91 AA Lithium battery

Steps for battery installation:

Step 1: Using L hex key to unscrew M4 screws at the side of the housing and carefully pull out the top plastic housing in the vertical direction

Step 2: Insert 02 x AA 1.5VDC battery, please take note the poles of the battery

REVERSED POLARITY OF BATTERIES IN 10 SECONDS CAN DAMAGE THE SENSOR CIRCUIT!!!

Step 3: Insert the top plastic housing and locking by L hex key

When reinstalling the cover, pay attention to put the PCB edge into the middle slot of the box inside as shown below)

Troubleshooting

No.	Phenomena	Reason	Solutions
-----	-----------	--------	-----------

1	Node does not sen d RF to base statio n periodically, LED does not blink	No power supply or battery ran out Confi guration sending cycle is incorrect	Check that the battery is empty or not installed correctly Check the power supply Check the send cycle configuration
2	Node does not sen d RF to base statio n according to the alarm, LED does n ot blink	The alarm configuration is incor rect Running out of the number of alarms set for the day	Check alarm configuration Check the configur ation for the maximum number of alarms per d ay
3	Node does not sen d RF to base statio n when activated b y the magnetic swit ch, LED does not b link	Magnetic switch has malfunctioned Or pla ce the Magnet key n ot right position	Locate the correct position for magnet key Re ad the status of the magnetic switch via modb us (when powering or attaching the battery) to see if the magnetic switch is working.
4	Node has blinked L ED when sending RF but the base st ation cannot receiv ed	Out of the number of RF packages of uplink per day (140 p ackages / day)	Check on the base station whether the event message exceeds the number of RF packets
5	Node has sent RF but the LED does n ot blink	LED malfunction	Contact manufacturer

6	The measurement values from sensor do not change, kee p constant values f or long time	Sensor got failure Sensor cable broken Sensor connector is not connected firmly	Check sensor cable and connector If the issue is still exist, please contact manufacturer for warranty or replace new sensor
7	The node does not send RF and the R F module is hot	Insert the battery in the wrong direction Electronics got problem	Check battery pola rity
8	RSSI is weak and often loses data	Distance between Node and Base station is far or there are many obstructions Connection to A ntenna problem	Check location of Sigfox node and di stance to base stat ion Check the ante nna connector in t he PCB

Support contacts

No.11 Street 2G, Nam Hung Vuong Res., An Lac Ward, Binh Tan Dist., Ho Chi Minh City, Vietnam.

Tel: +84-28-6268.2523/4 (ext.122)
Email: info@daviteq.com | www.daviteq.com |

Templogger Pty Ltd Tel: 1800 LOGGER

Email: contact@templogger.net

Documents / Resources

<u>Sigfox WSSFC-AG Tilt Sensor</u> [pdf] User Guide WSSFC-AG Tilt Sensor, WSSFC-AG, Tilt Sensor, Sensor

References

- Daviteg Nhà sản xuất cảm biến đo lường và hệ thống loT
- daviteg.com/en/manuals/uploads/images/gallery/2020-02/ehkF2jMAWsh15YDV-Hys.png
- Datasheets User Guide for Modbus ... | Online Product Manuals & Datasheets
- daviteg.com/en/manuals/uploads/images/gallery/2020-06/1tNNET2vHkT8A7Qd-logo-01.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-07/IXKPhcEr1E8DJrkc-WSLRW-PPS-H26.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-09/pjP8vsGKGtc3RR7m-WSLRW-AG-H9.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-09/vDFthtn9DEj15Xjb-WSSFCEX-PPS-H9.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-09/xdD3BA9sjGOO4uBP-WSLRW-AG-H11.png
- daviteg.com/en/manuals/uploads/images/gallery/2020-10/dCDyly7YU6bc8EXB-3.png
- daviteg.com/en/manuals/uploads/images/gallery/2020-12/1p2B4hPYgQ4l0huS-WSSFC-ULC-H13.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-12/dCpc8hiAAtaw2l6w-image-

1609212231818.png

- daviteq.com/en/manuals/uploads/images/gallery/2020-12/FQNfOblcpWtiMhyh-WSSFC-ULC-H22.PNG
- daviteq.com/en/manuals/uploads/images/gallery/2020-12/k4DzpXJ9vzxGO685-WSSFC-ULC-H14.png
- daviteg.com/en/manuals/uploads/images/gallery/2020-12/mSntYrXVNVJ55x4Y-WSSFC-ULC-H24.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-12/q311Erl31NfEedhV-WSSFC-ULC-H26.png
- daviteg.com/en/manuals/uploads/images/gallery/2020-12/RKaeu2oHsH1zVYJg-WSSFC-ULC-H15.png
- daviteg.com/en/manuals/uploads/images/gallery/2020-12/SEGC9sZIXTOETn0v-WSSFC-ULC-H12.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-12/U905SoiULuELo3EQ-WSSFC-ULC-H7.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-12/Uaa8qvjf9gQYWX4K-WSSFC-ULC-H10.png
- daviteg.com/en/manuals/uploads/images/gallery/2020-12/xeg35RpWep1yFKIE-WSSFC-ULC-H23.png
- daviteq.com/en/manuals/uploads/images/gallery/2020-12/Y1T343iXKj4tN4oA-WSSFC-ULC-H27.png
- daviteg.com/en/manuals/uploads/images/gallery/2020-12/zGZw0j3VtBIA4wo2-WSSFC-ULC-H9.png
- daviteg.com/en/manuals/uploads/images/gallery/2020-12/ZyJB5jdOYUuUci3k-WSSFC-ULC-H25.png

- daviteq.com/en/manuals/uploads/images/gallery/2021-05/EDAm3EcHhQ82kME9-WSSFC-V1A-H5.png
- daviteq.com/en/manuals/uploads/images/gallery/2022-02/206KH6AWhHrH5mZI-WSSFC-AG-H5.png
- daviteq.com/en/manuals/uploads/images/gallery/2022-02/6JluvClOepgUaJDI-WSSFC-AG-H4.png
- daviteq.com/en/manuals/uploads/images/gallery/2022-02/FWBsQrzF7nl0YCPZ-WSSFC-AG-H1.png
- daviteq.com/en/manuals/uploads/images/gallery/2022-02/kssc4yV88L8LRN8I-WSSFC-AG-H9.jpg
- daviteq.com/en/manuals/uploads/images/gallery/2022-02/l6ely1FcjUWLpcVj-WSSFC-AG-H3.png
- daviteq.com/en/manuals/uploads/images/gallery/2022-02/TFovZY6QKkTdBE6R-WSSFC-AG-H6.png
- Online Product Manuals & Datasheets
- R filerun.daviteq.com/wl/?id=kQ8a6XqmkfOed2cmMT8y11ZITxxBz6Tu
- R filerun.daviteq.com/wl/?id=qK0PGNbY1g1fuxTqbFW9SXtEvCw7bpc6

Manuals+,