
Home » ROBOWORKS » ROBOWORKS Robofleet MULTI-AGENT ALGORITHMS User Manual

Contents
1 ROBOWORKS Robofleet MULTI-AGENT
ALGORITHMS
2 Specifications
3 Product Information
4 FAQs
5 INTRODUCTION TO MULTI-AGENT ALGORITHMS
6 MULTI-AGENT SYNCHRONISATION SETUP
7 Troubleshooting network dis-connections
8 MULTI-AGENT ROS PACKAGE
9 Operation Procedure
10 Documents / Resources

10.1 References
11 Related Posts

ROBOWORKS Robofleet MULTI-AGENT ALGORITHMS

ROBOWORKS Robofleet MULTI-AGENT ALGORITHMS User
Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/roboworks
https://manuals.plus/roboworks/robofleet-multi-agent-algorithms-manual.pdf
https://manuals.plus/#roboworks_robofleet_multi-agent_algorithms
https://manuals.plus/#specifications
https://manuals.plus/#product_information
https://manuals.plus/#faqs
https://manuals.plus/#introduction_to_multi-agent_algorithms
https://manuals.plus/#multi-agent_synchronisation_setup
https://manuals.plus/#troubleshooting_network_dis-connections
https://manuals.plus/#multi-agent_ros_package
https://manuals.plus/#operation_procedure
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

Specifications

Product Name: ROBOWORKS

Version: 20240501

Prepared by: Wayne Liu & Janette Lin

Date: 1 May 2024

Product Information

ROBOWORKS is a multi-agent system that allows for the implementation of various algorithms for robot
coordination and communication.

FAQs

Q: What should I do if the robot cannot automatically connect to Wifi?

A: If the robot fails to connect automatically, try unplugging and replugging the network card and attempt to
connect again.

SUMMARY

This document mainly explains the usage of the multi-robot formation function package named wheeltec_multi.

This document is divided into four parts:

The first part is mainly about the introduction of the multi-robot formation method;

the second part mainly describes the ROS multi-machine communication settings, including ROS construction

multi-machine communication and the problems that may be encountered in the process of ROS

communication;

the third part mainly describes the operation steps of multi-machine time synchronization;

the fourth part expounds the specific use of the multi-machine formation function package.

The purpose of this document is an introduction to multi-agent robotic systems and allows users to start the multi-
robot formation project quickly.

INTRODUCTION TO MULTI-AGENT ALGORITHMS

Multi-agent formation algorithms

This ROS package presents a typical problem of multi-agents in collaborative control during a formation drive.
This tutorial lays a foundation for future development on this topic. The formation control algorithm refers to an
algorithm that controls multiple agents to form a specific formation to perform a task. Collaboration refers to the
cooperation between multiple agents using a certain constraint relationship to complete a task. Take the multi-
robot formation drive as an example, collaboration means that multiple robots form a desired formation together. Its
essence is a certain mathematical relationship that is satisfied between the positions of each robot. Formation
methods are mainly divided into centralized formation control and distributed formation control. Centralized
formation control methods mainly include the virtual structure method, graphical theory method, and model
predictive method. Distributed formation control methods mainly include a leader-follower method, a behavior-
based method, and a virtual structure method.
This ROS package applies the leader-follower method in the distributed formation control method to execute the
multi-robot formation drive. One robot in the formation is designated as the leader, and other robots are designated
as slaves to follow the leader. The algorithm uses the movement trajectory of the leading robot to set the
coordinates to be tracked by the following robots with a certain direction and speed. By correcting the position
deviations from the tracking coordinates, the followers eventually will reduce the deviation between the follower
and the expected tracking coordinates to zero in order to achieve the objectives of the formation drive. In this way,
the algorithm is relatively less complicated.

