
Home » Qualcomm » Qualcomm TensorFlow Lite SDK Software User Guide

Qualcomm TensorFlow Lite SDK Software User Guide

Contents
1 Revision history
2 Introduction to Qualcomm TFLite SDK tools
3 Set up build environment for Qualcomm TFLite SDK
tools
4 Generate platform SDK
5 Build Qualcomm TFLite SDK tools – developer workflow
6 Troubleshoot docker setup
7 Build Qualcomm TFLite SDK incrementally
8 Work with QNN external TFLite Delegate
9 Test Qualcomm TFLite SDK
10 LEGAL INFORMATION
11 Documents / Resources

11.1 References
12 Related Posts

Revision history

Qualcomm TensorFlow Lite SDK Software User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/qualcomm
https://manuals.plus/qualcomm/tensorflow-lite-sdk-software-manual.pdf
https://manuals.plus/#revision_history
https://manuals.plus/#introduction_to_qualcomm_tflite_sdk_tools
https://manuals.plus/#set_up_build_environment_for_qualcomm_tflite_sdk_tools
https://manuals.plus/#generate_platform_sdk
https://manuals.plus/#build_qualcomm_tflite_sdk_tools_-_developer_workflow
https://manuals.plus/#troubleshoot_docker_setup
https://manuals.plus/#build_qualcomm_tflite_sdk_incrementally
https://manuals.plus/#work_with_qnn_external_tflite_delegate
https://manuals.plus/#test_qualcomm_tflite_sdk
https://manuals.plus/#legal_information
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

Revision Date Description

AA September 2023 Initial release

AB October 2023

 In Generate platform SDK, updated the commands to build the

user space images and platform SDK

Added Generate TFLite SDK with Linux workstation

Added Work with QNN external TFLite Delegate

In Benchmark, updated the scripts for External Delegate

Introduction to Qualcomm TFLite SDK tools

The Qualcomm TensorFlow Lite software development kit (Qualcomm TFLite SDK) tools provide the TensorFlow
Lite framework for on-device artificial intelligence (AI) inferencing, which facilitates application developers to
develop or run suitable AI applications.
This document provides step-by-step instructions to compile a standalone Qualcomm TFLite SDK and set up the
development environment. This enables the developer workflow, which includes:

setting up the build environment where the developer can compile the Qualcomm TFLite SDK

developing standalone Qualcomm TFLite SDK applications

For support, seehttps://www.qualcomm.com/support. The following figure provides a summary of the Qualcomm
TFLite SDK workflow: ”
Figure 1-1 Qualcomm TFLite SDK workflow
The tool requires a platform SDK and a configuration file (JSON format) to generate the Qualcomm TFLite SDK
artifacts.

To build an end-to-end application using multimedia, AI, and computer vision (CV) subsystems, see Qualcomm
Intelligent Multimedia SDK (QIM SDK) Quick Start Guide (80-50450-51).
The table shows Qualcomm TFLite SDK version mapping with CodeLinaro release tag:
Table 1-1 Release information

https://manuals.plus/#_bookmark11
https://manuals.plus/#_bookmark23
https://manuals.plus/#_bookmark27
https://manuals.plus/#_bookmark30
http://www.qualcomm.com

Qualcomm TFLite SDK versi
on CodeLinaro release tag

V1.0

Qualcomm TFLITE.SDK.1.0.r1-00200-TFLITE.0

 TFLITE.SDK.1.0.r1-00500-TFLITE.0.xml

Table 1-2 Supported Qualcomm TFLite SDK versions

Qualcomm TFLite SD
K version Supported software product Supported TFLite version

V1.0 QCS8550.LE.1.0 2.6.0

2.8.0

2.10.1

2.11.1

2.12.1

2.13.0

References
Table 1-3 Related documents

Title Number

Qualcomm

00067.1 Release Note for QCS8550.LE.1.0 RNO-230830225415

Qualcomm Intelligent Multimedia SDK (QIM SDK) Quick Start Guide 80-50450-51

Qualcomm Intelligent Multimedia SDK (QIM SDK) Reference 80-50450-50

Resources

https://source.android.com/docs/setup/start/initializing –

Table 1-4 Acronyms and definitions

https://git.codelinaro.org/clo/le/sdktflite/tflite/manifest/-/blob/release/TFLITE.SDK.1.0.r1-00500-TFLITE.0.xml
https://source.android.com/docs/setup/start/initializing

