

SEQUANS COMMUNICATIONS CA410A M.2 Model Owner's Manual

Home » SEQUANS COMMUNICATIONS » SEQUANS COMMUNICATIONS CA410A M.2 Model Owner's Manual

Contents 1 SEQUANS COMMUNICATIONS CA410A M.2 **2 Power Supply Connection** 3 (U)SIM Signals Connection **4 USB Signals Connection 5 UART Signals Connection** 6 Power 7 (U)SIM 8 USB 9 UART 10 Non Interfacing Signals 11 Interfaces Description for the LCC Model 12 Digital I/O Characteristics 12.1 Reliability and Radio performance 13 Reliability Figures 13.1 RF Performance 13.2 Power Consumption 13.3 Mechanical Characteristics 13.3.1 Device Marking 13.3.2 M.2 Device 13.3.3 LCC Device 13.4 Specifications 13.5 FAQ 13.6 What is the purpose of the WAKE ON WAN N signal? 14 Documents / Resources 14.1 References 15 Related Posts

SEQUANS COMMUNICATIONS CA410A M.2

Power Supply Connection

Connect the VBAT, SIM_VCC, USB, and UART power supply pins to the corresponding power sources within the specified voltage ranges.

(U)SIM Signals Connection

Connect the (U)SIM signals including SIM_RST, SIM_CLK, SIM_IO, SIM_VCC, and SIM_DETECT according to the pin configuration provided in the manual.

USB Signals Connection

Connect the USB signals USB D+ and USB D- to the appropriate USB ports with a supply voltage of 3.3V.

UART Signals Connection

Connect the UART signals UART0_SOUT and UART0_SIN to the UART interface with a supply voltage of 1.8V.

Power

Table 5: Power Pads Operational Values

						Max Value	
Pin	Name	Name Supply Dir. Min Valu e Typical Operational Va	Typical Operational Value	3GPP RF Compliant	5 Functional		
2, 4, 70, 72, 74	VBAT	N/A	In	3.2 V	3.3 V	4.4 V	4.6 V
36	36 SIM_VCC	1.8 V	Ou	1.62 V	1.8 V	1.98 V	
36		3.0 V	t	2.7 V	3.0 V	3.3 V	

(U)SIM

Table 6: (U)SIM Signals

Pin	Name	Supply	Direction
30	SIM_RST	1.8 V/3.0 V	Out
32	SIM_CLK	1.8 V/3.0 V	Out
34	SIM_IO	1.8 V/3.0 V	In/Out
36	SIM_VCC 6	1.8 V/3.0 V	Out
66	SIM_DETECT 7	1.8 V	In

USB

Table 7: USB Signals

Pin	Name	Supply	Direction
7	USB_D+	3.3 V	In/Out
9	USB_D-	3.3 V	In/Out

UART

Table 8: UART Signals

Pin	Name	Supply	Direction	8 Pad type	Reset State
63	UART0_SOUT	1.8 V	Out	BIDIR_PU	OUTPUT
65	UARTO_SIN	1.8 V	Out	BIDIR_PU	INPUT

- 4. See also Section (U)SIM.
- 5. Functional behavior of the module with possible degradation of RF performances.
- 6. See range of values in Table 5.
- 7. SIM_DETECT is active HIGH (HIGH when a card is present, LOW when no card is present)
- 8. UART pad types are BIDIR_PU as detailed in Table 12. All their electrical characteristics are detailed in Table 13.

Non Interfacing Signals

Table 9: Non Interfacing Signals

Pi n	Name	Supply	Directi on	9 Pin Type	Output Cla	Reset Sta te	Default Settin
6	MODULE_PWR_EN	VDD_PWR_ EN (see Table 1 1)	ln	N/A	N/A	N/A	N/A
10	NETWORK_LED_N	1.8 V	Out	BIDIR_P U	4 mA	INPUT	INPUT, PULL- UP
23	WAKE_ON_WAN_N (see b elow)	1.8 V	Out	See below	N/A	N/A	N/A
67	RESET_N (see below)	1.8 V	In	N/A	N/A	N/A	N/A

RESET_N Active low (RESET). This signal is used to reset the module.

The following timing requirement applies to the signals VBAT1, MODULE_PWR_EN and RESET_N. It must be respected for proper module behaviour.

