
Home » Sauce Labs » Sauce Labs Low Code Test Automation Platform User Guide

WHITE PAPER
The Complete Guide to Low-Code Test Automation

Contents
1 Introduction
2 Key Low-Code Testing
Strategies
3 Conclusion
4 Documents / Resources

4.1 References

Introduction

It’s hard to overstate how challenging software development is today.
The market for web and mobile applications is more competitive than ever.
Customers expect their applications to deliver a flawless, beautiful, and intuitive experience every time. Hiring and
retaining high-quality software developers and engineers feels next to impossible given the talent shortages
emerging organizations are facing.
How can companies balance these competing challenges and expectations?
How can they scale their development operations effectively to deliver at speed without compromising the
customer experience?
This is where low-code test automation can help.

What is Low-Code Test Automation?
Low-code testing tools simplify application testing by removing most, if not all, manual coding from the process.
This allows so-called “citizen testers”—typically product managers, product owners, business analysts, etc.
without specialized technical skills—to participate in the testing process and ultimately get more involved in the
software development lifecycle (SDLC).

Why Low-Code Test Automation?

Sauce Labs Low Code Test Automation Platform User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/sauce-labs
https://manuals.plus/sauce-labs/low-code-test-automation-platform-manual.pdf
https://manuals.plus/#introduction
https://manuals.plus/#key_low-code_testing_strategies
https://manuals.plus/#conclusion
https://manuals.plus/#documents_resources
https://manuals.plus/#references

According to Gartner’s IT Automation Predictions for 2021, improvements in automation capabilities will refocus
30% of IT operation efforts from support to continuous improvement. The citizen-code/ no-code/low-code
movement promises a new era of rapid and continuous application development whether teams are leveraging
enterprise-packaged SaaS tools (like Oracle, Salesforce, and WorkDay) or building their own custom web and
mobile applications.
By essentially democratizing software development and lowering the barriers to testing through an intuitive and
globally understood framework, low-code test automation offers a more agile alternative that can help companies
scale their development organizations to keep up with today’s most pressing demands and expectations. In short,
low-code test automation can bring enormous value to your business.
Low-code also helps to address one of the most pervasive problems faced by QA teams in today’s world of rapid,
continuous development: test debt. Test debt is incurred when there is a failure in testing that is not fixed before
the code is released to production. For example, if your test automation suite fails to identify the correct UI
element in your application, then you have created some extra work for yourself: you will need to course correct
that automation script as soon as possible and fix it before it causes trouble in production.
Test debt can be more insidious if it’s not constantly measured and kept in check. However, just knowing about it is
not enough. QA teams need to be able to reduce test debt in a coordinated manner. Lowcode testing enables this
coordination by enabling collaboration between cross-functional teams without the barrier of needing a highly
technical skillset.
Low-code testing represents a unique opportunity to drive out a major structural cost center—test debt–and
replace it with an “always-on” infrastructure that is not only more efficient but also more powerful in terms of its
scalability, coverage, awareness of change, and responsiveness to downstream factors.
High-performing product teams receive the compound benefits of more frequent deployments, shorter lead times,
and lower change fail rates.

How AI-Powered Low-Code Can Address Test Automation Challenges

CHALLENGE HOW AI-POWERED LOW-CODE TEST AUTOMATION HELPS

Poor agility and speed

Rapid application development (RAD): Low-code test automation supports heightene
d agility when developing and deploying new software. Using the power of Al, low-co
de helps transform testing from a bottleneck to an integrated accelerator since tests c
an be executed in-sprint.

Dynamic applications ar
e difficult to automate

Sett-Healing Scripts: The changing nature of dynamic objects in modern low-code ap
plication platforms (e.g., Oracle, Salesforce) can lead to unstable scripts. These scrip
ts we better maintained by
AI-powered test automation tools that can self-heal dynamic objects and frames.

Integrations and upgrad
es

Seamless API testing: Intelligent test management across multiple applications increa
ses the breadth, scope, and velocity of end-to-end tests across various platforms. It al
so accelerates deployment and reduces defects, especially when delivering APIs.

Influx of Shadow IT

Embracing new tools to reduce shadow IT: IT executives can embrace the value new
tools and integrations provide while ensuring there is a process in place to test and m
aintain these tools. Low-

code test automation acts as the glue that holds this together since end-to-end
regression test suites can be created across all of
your company’s critical tools and non-technical employees are not hampered by the l
ack of technical knowledge.

Maintenance burden
Lower maintenance burden: Increasing the velocity of code deployments leads to mo
re testing and script maintenance. Compared to traditional test automation framework
s, low-code test automation removes the need to manually code automation scripts.