Acronym or term Definition

AI Artificial intelligence

BIOS Basic input/output system

CV Computer vision

IPK Itsy package file

QIM SDK Qualcomm Intelligent multimedia software development kit

SDK Software development kit

TFLite TensorFlow Lite

XNN X nearest neighbor

Set up build environment for Qualcomm TFLite SDK tools

The Qualcomm TFLite SDK tools are released in source form; therefore, establishing the build environment to
compile it is a mandatory but one-time setup.

Prerequisites

Ensure that you have sudoaccess to the Linux host machine.

Ensure that the Linux host version is Ubuntu 18.04 or Ubuntu 20.04.

Increase the maximum user watches and maximum user instances on the host system.

Add the following command lines to/etc/sysctl.confand reboot the host: fs.inotify.max_user_instances=8192

fs.inotify.max_user_watches=542288

Install required host packages

The host packages are installed on the Linux host machine.
Run the commands to install the host packages: $ sudo apt install -y jq $ sudo apt install -y texinfo chrpath libxml-
simple-perl openjdk-8-jdkheadless
For Ubuntu 18.04 and higher:
$ sudo apt-get install git-core gnupg flex bison build-essential zip curl zlib1g-dev gcc-multilib g++-multilib libc6-
dev-i386 libncurses5 lib32ncurses5- dev x11proto-core-dev libx11-dev lib32z1-dev libgl1-mesa-dev libxml2-utils
xsltproc unzip fontconfig
For more information, see https://source.android.com/docs/setup/start/initializing.

Set up docker environment

A docker is a platform used to build, develop, test, and deliver software. To compile the SDK, the docker must be
configured on the Linux host machine.
Ensure that CPU virtualization is enabled on the Linux host machine. If it is not enabled, do the following to enable
it from the basic input/output system (BIOS) configuration settings:

1. Enable virtualization from BIOS:

a. Press F1 or F2 when the system is booting up to step into BIOS. The BIOS window is displayed.

b. Switch to the Advanced tab.

c. In the CPU Configuration section, set Virtualization Technology to Enabled.

th

http://ource.android.com

a. Press F12 to save and exit, and then restart the system.

If these steps do not work, follow the specific instructions from the system provider to enable the virtualization

2. Remove any old instances of the docker:

$ sudo apt remove docker-desktop

$ rm -r $HOME/.docker/desktop

$ sudo rm /usr/local/bin/com.docker.cli

$ sudo apt purge docker-desktop

3. Set up the docker remote repository:

$ sudo apt-get update $ sudo apt-get install ca-certificates curl gnupg lsb-release $ sudo mkdir -p

/etc/apt/keyrings $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg — dearmor -o

/etc/apt/keyrings/docker.gpg $ echo “deb [arch=$(dpkg –print-architecture) signed-by=/etc/apt/ keyrings/

docker.gpg] https://download.docker.com/linux/ubuntu $ (lsb_release -cs) stable” | sudo tee

/etc/apt/sources.list.d/ docker.list > /dev/null

4. Install docker engine:

$ sudo apt-get update $ sudo apt-get install docker-ce docker-ce-cli

5. Add user to docker group:

$ sudo groupadd docker $ sudo usermod -aG docker $USER

6. Reboot the system.

Generate platform SDK

The platform SDK is a mandatory requirement to compile the Qualcomm TFLite SDK tools. It provides all the
required platform dependencies required by the Qualcomm TFLite SDK.
Do the following to generate the platform SDK:

1. Create a build for the preferred software product.

The instructions to build the QCS8550.LE.1.0release are provided in the release notes. To access the release

notes, see References.

