
Home » RENESAS » RENESAS ForgeFPGA Software Simulation User Guide

RENESAS ForgeFPGA Software Simulation

RENESAS ForgeFPGA Software Simulation User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/renesas
https://manuals.plus/renesas/forgefpga-software-simulation-manual.pdf

Contents
1 Important Information
2 Installing Icarus
Verilog
3 Testbench
4 GTKWave Software
5 Conclusion
6 Revision History
7 Documents /
Resources

7.1 References

Important Information

Simulation is a technique of applying different input stimulus to the design at different times to check if the RTL
code behaves the intended way. It is used to verify the robustness of the design. Simulation allows the user to
view the timing diagram of the related signals to understand how the design description in the design file behaves.

Testbenches are pieces of code that are used for simulation. A simple testbench will instantiate the Unit Under
Test (UUT) and drives the input. Go Configure software uses Icarus Verilog (iVerilog) and GTKWave to observe
the simulation waveforms with the stimulus provided in the testbench.

This document describes the steps that need to be taken while installing Icarus on your system and how to run a
successful simulation.

Installing Icarus Verilog

a. Install the latest version of Icarus Verilog (IVerilog) from https://bleyer.org/icarus/
b. Be sure to add IVerilog to the PATH and let it install GTKWave (See Figure 1)

c. Open the Go Configure Software and select the part: SLG47910(Rev BB) to open the Forge Workshop (see
Figure 2).

https://manuals.plus/#important_information
https://manuals.plus/#installing_icarus_verilog
https://manuals.plus/#testbench
https://manuals.plus/#gtkwave_software
https://manuals.plus/#conclusion
https://manuals.plus/#revision_history
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://bleyer.org/icarus/

d. Click on the FPGA Editor in the middle of the toolbar at top or user can also double-click on the FPGA Core
structure in the middle of the window.

e. A new window opens called the Forge Workshop. In the menu toolbar on the top, click on Options → Settings.
In the Settings dialog box, go to Tools under User Settings tab. Unselect the Use “system environment box” for
both Icarus Verilog and GTKWave. Add the path to Iverilog and GTKWave saved in your system into the space
given (see Figure 4).

You are all set down to simulate a testbench and the above steps ensure that the GTKWave launches
automatically when simulating a testbench on Go Configure software.

Testbench

The most crucial step in successfully implementing any system is to verify the design and its functionality. Verifying
a complex system after implementing the hardware is not a wise choice. It is ineffective in terms of money, time,
and resources. Hence, in the case of FPGA, a testbench is used to test the Verilog source code.

Suppose we have an input which is of 11 bits, and we want to test the device for all the possible input combination
values i.e. (211). As this is a very large number of combinations, it is impossible to test it manually. In such cases,
testbenches are very useful as you can test the design automatically for all the possible values and hence, confirm
the reliability of the test design. Verilog Testbenches are used to simulate and analyze designs without the need for
any physical hardware device.

A design under test, abbreviated as DUT, is a synthesizable module of the functionality we want to test. In other
words, it is the circuit design that we would like to test. We can describe our DUT using one of the three modeling
styles in Verilog – Gate-level, Dataflow, or Behavioral.

A testbench is not synthesizable, hence it is used for simulation purposes only. This allows the user to use a full
range of Verilog constructs e.g., keywords such as “for”, “$display” and “$monitor” etc. for writing testbenches. A
simple testbench will instantiate the Unit Under Test (UUT) or Device Under Test (DUT) and drive inputs.

Understanding a Testbench

Timescale Definition in Testbench

When simulating, the software needs to know how the time has been defined. The delay unit is specified using the
`timescale directive, which specifies the time unit and the precision for the modules that follow it. The `timescale
helps in determining what #1 means in terms of time. # is used to define the delay to be introduced in the system
in accordance with time unit specified in timescale. So, #1 means 1 ns of delay if the time_unit is in ns.