Tech talent shortage
Empower citizen testers: With a low-code test automation platform, anyone in the org
anization can test your software. This helps companies address staff deficits and ens
ure in-sprint test automation can still be achieved.

High IT costs
Lower IT costs: Companies can lower their IT development costs by adopting a low-c
ode test automation tool to deliver new innovations to their customers with
confidence.

Key Low-Code Testing Strategies

Understand the costs of not adopting low-code test automation
There are costs to not adopting low-code test automation and allowing test debt to accumulate in your testing
lifecycle. These costs manifest on the P&L balance sheet rather than in bloated cash/interest payments. Here are
three ways test debt creates costs for your business:

Headcount – More human resources are needed to maintain test debt, but your overstretched technical team

already spends too much time on tedious, low-fidelity work.

Revenue – System outages can delay critical business processes (e.g., the ability to convert a prospect to a

sale), losing revenue in the process and leading to a less efficient marketing spend.

Lower staff productivity – Addressing technical debt distracts staff from completing higher-value work.

The lack of formal oversight over technical debt is one key difference from financial debt, where there are

usually credit committees, asset and liability management teams, and treasury staff that monitor debt levels like

a hawk. In QA departments, few of these controls exist. This leads to surprise costs on the P&L balance sheet.

Measure the Impact of Low-Code Test Automation
Here are some metrics to look at:

Bugs – How many bugs make their way into production and disrupt the customer experience?

QA teams should keep track of both fixed and unfixed bugs. Keeping track of unfixed bugs allow teams to

amplify their focus on key aspects of future test automation. Taking note of the fixed bugs helps teams measure

how effective their test debt management is.

Code Quality – Test automation cannot guarantee code quality, but it can evaluate the quality of software at a

variety of levels, from individual components or modules throughout the whole system. Code quality is a

measure of how well the code can respond to changes in requirements, typically related to maintainability and

performance. Poorly written or poorly maintained code can lead to inefficient use of resources, difficult bugs to

fix, security vulnerabilities and increased operational costs. QA teams should keep track of unit test coverage

and design patterns used in test automation. By ensuring that individual units of code have been tested by at

least one unit test, this increases test coverage and reduces errors in later stages of production. In addition,

taking a qualitative measure of the design pattern and applying a universal approach to all test automation

makes it easier for team members to build on the existing library of test assets. Less guesswork means less

test debt.

Churn – Churn happens in test automation when the test scripts get refactored, updated or replaced.

Measuring churn helps QA teams recognize the constant level at which test automation assets need to be re-

done. Having an objective view of this helps organizations plan and solve for these challenges more quickly,

allowing them to be more proactive in how they manage test debt. Include End-To-End Test Automation

End-to-end tests are important because they can exercise your system from start to finish, unlike unit or

integration tests, which only cover one small area of functionality. While end-to-end tests have historically been

time- consuming and difficult to set up, low-code testing tools make it easier for testers on any team (including

those with just one tester) to drive end-to-end test automation.

Here are the key benefits of including end-to-end testing in your low-code test automation strategy:

Ensures the health of your entire application

Applies behavior-driven development to end-to-end tests to ensure that functionality is optimized for customer

experiences

Tests the logic of your business flows

End-to-end testing needs to be planned from the inception of your project. Once your team understands that

end-to-end testing is a key strategy, you can integrate test automation as a method to reduce any repetitive

actions.

Ensure Development and Testing Happen in Parallel
AI-powered low-code testing can drive out a tremendous number of technical challenges when innovating and
delivering new products. Citizen testers can access hundreds of prebuilt test cases across the various modules
and add them to any test scenario with a single click. These test cases can be written in plain English when using
natural language processing (NLP) to manage critical business processes.
Low-code testing also further enables accelerated testing by ensuring that powerful API tools work in parallel to
precisely detect and diagnose bugs in-sprint. This orchestration significantly accelerates the time to resolution and
helps resolve issues before deployment. This gives IT owners the confidence to accelerate releases and
integrate APIs across the product landscape with reduced risk.
AI-driven low-code testing removes human error from repeatable processes and what were once highly technical
tasks. These efficiencies also allow for a massive increase in regression testing with intelligent scope
management, allowing teams to innovate with API-first strategies without increasing risk.

How to Choose the Right Low-Code Test Automation Platform
For Your Organization
Low-code test automation success requires more than just the platform’s technology and functionality.