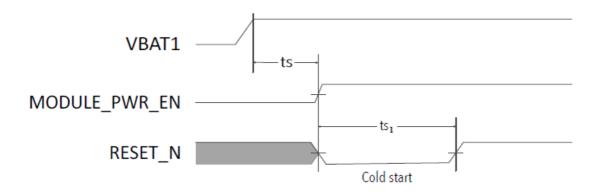


Figure 4: VBAT1, MODULE_PWR_EN and RESET_N Signals Timing Requirement for Cold Start

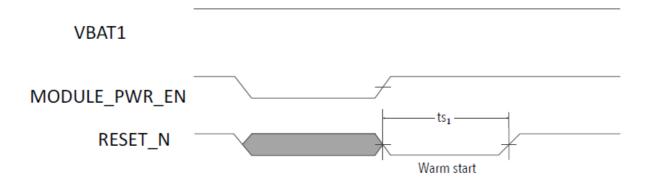


Figure 5: VBAT1, MODULE_PWR_EN and RESET_N Signals Timing Requirement for Warm Start

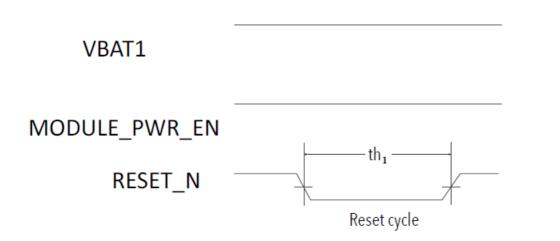


Figure 6: VBAT1, MODULE_PWR_EN and RESET_N Signals Timing Requirement for Reset Cycle

Table 10: VBAT1, MODULE_PWR_EN and RESET_N Timing Values

Symbol	Description	Minimum Duration	Maximum Duration
ts	VBAT1 setup time	0 ms	_
ts1	RESET_N setup time	1 ms	_
th1	RESET_N hold time	1 μs	_

WAKE_ON_WAN_N Open drain, active low. This pad wakes up the host. Requires a 10 $k\Omega$ pull-up resistor on host side. If unused, do not connect.

If the host does support USB suspend-resume but not remote wake-up function, the WoWWAN# M.2 signal is needed to wake up the host.

Table 11: DC Characteristics for MODULE_PWR_EN, Voltage VDD_PWR_EN

Parameter	Min.	Nom.	Max.	Unit
VIL Input Low Voltage	-0.3		0.4	V
VIH Input High Voltage	1.1		VBAT	V

Interfaces Description for the LCC Model

Data for the LCC model will be provided in a future edition of this document.

Digital I/O Characteristics

The voltage and current characteristics of the various I/O pads of the CA410 are given in the tables below.

Table 12 details the various pad types listed in CA410 signals list.

Table 12: Pad Types Detail

Pad Ty pe	Description	Maximum Input High Voltage
Analog ue	Analogue (or power for powers and ground for grounds)	Not Applicable
BIDIR_ PD	1.8 V in/out with software controlled internal pull- down. Refer to Table 13 for DC I/O characteristics.	VIH max = 3.6 V
BIDIR_ PU	1.8 V in/out with software controlled internal pull- up. Refer to Table 13 for DC I/O characteristics.	VIH max = 3.6 V
IN	1.8V input.	VIH max = 3.6 V

Pad Ty pe	Description	Maximum Input High Voltage
IN_PD	1.8 V input with software controlled internal pull- down. Refer to Table 13 for DC I/O characteristics.	VIH max = 3.6 V
IN_PU	1.8V input with software controlled internal pull-up.	VIH max = 3.6 V
OUT	1.8 V output. Refer to Table 13 for DC I/O characteristics.	VIH max = 3.6 V

Refer to CA410 pin list for the type of I/O pad used on every termination.

- The Minimum values for IOL and IOH should not be exceeded to guarantee that the logical level are not spoiled for each pad type.
- The Nominal values for IOL and IOH represent the nominal values for the pad type. They are provided for information only.
- The Maximum values for IOL and IOH represent the maximal values for the pad type. They are provided for information only.