If the images were previously built, execute step 2, and then create a clean build.

2. Run the following command to build the user space images and platform SDK:

For QCS8550.LE.1.0, add the machine feature qti-tflite-delegate in MACHINE_FEATURES in the kalama.conf

file and source the build environment according to instructions from the release notes.

After generating user space images from build, run the following command to generate the platform SDK.

$ bitbake -fc populate_sdk qti-robotics-image

Build Qualcomm TFLite SDK tools – developer workflow

The Qualcomm TFLite SDK tools workflow requires the developer to provide the configuration file with valid input
entries. The helper shell scripts from the tflite-tools project (present in the Qualcomm TFLite SDK source tree)
provide helper utility functions to set up the shell environment, which can be used for the Qualcomm TFLite SDK
workflow.
The developer builds the Qualcomm TFLite SDK projects within the container and generates the artifacts using
the utilities provided by tflite-tools.
After a Qualcomm TFLite SDK container is built, the developer can attach to the container and use the helper
utilities in the container shell environment for continuous development.

There is a provision to install the Qualcomm TFLite SDK artifacts to a Qualcomm device connected to the Linux

host via USB/adb.

There is also a provision to copy the Qualcomm TFLite SDK artifacts from the container to a different host

machine where the Qualcomm device is connected.

The following figure lists the set of utilities available after setting up the container build environment
using the helper scripts for building the Qualcomm TFLite SDK.

The figure shows the sequence of execution of the utilities:
Figure 4-3 Sequence of utilities on host

Sync and build Qualcomm TFLite SDK
The Qualcomm TFLite SDK is compiled when the docker image is created. To sync and build the Qualcomm
TFLite SDK, do the following:

1. Create a directory on the host file system to sync the Qualcomm TFLite SDK workspace. For

example: $mkdir <tflite-sdk-workspace> $cd <tflite-sdk-workspace>

2. Fetch the Qualcomm TFLite SDK source code from CodeLinaro:

$ repo init -u https://git.codelinaro.org/clo/le/sdktflite/tflite/ manifest.git –repo-branch=qc/stable –repo-

url=git://git.quicinc.com/ tools/repo.git -m TFLITE.SDK.1.0.r1-00200-TFLITE.0.xml -b release && repo sync -qc

–no-tags -j

3. Create a directory on the host file system that can be mounted into docker. For example: mkdir-p / This

directory can be created anywhere on the Linux host machine, and it does not depend on where the Qualcomm

TFLite SDK project is synced. After the workflow is completed within the container, the Qualcomm TFLite SDK

artifacts can be found at the directory created in this step.

4. Edit the JSON configuration file present in /tflite-tools/ targets/le-tflite-tools-builder.json with the following

entries:

“Image”: “tflite-tools-builder”, “Device_OS”: “le”, “Additional_tag”: “”, “TFLite_Version”: “2.11.1”, “Delegates”: {

“Hexagon_delegate”: “OFF”, “Gpu_delegate”: “ON”, “Xnnpack_delegate”: “ON” }, “TFLite_rsync_destination”:

“/”, “SDK_path”: “/build-qti-distro-fullstack-perf/tmpglibc/deploy/sdk>”, “SDK_shell_file”: “”, “Base_Dir_Location”:

“” }

For more information on the entries mentioned in the json configuration file, see the Docker.md readme file at

/tflite-tools/.

NOTE For QCS8550, the Qualcomm® Hexagon™ DSP delegate is not supported.