Syntax:
`timescale /<time_unit>/<time_precision>

time_unit is the amount of time a delay of #1 represents. The time_precision base represents how many decimal
points of precision to use relative to the time units. (See line 23 in Figure 5)

We can use the timescale constructs to use different time units in the same design. The user needs to remember
that delay specifications are not synthesizable and cannot be converted to hardware logic. The delay functions are
entirely for simulation purposes. $time and $realtime system functions return the current time and the default
reporting format can be changed with another system task $timeformat .

Example:

`timescale 10us/100ns
`timescale 1ns/1ps
#10 reset = 1; // delays the signal by 10 ns
#0.49 $display(“T = %0t at Time #0.49”, $realtime) ;

The delay specified is #0.49 which is less than the half a unit time. However, the time precision is specified to be
1ps and hence the simulator cannot go smaller than 1ns which makes it to round the given delay statement and
yield 0ns. So, this statement fails to provide any delay.

Simulation Log:

T = 1 at Time #0.49

Module Declaration

Module declaration in any testbench is unlike the main Verilog code. In a testbench, the module is declared
without any terminal ports along with it. (See line 25 in Figure 5)

Syntax:

module <modulename_tb>;

The module declaration is followed by defining the input and output signals defined earlier in the main design file.
We use two signal types for driving and monitoring signals during the simulation. The reg datatype will hold the
value until a new value is assigned to it. This datatype can be assigned a value only in always or initial block.
The wire datatype is like that of a physical connection. It will hold the value that is driven by a port, assign
statement, or reg. This data type cannot be used in initial or always block. Any parameter and integer declaration
are also done in this section.

Example:
Reg a,b; // the input in the HDL code is defined as reg in testbench
Wire y; // output signal in HDL is defined as wire in testbench

DUT Instantiation

The purpose of a testbench is to verify whether our DUT module is functioning. Hence, we need to instantiate our
design module to test module.

Syntax:

<dut_module><instance_name>(. <signal1>(signal1), . signal2>(signal2));

Example:

ALU d0 (.a(a), // signal “a” in ALU should be connected to “a” in ALU_tb module
.b(b), // signal “b” in ALU should be connected to “b” in ALU_tb module
.c(c)) ;// signal “c” in ALU should be connected to “c” in ALU_tb module

We have instantiated the DUT module ALU to the test module. The instance name (d0) is the user’s choice. The
signals with a period “.” in front of them are the names for the signals inside the ALU module, while the wire or reg
they connect to in the test bench is next to the signal in parenthesis (). It is recommended to code each port
connection in a separate line so that any compilation error message will correctly point to the line number where
the error occurred. Because these connections are made by name, the order in which they appear is irrelevant.

DUT instantiation can also be made for the modules where the testbench module has different signal names. The
correct mapping of the signals is what is important when instantiating.

Example :

ALU d0 (.a(A), // signal “a” in ALU should be connected to “A” in ALU_tb module
.clk(clock), // signal “clk” in ALU should be connected to “clock” ALU_tb module
.out(OUT)) ; // signal “out” in ALU should be connected to “OUT” in ALU_tb module

Always & Initial Block in a Testbench

There are two sequential blocks in Verilog, initial and always. It is in these blocks that we apply the stimulus.

Initial block

The initial block which is executed only once and terminated when the last line of the block is executed. The
stimulus is written into the initial block. (See line 54-72 in Figure 5)

Syntax:
..
initial begin
$dumpfile();
$dumpvars();
..(enter stimulus)
end

the initial block begins its execution at the start of the simulation at time t = 0. Starting with the first line between
the begin and end, each line executes from top to bottom until a delay is reached. When the delay is reached, the
execution of this block waits until the delay time (10-time units) has passed and then picks up execution again.
User can define stimuli using loops (for, while, if-else) as well inside this initial block instead of entering all the
combinations manually.

