ROHM Shield-EVK-001 Sensor Evaluation Board User Guide Home » ROHM » ROHM Shield-EVK-001 Sensor Evaluation Board User Guide 🖺 **Shield-EVK-001 Sensor Evaluation Board User Guide** ### **Contents** - 1 Shield-EVK-001 Sensor Evaluation - **2 Board Information** - 3 Preparation - **4 Software Setting and Measurement** - 5 Documents / Resources - **5.1 References** - **6 Related Posts** ### Shield-EVK-001 Sensor Evaluation Board Sensor Evaluation Board ### Shield-EVK-001 Manual Shield-EVK-001 is a Shield, which connects Arduino and ROHM Sensor Boards. Shield-EVK-001 will be refered to as "SensorShield" on this manual. This User's Guide is about how to use SensorShield. #### **Board Information** - Connection Board between Arduino and ROHM Sensor Board (Figure 1, 2) - Size: 88mm x 63mm $\bullet\,$ Five I2C Sensors, One I/O Sensor and Two Analog Sensors can be controlled • 5V-3.0/1.8V Level Shifter • GPIO: FAIRCHILD FXMA108 • I2C: NXP PCA9306 • I2C pull-up register is implemented Figure 1. SensorShield (Top) Figure 2. SensorShield (Bottom) ## **Preparation** - Arduino Uno...... 1pc - Personal Computer installed Arduino IDE................. 1pc - Requirement : Arduino 1.6.7 or higher - Please use Arduino IDE which can be downloaded from the link below: http://www.arduino.cc/ - SensorShield.....1pc - ROHM Sensor Board, which is not attached...... 1pc ## Setting 1. Connect the SensorShield to the Arduino (Figure 3) # **USB** connecter # SensorShield Figure 3. Connection between the Arduino and the SensorShield - 2. Check the connection type of ROHM Sensor Board and connect it to the corresponding type on the SensorShield (Figure 4) - 3. Set voltage of the SensorShield to the corresponding supply voltage range of each ROHM Sensor Board. (Figure 4) Figure 4. Voltage settings and Connection of the Sensors 4. Connect the Arduino to the PC using a USB cable ## **Software Setting and Measurement** - Download the program of ROHM Sensor Board from the link below: http://www.rohm.com/web/global/sensor-shield-support - 2. In regards to the measurement procedure of each sensor board, refer to the manual of ROHM Sensor Board. ### **Notes** - 1. The information contained herein is subject to change without notice. - 2. Before you use our Products, please contact our sales representative and verify the latest specifications: - 3. Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM. - 4. Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. - 5. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information. - 6. The Products specified in this document are not designed to be radiation tolerant. - 7. For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems. - 8. Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters. - 9. ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein. - 10. ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information. - 11. Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations. - 12. When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act. - 13. This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ Downloaded from Arrow.com. ### **Documents / Resources** ROHM Shield-EVK-001 Sensor Evaluation Board [pdf] User Guide Shield-EVK-001 Sensor Evaluation Board, Shield-EVK-001, Sensor Evaluation Board, Evaluation Board, Board, Sensor Board #### References • Arduino - Home • ROHM Sensor Evaluation Kit | ROHM Semiconductor - ROHM Co., Ltd. Manuals+,