5. Source the script to set up the environment:

$ cd <tflite-sdk-workspace>/tflite-tools $ source ./scripts/host/docker_env_setup.sh

6. Build the Qualcomm TFLite SDK docker image: $ tflite-tools-host-build-image ./targets/le-tflite-tools-

builder.json If the build setup fails, see Troubleshoot docker setup. After successful completion, the following

message is displayed: “Status:Build image completed successfully!!” Running this step builds the Qualcomm

TFLite SDK as well.

7. Run the Qualcomm TFLite SDK docker container. This starts the container with the tags provided in the JSON

configuration file. $tflite-tools-host-run-container ./targets/le-tflite-tools-builder.json

8. Attach to the container started from the previous step.

$ docker attach <tflite-tools-container>

The Qualcomm TFLite SDK is compiled, and the artifacts are ready to be deployed or further can be
used to generate the QIM SDK TFLite plug-in.

Connect device to host and deploy artifacts]

After compilation, there are two mechanisms to connect the device to a host and deploy the
Qualcomm TFLite SDK artifacts.

Device connected to a local Linux host:

A developer connects the device to a workstation and installs the Qualcomm TFLite SDK artifacts from the

container directly on the device (QCS8550).

Device connected to a remote host:

A developer connects the device to a remote workstation, and they can use the pack manager installer

commands on Windows and Linux platforms to install the Qualcomm TFLite SDK artifacts to the device

(QCS8550)

Figure 4-4 Connection of device board to developer and remote workstation

Connect device to workstation

The device is connected to the workstation and the development container can access the device over USB/adb.
The figure shows the stages in the sequence of the Qualcomm TFLite SDK workflow:

1. Run the following commands to install the artifacts to the device:

$ tflite-tools-device-prepare

$ tflite-tools-device-deploy

2. To uninstall the artifacts, run the following command:

$ tflite-tools-device-packages-remove

Connect device to remote machine

The device is connected to a remote machine, and the Qualcomm TFLite SDK container cannot access the device
over USB/ad b.
The figure shows the stages in the sequence of the Qualcomm TFLite SDK workflow:

Run the following commands in the tflite-tools container to copy the artifacts to a remote machine
depending on the package manager on the device:
$ tflite-tools-remote-sync-ipk-rel-pkg
NOTE The remote machine information is provided in the JSON configuration file.
Install artifacts for Windows platform
The Qualcomm TFLite SDK artifacts can be installed on the device based on the operating system of the remote
machine.

For the Windows platform, do the following:
On PowerShell, use the following script: PS C:
> adb root PS C:> adb disable-verity PS C:> adb reboot PS C:> adb wait-for-device PS C:> adb root PS C:> adb
remount PS C:> adb shell mount -o remount,rw / PS C:> adb shell “mkdir -p /tmp” PS C:> adb push /tmp If the
package is an ipk (for QCS8550.LE.1.0), use the following commands: PS C:> adb shell “opkg –force-depends –
force-reinstall –force-overwrite install /tmp/”

Install artifacts for Linux platform
Use the following commands:
$ adb root $ adb disable-verity $ adb reboot $ adb wait-for-device $ adb root $ adb remount $ adb shell mount -o
remount,rw / $ adb shell “mkdir -p /tmp” $ adb push /tmp If the package is an ipk (for QCS8550.LE.1.0): $ adb
shell “opkg –force-depends –force-reinstall –force-overwrite install /tmp/”

Clean up docker image
After completing the developer workflow, the docker environment should be cleaned to free up the storage on the
disk. Cleaning the docker removes the unused containers and images, thus freeing up the disk space.
Use the following commands to clean up the docker image:

1. Run the following command on the Linux workstation:

$ cd <tflite-sdk-workspace>/tflite-tools

2. Stop the container:

$ tflite-tools-host-stop-container ./targets/ le-tflite-tools-builder.json

3. Remove the container:

$ tflite-tools-host-rm-container ./targets/ le-tflite-tools-builder.json

4. Remove the older docker images:

$ tflite-tools-host-images-cleanup

Troubleshoot docker setup

If the tflite-tools-host-build-image command returns a Nospace left on device message, then move the docker
directory to/local/mnt. Do the following to troubleshoot the setup:

1. Back up the existing docker files:

$ tar -zcC /var/lib docker > /mnt/pd0/var_lib_docker-backup-$(date + %s).tar.gz

2. Stop the docker:

$ service docker stop

3. Verify that no docker process is running:

$ ps faux | grep docker

4. Check the docker directory structure:

$ sudo ls /var/lib/docker/

5. Move the docker directory to a new partition:

$ mv /var/lib/docker /local/mnt/docker

6. Make a symlink to the docker directory in the new partition:

$ ln -s /local/mnt/docker /var/lib/docker

7. Ensure that the docker directory structure remains unchanged:

$ sudo ls /var/lib/docker/

8. Start docker:

$ service docker start

9. Restart all the containers after moving the docker directory.

Generate TFLite SDK with Linux workstation

The TFLite SDK workflow can be enabled without containers using the Linux workstation. This procedure is an
alternative to using containers.
To sync and build the Qualcomm TFLite SDK, do the following:

1. Create a directory on the host file system to sync the Qualcomm TFLite SDK workspace. For example:

$mkdir <tflite-sdk-workspace>

$cd <tflite-sdk-workspace>

2. Fetch the Qualcomm TFLite SDK source code from CodeLinaro:

$ repo init -u https://git.codelinaro.org/clo/le/sdktflite/tflite/ manifest.git –repo-branch=qc/stable –repo-

url=git://git.quicinc.com/ tools/repo.git -m TFLITE.SDK.1.0.r1-00200-TFLITE.0.xml -b release && repo sync -qc

–no-tags -j8 && repo sync -qc –no-tags -j8

3. 3. Edit the JSON configuration file present in <tflite-sdk-workspace>/tflite-tools/ targets/le-tflite-tools-builder.json

with the following entries

“Image”: “tflite-tools-builder”, “Device_OS”: “le”, “Additional_tag”: “”, “TFLite_Version”: “2.11.1”, “Delegates”: {

“Hexagon_delegate”: “OFF”, “Gpu_delegate”: “ON”, “Xnnpack_delegate”: “ON” }, “TFLite_rsync_destination”: “”,

“SDK_path”: “/build-qti-distro-fullstack-perf/tmpglibc/deploy/sdk>”, “SDK_shell_file”: “”, “Base_Dir_Location”: “”

For more information on the entries mentioned in the json configuration file, see the Docker.md readme file at

<tflite-sdk-workspace>/tflite-tools/.

NOTE For QCS8550, Hexagon DSP delegate is not supported

4. Source the script to set up the environment:

$ cd <tflite-sdk-workspace>/tflite-tools

$ source ./scripts/host/host_env_setup.sh

5. Build the Qualcomm TFLite SDK.

$ tflite-tools-setup targets/le-tflite-tools-builder.json

6. Run the following utility commands in the same Linux shell to collect the TFLite SDK artifacts from

TFLite_rsync_destination.

$ tflite-tools-host-get-rel-package targets/le-tflite-tools-builder.json

$ tflite-tools-host-get-dev-package targets/le-tflite-tools-builder.json

7. Install artifacts based on the operating system

For the Windows platform, on PowerShell, use the following script

PS C:> adb root PS C:> adb disable-verity PS C:> adb reboot PS C:> adb wait-for-device PS C:> adb root

PS C:> adb remount PS C:> adb shell mount -o remount,rw / PS C:> adb shell “mkdir -p /tmp” PS C:> adb

push /tmp

If the package is an ipk (for QCS8550.LE.1.0), use the following commands:

PS C:> adb shell “opkg –force-depends –force-reinstall –forceoverwrite install /tmp/

For the Linux platform, use the following script:

$ adb root $ adb disable-verity $ adb reboot $ adb wait-for-device $ adb root $ adb remount $ adb shell

mount -o remount,rw / $ adb shell “mkdir -p /tmp” $ adb push /tmp If the package is an ipk (for