Table 13: DC Characteristics for Digital I/Os, Voltage 1.8 V

Parameter	Drive Strength	Min.	Nom.	Max.	Unit
VIL Input Low Voltage		-0.3		0.63	V
VIH Input High Voltage				3.6	V
VT Threshold Point			0.87	0.94	V
VT+ Schmitt Trigger Low to High Threshold Point			1.12	1.22	V
VT- Schmitt Trigger High to Low Threshold Point		0.61	0.71	0.8	V
VT PU Threshold Point with Pull-up Resistor Enabled			0.86	0.93	V
VT PD Threshold Point with Pull-down Res	sistor Enabled	0.8	0.87	0.95	V
VT+ PU Schmitt Trigger Low to High Threshold Point with Pull-up Resistor Enabled		1	1.12	1.21	V
VT- PU Schmitt Trigger High to Low Thresh	old Point with Pull-up Resistor Enabled	0.61	0.7	0.8	V
VT+ PD Schmitt Trigger Low to High Thresh	old Point with Pull-down Resistor Enabled	1.01	1.13	1.23	V

Parameter	Drive Strength	Min.	Nom.	Max.	Unit
VT- PD Schmitt Trigger High to Low Threshold Point with Pull-down Resistor Enabled		0.62	0.72	0.81	V
II Input Leakage Current @ VI=1.8V or 0V				±10	μА
IOZ Tri-state Output Leakage Current @ VO=1.8V or 0V				±10	μА
Input Capacitance			3		pF
RPU Pull-up Resistor			89	148	kΩ
RPD Pull-down Resistor			90	167	kΩ
VOL Output Low Voltage				0.45	V
VOH Output High Voltage					V
	2 mA	1.2	2.2	3.6	mA
IOL Low Level Input Current at VOL(max)	4 mA	2.3	4.3	7.1	mA
	8 mA	4.6	8.6	14.3	mA
	2 mA	1.0	2.4	4.6	mA
IOH High Level Output Current at VOH(max)	4 mA	2.0	4.7	9.2	mA

	8 mA	4.0	9.4	18.4	mA	
--	------	-----	-----	------	----	--

Reliability and Radio performance

Reliability Figures

The reliability test plan for the CA410 comprises the steps below:

Item	DQA Test Stress Conditions	Standards	Result s
Pro-con		JESD22-A113	*
TC 1000	Temperature Cycling (TC): -40°C to +85°C Air to air 23 min Ramp rate 20°C / min 1000 cycles	JESD22-A104	*
ТНВ	Temperature Humidity Bias Test: 85°C, 85% RH Vcc max 1000 h +168/-24 h	JESD22-A101	*
Environmental Testing A Cold	Environmental Testing – Test A Cold -40 °C, 96 h	IEC60068-2-1	*
Environmental Testing B Dry H eat	Environmental Testing – Test B Dry Heat +85 °C, 1000 h	IEC60068-2-2	*
HTOL	High Temperature Operation Test: 75°C Vcc max Tx: 50% and Rx: 50% 283 h	N/A	*
HTS	High Temperature Storage Test: +85°C, 1000 h	IEC60068-2-2	*

LTS	Low Temperature Storage Test: -40°C, 1000 h	IEC60068-2-1	*
Micro Analysis (MA)	Micro analysis X-ray SAT, CSA TC = 0 TC = 1000 cy cles	N/A	*
Shock	Mechanical Shock (MS): Half Sine 500 m/s2 11 ms 6 shocks (one for each ± axis)	DIN IEC68-2- 27	*

1. Bake: 125°C / 24 h

2. MSL3: 30°C / 60% RH, 192 h

3. SAT (CSAM & TSCAN)

4. X-ray

5. Reflow 3 cycles @ Tp: 250 ± 2°C

6. SAT (CSAM & TSCAN)

Reliability and Radio performance RF Performance

Item	DQA Test Stress Conditions	Standards	Res ults
Drop	Drop Test:	DIN IEC68-2- 31 ETS 300019- 2-7	*
Vibration	Vibration Test (Vib): Sweep-Sine Vibration: Sinusoidal 10 to 500 Hz 1.0 octave/min 10 sweep cycles for 2h on each axis (X, Y, Z)	DIN IEC68-2-6 EIA/TIA 571 §4.1.1.2	*
Human Body Mod el ESD	TA = 25 °C ± 1000 V → ± 2000V	JS-001 JESD 22-A114	*
Charged Device Model ESD	TA = 25 °C ± 250 V→ ± 500 V	JS-002 STM5 .3.1	*
Dimensions	Package Physical Dimensions (including 'warpage')	N/A	*
тст	Temperature Change Test: 10 cycles One cycle follows these steps (roughly 7+ h): Ramp ambient (23°C) to -40°C at 3°C / min 3 h at -40°C Ramp to 85°C at 3°C / min 3 h at 85°C Ramp 85°C to 23°C at 3°C / min	IEC60068-2-1 4	*
Drop (Transportati on)	Free Fall: 1 corner 3 edges and 6 faces at a height of 76 cm.	ASTM D5276	*

1. Height: 80 cm

2. Concrete or steel

- 3. All surfaces and edges
- *: All results will be included in a future version of this document.