Example :
Initial Begin
A = 0; b = 0; // start execution
#10 a = 0; b = 1; // execution is at t = 10-unit time
#10 a = 1; b = 0; // execution is at t = 20-unit time
end

Dump Files

Another thing to keep in mind is the declaration of $dumpfiles and $dumpvars inside the initial block (see line 55-
56 in Figure 5). The $dumpfile is used to dump the changes in the values of nets and registers in a file that is
named as its argument.

For example:

$dumpfile(“alu_tb.vcd”);

will dump the changes in a file named alu_tb.vcd. The changes are recorded in a file called VCD file that stands for
value change dump. A VCD (value change dump) stores all the information about value changes. We cannot have
more than one $dumpfile statements in Verilog simulation.

The $dumpvars is used to specify which variables are to be dumped (in the file mentioned by $dumpfile). The
simplest way to use it is without any argument. The general syntax of the $dumpvars is

$dumpvars (<levels> <, <module_or_variable>>);

We basically can specify which modules, and which variables in modules will be dumped. The simplest way to use
this is to set the level to 0 and module name as the top module (typically the top testbench module).

$dumpvars(0, alu_tb);

When level is set to 0, and only the module name is specified, it dumps ALL the variables of that module and all
the variables in ALL lower-level modules instantiated by this top module. If any module in not instantiated by this
top module, then its variable will not be covered. One more thing, the declaration of $dumpfile must come before
the $dumpvars or any other system tasks that specifies dump. These dump files must be declared before the
stimulus inputs else, no value will be saved in these dump files.

Always Block

Contrary to the initial statements, an always block repeatedly executes, although the execution starts at time t = 0.
For example, the clock signal is essential for the operation of sequential circuits like Flip-flops. It needs to be
supplied continuously. Hence, we can write the code for operation of the clock in a testbench as (see line 52 in
Figure 5):

always
#10 clk = ~clk;
endmodule

The above statement gets executed after 10 ns starting from t = 0. The value of the clk will get inverted after 10 ns
from the previous value. Thus, generating a clock signal of 20 ns pulse width. Therefore, this statement generates
a signal of frequency 50 MHz. It is important to note that, the initialization of the signal is done before the always
block. If we do not do the initialization part, the clk signal will be x from t – 0, and after 10 ns, it will be inverted to
another x.

Self-Checking Testbench

A self-checking testbench includes a statement to check the current state.

$display system task are mainly used to display debug messages to track the flow of simulation

initial begin
A = 0 ; b = 0 ; c = 0; #10; // apply input, wait
if(y ! == 1) begin
$display(“000 failed”) ; //check
c = 1; #10 ; //apply input, wait
end
else if (y ! == 0) begin
$display(“001 failed”) // check
b = 1; c = 0; #10 ; end
else if(y!==0)
$display (“ 010 failed”); //check
end
endmodule

$display is used for displaying values of variables, strings, or expressions. From the above example, whenever
any of the if-else loop is satisfied, then the simulator log will display its respective $display statement. There is a
newline by default at the end of the strings.

$display (“time = %t , A = %b, B = %b, C = % b”, $ time, A,B,C);

The characters mentioned in the quotes will be printed as they are. The letter along with % denotes the string
format. We use %b to represent binary data. We can use %d, %h, %o for representing decimal, hexadecimal, and
octal, respectively. The %g is used for expressing real numbers. These will be replaced with the values outside the
quote in the order mentioned. For example, the above statement will be displayed in the simulation log as: time =
20, A = 0, B =1, C = 0

Table 1. Verilog Table Formats

Argument Description

%h, %H Display in Hexadecimal format

%d, %D Display in decimal forma

%b, %B Display in binary format

%m, %M Display hierarchical name

%s, %S Display as string

%t, %T Display in time format

%f, %F Display ‘real’ in decimal format

%e, %E Display ‘real’ in an exponential format

$display mainly prints the data or variable as it is at that instant of that time like the printf in C. We must mention
$display for whatever text we have to view in the simulation log.

$time

$time is a system task that will return the current time of the simulation.