You also need to objectively evaluate whether the platform supports the projects you plan to tackle, suits the skills
of your people and organizational processes, and offers access to a robust testing tool chain. Here are some
important criteria to consider as you explore low-code test automation solutions.
Skillset and Type of User
The ideal low-code test automation platform enables all team members to adapt the software according to their
role. This can be done through a collaborative interface that provides standard no-code options for non-technical
users and allows more technical power users to create reusable components for use by anyone across the
organization. These power users can also scale up the complexity of the test assets to achieve more regression
coverage in your environment.
Here are some questions to consider when evaluating the organizational fit of a low-code test automation
platform:

How accessible is the platform to various user profiles in your organization?

Is there a certain level of experience and coding skills needed to achieve business value?

Could more tech-savvy users build a more complex set of test cases to help achieve better regression?

To what extent are coding skills necessary and to what degree can your team create all the test assets needed?

Use Cases
As you know, not every type of application and use case suits the same set of functionalities. You should evaluate
the flexibility of a low-code platform by asking which applications/use cases best match your organization’s
requirements and whether the platform can go beyond those requirements.
Next, focus on complexity-related use cases: ask if the vendor has examples of complex use cases that they
have.
Some test automation tools can execute against a certain application really well. For example, they might be
extremely good at pre-packaged enterprise applications like Salesforce or Oracle. They might be very good at
custom applications or cover a broad range of use cases from legacy migration, operational efficiency or various
industry-specific products. Having a better grasp of the niche a test automation tool focuses on is as simple as
evaluating the case studies of that vendor.
Collaboration and Reusability
Collaboration and reusability are major components to consider when evaluating low-code testing tools.
The ability to reuse test assets/logic helps create consistency amongst your test suites, which can lead to
increased usability, accuracy of information, and regression while decreasing in-sprint testing cycles.
Here are some questions to consider when evaluating whether a low-code test automation platform support
reusability:

Are there pre-built test modules available, such as common Oracle or Salesforce scenarios?

Can these modules be used more than once so the effort to create new scripts is decreased?

Key Features to Look for in Low-Code Test Automation Platforms

Key Features Traditional Test Automation Low-Code Test Automation

Ability to add custom code Yes Yes

Codeless user interface No Yes

Point and record interface No Yes

Reusability Yes Yes

Scalability Yes Yes

Cross-platform accessibility Yes Yes

English-to-code test cases No Yes

Self-maintaining scripts No Yes

End-to-end testing Yes Yes

Designed for Developers, automation engineers
Citizen testers, business users, QA
specialists, developers, automation e
ngineers

What is the ROI of Low-Code Test Automation?
Low-code test automation tools cut down on the time, cost, risk and general inefficiencies of standard practices
today. With these tools, a disjointed collection of engineers and citizen testers can transforminto more
collaborative and efficient teams.
Cost Savings
When companies transition to intelligent low-code test automation, they typically see cost savings of 25% to 75%.
Not all core elements of your business can be completely automated, but identifying a few areas—generating
automation scripts, managing and healing test scripts, cross-browser and crossplatform automated testing—can
allow your team to focus on other aspects of the business. This helps reduce labor costs and improve employee
productivity.
Resource Savings
Low-code automation can take English-written test cases created by anyone and generate automation scripts
within a few clicks. This means anyone can be a tester. The burden of writing automation code is removed from
the process, meaning a new cohort of citizen testers are provided the autonomy to play a major role in delivering
software quality at speed in a more efficient and effective way.
Reduced Test Debt
Intelligent testing provides a more efficient and effective way to manage test debt since the burden of tasks like
maintaining scripts is removed from the already overwhelmed engineering team. AI-powered test automation also
provides the possibility to drive out major cost centers across the software testing lifecycle: the cost of
outsourcing, the cost of recruiting, the cost of staffing up/onboarding, the cost of manual testing, the cost of
managing change, and so on. This contributes to an intelligent infrastructure that rarely experiences downtime
caused by a lack of human coordination.
Case Study: Aryaka Networks Accelerates
End-to-End Platform Coverage Using Sauce
Low-Code
The Challenge
The internal business technology team led by Venkat Ranga, Head of Business Information Systems, was tasked
with developing a large-scale implementation journey that involved many critical business processes and
applications like alesforce. They needed a way to get more out of their bi-weekly release goals—and with an
average of eight new end-to-end user scenarios introduced every sprint, their current QA process was unable to
keep up.
“As a leader, first and foremost, you have to look at how to create value for the organization using the technology,”
Venkat shares. “In the traditional world, the technology team is waiting for requirements to come from the business
so they can build the solution. But now, this technology team is also working very closely with the business and
enabling the solution. If I end up giving 3-4 days development time within the two week sprint for the QA, I am not
really achieving a lot. My goal is to see how I can really reduce that time so that I can push through more changes