RF Performance

The RF performance figures of the CA410 M will be given in a future edition of this document.

Power Consumption

The power consumption figures for the CA410 M will be given in a future edition of this document.

Mechanical Characteristics

Device Marking

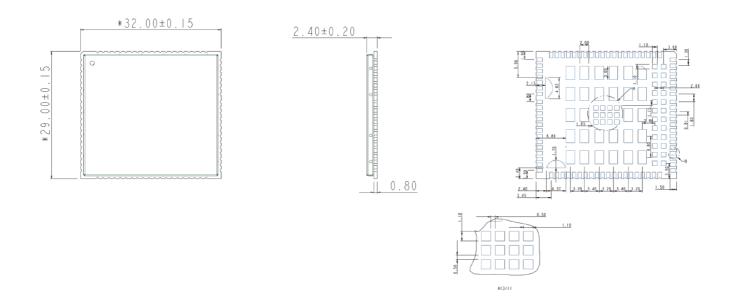


Figure 10: CA410 Shield Marking Description

The elements marked on the package are:

- Sequans's logo
- CA410 product name
- Cassiopeia platform name
- RoHS logo
- FCC ID: 2AAGMCA410A
- IC/ISED: 12732A-CA410A
- IMEI as digits and QR code
- The module Serial Number as digits and QR code:
 - VVV: 4MA
 - YYMMDD: Manufacturing date

- LLLL: tracking batch number
- SSS: three-digits serial number (HEX format 000 to FFF)
- Manufacturing country (VN: Vietnam)

M.2 Device

1. Mechanical Characteristics

Figure 8: Mechanical Description

The dimensions shown in Figure 8 are in millimeters.

The CA410 M.2 complies to the M.2 specification, type 3042-S3-B.

2. Packing

The CA410 M.2 is delivered in tray. One tray can hold up to 40 pieces. 1 box can contain 10 trays, thus up to 400 pieces. This is represented on Figure 9.

Figure 9: CA410 M.2 Packing

LCC Device

1.Mechanical Characteristics

Figure 10: Mechanical Description

The dimensions shown in Figure 10 are in millimeters.

2. Packing

The CA410 LCC is delivered in reels. One reel can hold up to 500 pieces. 1 box can contain 2 reels, thus up to 1000 pieces. This is represented on Figure 11.

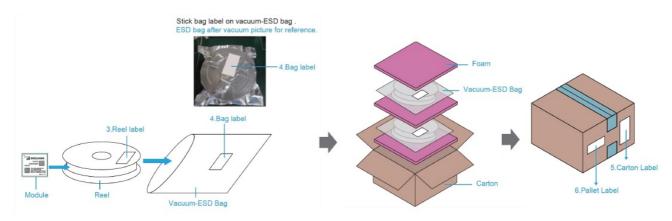


Figure 11: CA410 LCC Packing

Figure 11: CA410 LCC Packing

Specifications

RF Connector: FoxconnTM KK12011-02-7H

· Power Supply:

VBAT: 1.8V to 3.3V

SIM_VCC: 1.8V to 3.0V

USB: 3.3VUART: 1.8V

• (U)SIM Signals:

• SIM_RST, SIM_CLK, SIM_IO, SIM_VCC, SIM_DETECT

Supply: 1.8V/3.0V

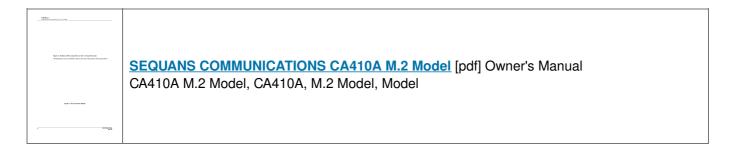
· USB Signals:

• USB D+, USB D-

Supply: 3.3V

• UART Signals:

• UARTO SOUT, UARTO SIN


• Supply: 1.8V

FAQ

What is the purpose of the WAKE_ON_WAN_N signal?

The WAKE_ON_WAN_N signal is an open drain, active low signal that wakes up the host. It requires a 10k pull-up resistor on the host side. If unused, it should not be connected. This signal is necessary to wake up the host if the host supports USB suspend-resume but not remote wake-up function.

Documents / Resources

References

User Manual

Manuals+, Privacy Policy