$monitor

$monitor will monitor the data or variable for which it is written and whenever the variable changes, it will print
the changed value. It achieves a similar effect of calling $display after every time any of its arguments get
updated. $monitor is like a task that is spawned to run in the background of the main thread which monitors and
displays value changes of its argument variables. $monitor has the same syntax as $display.

$monitor(“ time = %t, A = %b, B = %b, C = % b”, $ time, A,B,C);

From Figure 7 you can observe that new lines of codes have been added to self-evaluate the testbench. The
placement of the $display and $monitor statements in different sections of the testbench will yield different results
(see Figure 8). $time mentioned in these statements prints the time at which the value is being printed for. At the
same time unit say 170000, we can see how there is a difference in the value for A and B due to the $display and
$monitor statements.

GTKWave Software

GTKWave is a fully featured GTK+ wave viewer for Unix, Win32, and Mac OSX which reads LXT, LXT2, VZT, FST,
and GHW files as well as standard VCD/EVCD files and allows their viewing. Its official website is at
http://gtkwave.sourceforge.net/ . GTKWave is the recommended viewer by Icarus Verilog simulation tool.

Once the user is successfully created a testbench to test the functionality of the design, the user can now use the
GTKWave software to view the waveforms.

To launch the GTKWave software to view the waveforms, the user needs to click on Simulate Testbench button on
the top of the toolbar or from the main menu Tools→ Simulation→ Simulate Testbench. If there are no syntax
errors then depending on the design, the GTKWave should be launched automatically or the results of the stimuli
in the testbench will be displayed in the Logger section of the window.

The GTKWave software opens the .vcd format dumpfile automatically. The GTKWave window does not display the
waveform when its opens. This gives the user an opportunity to select which signals it wants to view and observe.
To choose the signal, the user needs to display, the user needs click on the name of their module/instance on the
left side of the window under the SST tab. By clicking the + of every instance, you can see the signals that are
related wit that instance in the bottom section. Then you can drag & drop the desired signal or double-click them to
be displayed in the Signals window. You can also select all (CTRL + A) and insert them to the signals window (see
Figure 9).

http://gtkwave.sourceforge.net/

The signals are now added to the signal window but its yet to be simulated. After adding the desired signals to the

signal window, click on to fit the signals to the current width of the window and then reload the signals from

the reload symbol present on the toolbar. You can now see the signals with their respective values.

Signal Values

By default, the values of the signals are in hexadecimal format and all the waves are colored green (if correctly
running).

User can change the properties of these signal by right-clicking on the signal and choosing Data Format or Color
Format. User can also insert a blank signal to make sections between group of signals. When you have the
desired optical result, you can save your configurations by going File → Write Save File.

GTKWave Toolbar

The toolbar (see Figure 10) allows the user to perform basic functions for the signal. Let us discuss each option on
the toolbar from left to right.

1. Menu Options: Under this option we can view all the various features of the software that can be used to play

around with the software. The details under this menu option are covered under Section 8 of this user guide.

2. Cut Traces: It is used to delete/cut the select signal from the signal window

3. Copy Traces: It is used to copy the selected signal from the signal window

4. Paste Traces: The copied/cut trace can be pasted at a different location in the signal window

5. Zoom Fit: It is used to fit the signals according to the size of the window the user chooses to display

6. Zoom In: It is used to zoom in the signal window

7. Zoom Out: It is used to zoom out the signal window

8. Zoom Undo: it is used to undo the zoom in/out on the signal window

9. Zoom to Start: this will zoom the signal window, displaying the start time of the signals.

10. Zoom to End: this will zoom the signal window displaying the end time of the signals

11. Find previous edge: This shifts the marker to the left side indicating the previous edge

12. Find next edge: This shifts the marker to the right indicating the next edge

13. Scroll lower/upper bond: using this we can set the time frame in which the user wants to display. For

example, we can set the time frame to 0 sec to 500 ns, it will display the signals under that duration only.