Obstacle avoidance algorithms

A common obstacle avoidance algorithm is the artificial potential field method. The movement of the robot in a
physical environment is regarded as a movement in a virtual artificial force field. The nearest obstacle is identified
by LiDAR. The obstacle provides a repulsive force field to generate repulsion to the robot and the target point
provides a gravitational field to generate gravitational force to the robot. In this way, it controls the motion of the
robot under the combined action of repulsion and attraction.
This ROS package is an improvement based on the artificial potential field method. Firstly, the formation algorithm
calculates the linear and angular velocity of the Slave follower. Then it increases or decreases the linear and
angular velocity according to the obstacle avoidance requirements. When the distance between the Slave follower
and the obstacle is closer, the repulsion force of the obstacle to the Slave follower is greater. Meanwhile, the
change of the linear velocity and the angular velocity variations are greater. When the obstacle is closer to the
front of the Slave follower, the repulsion of the obstacle to the Slave follower becomes greater (the front repulsion
is the biggest and the side repulsion is the smallest). As a result, the variations of the linear velocity and the
angular velocity are greater. Through the artificial potential field method, it improves a solution when a robot could
stop responding in front of an obstacle. This serves the purpose of better obstacle avoidance.

MULTI-AGENT COMMUNICATION SETUP

Multi-agent communication is one of the key steps to complete a multi-robot formation. When the relative positions
of multiple robots are unknown, the robots need to share each other’s information through communication to
facilitate the establishment of connections. ROS-distributed architecture and network communications are very
powerful. It is not only convenient for inter-process communication but also for communication between different
devices. Through network communication, all nodes can run on any computer. The main tasks such as data
processing are completed on the host side. The slave machines are responsible for receiving environmental data
collected by various sensors. The host here is the manager that runs the Master node in ROS. The current multi-
agent communication framework is through a node manager and a parameter manager to handle communications
among multiple robots.

The steps to set up multi-agent communications

Set up ROS Controls in the same network

There are 2 ways of setting up Master/Slave ROS Controls under the same network.

Option 1:

The Master Host creates a local wifi by running the Master node manager. Generally, one of the robots who is
designated as the master creates this wifi network. Other robots or virtual machines join this wifi network as
slaves.

Options 2:

The local wifi network is provided by a third-party router as an information relay center. All robots are connected to
the same router. The router can also be used without an internet connection. Select one of the robots as the
master and run the Master node manager. The other robots are designated as slaves and run the master node
manager from the master.
The decision on which option to choose depends on your project requirements. If the number of robots that need
to communicate is not at a large amount, Option 1 is recommended since it saves cost and is easy to set up.
When the number of robots is at largequantity, Option 2 is recommended. The constraint on the computing power
of the ROS master control and limited onboard wifi bandwidth can easily cause delays and network disruptions. A
router can easily fix these issues. Please note that when performing multi-agent communication, if the virtual
machine is used as a ROS slave, its network mode needs to be set to bridge mode.

Configure Master/Slave environment variables

After all the ROS masters are all in the same network, the environment variables for multi-agent communication
need to be set. This environment variable is configured in the .bashrc file in the main directory. Run the gedit

~/.bashrc command to launch it. Please note that both the .bashrc files of the master and the slave in multi-agent
communication need to be configured. What needs to be changed are the IP addresses at the end of the file. The
two lines of are ROS_MASTER_URI and ROS_HOSTNAME, as shown in Figure 2-1-4. The ROS_MASTER_URI
and ROS_HOSTNAME of the ROS host are both local IPs. The ROS_MASTER_URI in the ROS slave .bashrc file
needs to be changed to the host’s IP address while ROS_HOSTNAME remains as a local IP address.

ROS multi-machine communication is not constrained by the ROS release version. In the process of multi-
machine communication, one should be aware of the following:

1. The operation of the ROS slave program depends on the ROS master program of the ROS master device. The

ROS master program must launch first on the master device before executing the slave program on the slave

device.

2. The IP addresses of the master and slave machines in multi-machine communication need to be in the same

network. This means the IP address and the subnet mask are under the same network.

3. ROS_HOSTNAME in the environment configuration file .bashrc is not recommended to use localhost. It is

recommended to use a specific IP address.