within the system.”
Venkat’s team had to evaluate and overhaul many critical business processes, including quote to cash, procure to
pay, record to report, hire to retire, and others by mobilizing a multifaceted solution to optimize how they are
delivered. This major implementation journey relied on the integration of many connected systems, such as
Salesforce CPQ, Zuora, and NetSuite, and they had to ensure that introducing new features to the technology
infrastructure would not compromise the existing code base or functionality.
The Solution
Venkat and his team found the answer to their challenge through Sauce Low-Code AI-driven codeless studio.
They initially started to explore Sauce Low-Code for its rapid Salesforce end-to-end testing capabilities, but quickly
realized that the tool could be used with all their custom and enterprise applications.
As a low-code platform, Sauce helped Aryaka deliver transformation projects faster by accelerating the testing of
full regression cycles and keeping the regression suite up-to-date. Many presets come outof-the-box for
Salesforce-specific test assets, which offer unmatched workflow flexibility and shorten the time it takes to
complete in-sprint QA.
In addition, Venkat understood that to keep his team at the forefront of their career trajectory, the role of business
analyst and quality assurance manager had to be combined. “Now that most of the [technical Selenium script
writing and maintenance] work is automated, I’m starting to move them into BA [business analyst] roles because
they understand the system, they understand the business processes, they have been testing this for the last 18
months, and they can talk about exactly what is going on in the business,” Venkat added.
The Results
Venkat and his team have been using Sauce Low-Code for six months and the AI-driven codeless studio
continues to play a role in the overall business transformation. Aryaka has seen significant reduced cost of
operations and they have been able to deliver more user stories in their sprint cycles.
“I cater at most three days for testing in a two-week sprint and my goal was to cut down to one day. We were able
to accomplish that with Sauce Low-Code.”
—Venkat Ranga (Head of Business Information Technology Systems)
Low-code business technology teams are starting to be very prevalent in the workforce. Under Venkat’s
leadership, Aryaka Networks has embraced this change which has contributed to the overall reduction of their
testing efforts. They have increased business value by adding more user stories to their sprints and expanded the
QA’s responsibility to take up a business analyst role with the power of Sauce LowCode’s low-code and no-code
test automation tool.

Conclusion

Today’s software development teams are more resource-crunched than ever, but the pressures to deliver quality at
speed are only increasing. AI-driven low-code test automation offers a compelling solution to this problem by
lowering the barriers to testing across your organization.
By making everyone a developer and every developer a tester, low-code testing effectively democratizes the
software development process and breaks down organizational silos, empowering cross-functional teams to
collaborate more effectively and achieve innovation breakthroughs that wouldn’t have been possible before. By
mitigating risk, accelerating innovation, and increasing efficiency across the entire software development lifecycle,
low-code test automation can bring enormous value to your business through reduced costs, higher-quality
products, and happier customers.

About Sauce Labs
Sauce Labs is the leading provider of continuous test and error reporting solutions that gives companies
confidence to develop, deliver and update high quality software at speed.
The Sauce Labs Continuous Testing Cloud identifies quality signals in development and production, accelerating
the ability to release and update web and mobile applications that look, function and perform exactly as they
should on every browser, operating system and device, every single time. Sauce Labs is a privately held
company funded by TPG, SalesforceVentures, IVP, Adams Street Partners, and Riverwood Capital.

For more information, please visit
→ saucelabs.com

saucelabs.com/sign-up

SAUCE LABS INC. – HQ 450 Sansome Street, 9th Floor, San Francisco, Ca Usa 94111

http://saucelabs.com
http://saucelabs.com/sign-up

Documents / Resources

Sauce Labs Low Code Test Automation Platform [pdf] User Guide
Low Code Test Automation Platform, Low, Code Test Automation Platform, Test Automation Plat
form, Automation Platform, Platform

References

 Sauce Labs: Cross Browser Testing, Selenium Testing & Mobile Testing

 Sign Up for a Free Trial | Sauce Labs

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/143d9ee7dff9f6e4efdb0805693784a97b1185c45c84c395401a08d91167ab95
https://manuals.plus/m/143d9ee7dff9f6e4efdb0805693784a97b1185c45c84c395401a08d91167ab95_optim.pdf
http://saucelabs.com
http://saucelabs.com/sign-up
https://manual.tools/?p=11420738#MTA0LjI4LjIwMi4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	Sauce Labs Low Code Test Automation Platform User Guide
	Introduction
	Key Low-Code Testing Strategies
	Conclusion
	Documents / Resources
	References