14. Reload: The reload is pressed whenever there is a change to the displayed signal. It will reload and display the

signal according to the new parameters. For example, after changing the time frame of the signal, we need to

reload the signal to display the signal in the new set time frame.

Menu Options

From the left top corner of the GTKWave software, user can access the menu options by clicking the three vertical
lines (see Figure 11). The user can find the following options under the Menu options:

File

The File submenu contains various items related to accessing files, importing-exporting VCD files, printing, and
reading/writing files and exiting.

Edit

The Edit submenu is used to perform various utility functions such as changing the data representation of values in
the wave subwindow. Using the options under the Edit submenu, user can change the data format of the signals,
rearrange them, shift them, trim it, highlight it, group signals, comment on signals, change the color of the signals,
etc.

Search

The Search submenu is used to perform searches on net names and values. It helps to perform functions on
different hierarchy levels of the signals and instances in the VCD file.

Time

The time submenu contains a superset of the functions performed by the Navigations and the Status Panel
buttons.
It enables simple, time related, functions like zooming, moving to a particular time point, shifting the signal in a
certain direction, etc.

Marker

The marker submenu is used to perform various manipulations on the marker as well as control scrolling offscreen.
It enables the functionality of adding numerous markers on the signal window. A maximum of 26 names markers
are allowed and the times for all must be different.

a. To add Markers in the signal window
Left click at the required point where you want the Marker to be placed and press ALT + N. This will place a named
marker (A,B,C, etc.) at the required point. User can continue to do this for 26 different time locations.
To compare the time value at all the places markers, Menu → Markers → Show Change Marker Data.
This will open a window with the time value at each Marker. The user can manually note the time value at each
marker placed and subtract them to calculate the time difference between 2 markers.
b. To remove Marker in the signal window

User can go to Menu → Markers → Collect Named Marker. This will remove the last-named Marker placed in the
signal window. User can remove all the named Markers by going to Menu → Markers → Collect All Named Marker
(Figure 12).

In Figure 13, we can see how the signal colors have been changed. You can observe a Blank Signal added to the
signal window as well with a comment – Blank Signal.

Also note the presence of 6 Named Markers (A – E) and the compurgation of the time value between these
Markers in ps.

View

The View submenu is used to control various attributes dealing with the graphical rendering of status items as well
as values in the signal sub window. From this menu, you can convert the signal window to Black & White or
colored as well. The View submenu also enables you to change the time Dimension ranging from seconds (secs)
to ficoseconds (fs). The user can find this option View → Scale to Time Dimension → fs.

Help

The help submenu contains options for enabling on-line help as well as displaying program version information.

Conclusion

This document was created to assist the user in successfully simulating their design and verifying the functionality
by correcting drafting the needed testbench and using Icarus Verilog along with GTKWave to display the
waveforms and observe the results.

Revision History

Revision Date Description

1.00 May 20, 2024 Initial release.

R19US0011EU0100 Rev.1.0
May 20, 2024

© 2024 Renesas Electronics

Documents / Resources

RENESAS ForgeFPGA Software Simulation [pdf] User Guide
REN_r19us0011eu0100, ForgeFPGA Software Simulation, ForgeFPGA Software, ForgeFPGA,
ForgeFPGA Simulation, Software Simulation, Simulation, Software

References

 Icarus Verilog for Windows

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/7e5707fc1d13d0bb9bddb4139a383babf65aee26e09e045b6ee4173f5685de6d
https://manuals.plus/m/7e5707fc1d13d0bb9bddb4139a383babf65aee26e09e045b6ee4173f5685de6d_optim.pdf
https://bleyer.org/icarus/
https://manual.tools/?p=13827343#MTA0LjI4LjIwMi4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	RENESAS ForgeFPGA Software Simulation User Guide
	Important Information
	Installing Icarus Verilog
	Testbench
	GTKWave Software
	Conclusion
	Revision History
	Documents / Resources
	References