4. In the case that the slave IP address is not set correctly, the slave device can still access the ROS master but

cannot input control information.

5. If the virtual machine participates in the multi-agent communication, its network mode needs to be set to bridge

mode. Static IP cannot be selected for the network connection.

6. Multi-machine communication cannot view or subscribe to topics of message data type that do not exist locally.

7. You can use the Little Turtle simulation demo to verify whether the communication between the robots is

successful:

a. Run from the master

rescore #launch ROS services

rostrum turtles turtlesim_node #launch turtles interface

b. Run from the slave

rerun turtles turtle_teleop_key #launch keyboard control node for turtles

If you can manipulate the turtle movements from the keyboard on the slave, it means the master/slave
communication has been established successfully.

Automatic Wifi connection in ROS

The below procedures explain how to configure the robot to automatically connect to the host network or router
network.

Automatic Wifi connection setup for Jetson Nano

1. Connect Jetson Nano via the VNC remote tool or directly to the computer screen. Click on wifi icon on the top

right corner then click “Edit Connections..”

2. Click the + button in Network Connections:

3. Under the “Choose a Connection Type” window, click the drop-down menu and click “Create…” button:

4. In the Control Panel, click Wifi option. Enter the Wifi name to connect in “Connection Name” and SSID fields.

Select “Client” in “Mode” dropdown menu and select “wlan0” in the “Device” dropdown menu.

5. In Control Panel, click the “General” option and check “Automatically connect to this network…”. Set the

connection priority to 1 in the “Connection priority for auto-activation” option. Check the “All users may connect

to this network” option. When the option is set to 0 in “Connection priority for auto-activation” for other wifi, this

means this is the preferred wifi network in the past.

6. Click “Wi-Fi Security” option in Control Panel. Select “WPA & WPA2 Personal” in “Security” field. Then enter the

Wifi password in “Password” field.

Note: If the robot cannot automatically connect to the wifi network after booting when the wifi priority is set to 0, it
may be caused by a problem of a weak wifi signal. In order to avoid this problem, you can choose to delete all the
wifi options that have been connected in the past. Only keep the wifi network created by the host or the router.
Click the “IPv4 Settings” option in the network settings control panel. Select the “Manual” option in the “Method”
field. Then click “Add”, fill in the IP address of the slave machine in “Address” field. Fill in “24” in “Netmask” field.
Fill in the IP network segment in “Gateway”. Change the last three digits of the IP network segment to “1”. The
main purpose of this step is to fix the IP address. After this is completed for the first time, the IP address will
remain unchanged when connecting to the same WIFI subsequently.

After all settings are configured, click “save” to save the settings. After the saving is successful, the robot will

automatically connect to the network of the host or router when it is powered on.

Note:

1. The IP address set here needs to be the same as the IP address set in the .bashrc file in Section 2.1.

2. The IP address of the master and each slave must be unique.

3. The master and slave IP addresses need to be in the same network segment.

4. You must wait for the host or router to send out WiFi signal before the slave robot can be powered on and

automatically connect to the WiFi network.

5. After the setting is configured, if the robot cannot automatically connect to the WiFi when it is turned on, please

plug and unplug the network card and try connecting again.

Automatic Wifi connection setup for Raspberry Pi

The procedure for Raspberry Pi is the same as Jetson Nano.

Automatic Wifi connection setup for Jetson TX1

The setup in Jetson TX1 is almost the same as in Jetson Nano with one exception Jetson TX1 should select the
device of “wlan1” in “Device” in the network settings control panel.

MULTI-AGENT SYNCHRONISATION SETUP

In the multi-agent formation project, the multi-agent time synchronization setting is a crucial step. In the process of
the formation, many problems will be caused due to the asynchronous system time of each robot. Multi-agent time
synchronization is divided into two situations, namely, the situation in which both the master and slave robots are
connected to the network and the situation in which both are disconnected from the network.

Successful master/slave network connection

After the multi-agent communication is configured, if the master and slave machines can successfully connect to
the network, they will automatically synchronize network time. In this case, no further actions are required to
achieve time synchronization.

Troubleshooting network dis-connections

After the multi-agent communication is configured, if the master and slave devices cannot successfully connect to
the network, it is necessary to manually synchronize the time. We will use the date command to complete the time
setting.

First, install the terminator tool. From the terminator tool, use the window splitting tool to place the control terminals
of the master and slave into the same terminal window (right-click to set a split window, and log in to the master
and slave machines by ssh in different windows).

sudo apt-get install terminator # Download terminator to split the terminal window

Click the button on the top left, select the option [Broadcast to all]/[Broadcast all], and enter the
followingcommand. Then use the terminator tool to set the same time for the master and slave.

sudo date -s “2022-01-30 15:15:00” # Manual time setup

MULTI-AGENT ROS PACKAGE

ROS Package Introduction

Set up slave name

In the wheeltec_multi function package, it is necessary to set a unique name for each slave robot in order to avoid
errors. For example, No. 1 for slave1 and No. 2 for slave2, etc. The purpose of setting different names is to group
running nodes and distinguish them by different namespaces. For example, the radar topic of slave 1
is/slave1/scan, and the LiDAR node of slave 1 is/slave1/laser.

Set up slave coordinates

The wheeltec_multi package can implement custom formations. When different formations are required, just
modify the desired coordinates of the slave robots. Slave_x and slave_y are the x and y coordinates of the slave
with the master as the original reference point. The front of the master is the positive direction of the x coordinate,
and the left side is the positive direction of the y coordinate. After the setting is completed, a TF coordinate slave1
will be issued as the expected coordinate of the slave. If there is one master and two slaves, the following
formation can be set:

1. Horizontal formation: You can set the coordinates of the slave on the left to slave_x:0, slave_y: 0.8, and the

coordinates of the slave on the right to slave_x:0, slave_y:-0.8.

2. Column formation: The coordinates of one slave can be set to: slave_x:-0.8, slave_y:0, and the coordinates of

the other slave can be set to: slave_x:-1.8, slave_y:0.

3. Triangular formation: The coordinates of one slave can be set to: slave_x:-0.8, slave_y: 0.8, and the

coordinates of the other slave can be set to: slave_x:-0.8, slave_y:-0.8.

Other formations can be customized as needed.

Note:

The recommended distance between the two robots is set to 0.8, and it is recommended not to be lower than

0.6. The distance between the slaves and the master is recommended to be set below 2.0. The farther it is

from the master, the greater the linear speed of the slave is when the master is turning. Due to the limitation of

the maximum speed, the speed of the slave will deviate if it does not meet the requirements. The robot

formation will become chaotic.

Initialization of the slave position

1. The initial position of the slave is at the expected coordinates by default. Before running the program, just place

the slave robot close to its expected coordinates to complete the initialization. This function is implemented by

the pose_setter node in the file named turn_on_wheeltec_robot.launch in the wheeltec_multi package, as

shown in Figure 4-1-3.

If the user wants to customize the initial position of the slave, he or she only needs to set the slave_x and slave_y
values as shown in Figure 4-1-4 in wheeltec_slave.launch. The slave_x and slave_y values will be passed to
turn_on_wheeltec_robot.launch and assigned to the pose_setter node. Just place the robot in a custom position
before running the program.

Position Configuration

In a multi-agent formation, the first problem to be solved is the positioning of the master and the slave. The master
will construct a 2D map first. After creating and saving the map, run the 2D navigation package and use the
adaptive Monte Carlo positioning algorithm (amcl positioning) in the 2D navigation package to configure the
positioning of the master. Since the master and the slaves are in the same network and share the same node
manager, the master has launched the map from the 2D navigation package, all the slaves can use the same map
under the same node manager. Therefore, the slave does not need to create a map. In wheeltec_slave.launch, run
Monte Carlo positioning (amcl positioning), the slaves can configure their positions by using the map created by
the master.

How to create formation and maintain formation

In the process of formation movement, the master movement can be controlled by Rviz, keyboard, remote control,
and other methods. The slave calculates its speed through the slave_tf_listener node in order to control its
movement and achieve the goal of the formation. The slave_tf_listener node limits the slave speed to avoid
excessive speed by the node calculation, which will cause a series of impacts. The specific value can be modified
in wheeltec_slave.launch.

The relevant parameters of the formation algorithm are as follows:

Obstacle avoidance information

In a multi-agent formation, the master can use the move_base node to complete obstacle avoidance. However,
the initialization of the slave does not use the move_base node. At this point, the multi_avoidance node needs to
be called in the slave program. The obstacle avoidance node is enabled by default in the package. If necessary,
avoidance can be set to “false” to disable the obstacle avoidance node.

Some relevant parameters of the obstacle avoidance node are shown in the figure below, where safe_distance is
the obstacle safe distance limit, and danger_distance is the obstacle dangerous distance limit. When the obstacle
is within safe distance and danger distance, the slave adjusts its position to avoid the obstacle. When the obstacle
is within danger, the slave will drive away from the obstacle.

Operation Procedure

Enter execution command

Preparations before starting multi-agent formation:

The master and slave connect to the same network and set up multi-agent communication correctly

The master builds a 2D map in advance and saves it

The master is placed at the starting point of the map, and the slave is placed near the initialization position (the

default slave formation position)

After logging in to Jetson Nano/Raspberry Pi remotely, perform time synchronization.

sudo date -s “2022-04-01 15:15:00”

Step 1: Open a 2D map from the master.

roslaunch turn_on_wheeltec_robot navigation.launch

Step 2: Run the formation program from all the slaves.

roslaunch wheeltec_multi wheeltec_slave.launch

Step 3: Open the keyboard control node from the master or use the joystick to remote control the master

movement.

relaunch wheeltec_robot_rc keyboard_teleop.launch

Step 4: (Optional) Observe the robot movements from Rviz.

rviz

Note:

1. Be sure to complete the time synchronization operation before executing the program.

2. When controlling the master of a multi-agent formation, the angular velocity should not be too fast. The

recommended linear speed is 0.2m/s, angular speed degree below 0.3rad/s. When the master is making a turn,

the farther the slave is from the master, the greater the linear speed is required. Because of the limit on the

linear speed and angular speed in the package, when the slave car cannot reach the required speed, the

formation will be chaotic. Overall, the excessive linear speed can easily damage the robot.

3. When the number of slaves is more than one, due to the limited on-board wifi bandwidth of the ROS host, it is

easy to cause significant delays and disconnection of the multi-agent communication. Using a router can solve

this problem well.

4. The TF tree of the multi-robot formation (2 slaves) is: rqt_tf_tree

5. The node relationship diagram of the multi-robot formation (2 slaves) is: rqt_graph

Documents / Resources

ROBOWORKS Robofleet MULTI-AGENT ALGORITHMS [pdf] User Manual
Robofleet Multi Agent Algorithms, Robofleet, Multi Agent Algorithms, Agent Algorithms, Algorith
ms

References

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/f033456aaff017f485552d3470cf0cfd03fd68dfdb1e64ed2737bac677e288f2
https://manuals.plus/m/f033456aaff017f485552d3470cf0cfd03fd68dfdb1e64ed2737bac677e288f2_optim.pdf
https://manual.tools/?p=14193881#MTA0LjI4LjIwMi4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	ROBOWORKS Robofleet MULTI-AGENT ALGORITHMS User Manual
	ROBOWORKS Robofleet MULTI-AGENT ALGORITHMS
	Specifications
	Product Information
	FAQs
	INTRODUCTION TO MULTI-AGENT ALGORITHMS
	MULTI-AGENT SYNCHRONISATION SETUP
	Troubleshooting network dis-connections
	MULTI-AGENT ROS PACKAGE
	Operation Procedure
	Documents / Resources
	References