QCS8550.LE.1.0):

$ adb shell “opkg –force-depends –force-reinstall –force-overwrite install /tmp/”

Generate Qualcomm TFLite SDK artifacts for QIM SDK build

To use the artifacts generated to enable the Qualcomm TFLite SDK GStreamer plug-in in QIM SDK, do the
following:

1. Complete the procedure in Sync and build Qualcomm TFLite SDK, and then run the following command: $

tflite-tools-host-get-dev-tar-package ./targets/le-tflite-toolsbuilder.json

A tar file is generated. It contains the Qualcomm TFLite SDK at the path provided at

“TFLite_rsync_destination”

2. To enable the Qualcomm TFLite SDK GStreamer plug-in, use the tar file as an argument in the JSON

configuration file for the QIM SDK build.

For information on compiling QIM SDK, see Qualcomm Intelligent Multimedia SDK (QIM SDK) Quick Start

Guide (80-50450-51).

Build Qualcomm TFLite SDK incrementally

If you are building the Qualcomm TFLite SDK for the first time, see Build Qualcomm TFLite SDK tools – developer
workflow. The same build environment can be reused for incremental development.
The helper utilities (within the container) mentioned in the figure are available to developers to compile modified

applications and plug-ins.
Figure 5-1 Workflow in a container

After the code changes are completed in the code directory, do the following:

1. Compile modified code:

$ tflite-tools-incremental-build-install

2. Package compiled code:

$ tflite-tools-ipk-rel-pkg or $ tflite-tools-deb-rel-pkg

3. Sync release packages with the host file system:

$ tflite-tools-remote-sync-ipk-rel-pkg

Or

$ tflite-tools-remote-sync-deb-rel-pkg

4. Prepare a dev package:

$ tflite-tools-ipk-dev-pkg

The compiled artifacts are found at in the TFLite_rsync_destination folder mentioned in the JSON file, which

can be copied to any directory.

Work with QNN external TFLite Delegate

A TFLite External Delegate allows you to run your models (part or whole) on another executor using libraries
provided by a trusted third party like QNN by Qualcomm. This mechanism can leverage a variety of on-device
accelerators such as the GPU or Hexagon Tensor Processor (HTP) for inference. This provides developers a
flexible and decoupled method from the default TFLite to speed up inference.

Prerequisites:

Ensure that you use an Ubuntu workstation to extract QNN AI stack.

Ensure that you use a QNN version 2.14 to be in conjunction with Qualcomm TFLite SDK

The Qualcomm TFLite SDK is enabled to run inferences on several QNN back-ends through TFLite external
Delegate for QNN. The TFLite models with a common flatbuffer representation can be run on GPU and HTP.
After the Qualcomm TFLite SDK packages are installed on the device, do the following to install the QNN libraries

on the device.

1. Download Qualcomm Package Manager 3 for Ubuntu.

a. Clickhttps://qpm.qualcomm.com/, and click Tools.

b. In the left pane, in the Search Tools field, type QPM. From the System OS list, select Linux.

The search results display a list of Qualcomm Package Managers.

c. Select Qualcomm Package Manager 3 and download the Linux debian package.

2. Install Qualcomm Package Manager 3 for Linux. Use the following command:

$ dpkg -i –force-overwrite /path/to/

QualcommPackageManager3.3.0.83.1.Linux-x86.deb

3. Download the Qualcomm®

AI Engine Direct SDK on the Ubuntu workstation.

a. Click https://qpm.qualcomm.com/ and click Tools.

b. In the left pane, in the Search Tools field, type AI stack. From the System OS list, select Linux.

A drop-down list containing various AI stack engines is displayed.

c. Click Qualcomm® AI Engine Direct SDK and download the Linux v2.14.0 package.

4. Install Qualcomm® AI Engine Direct SDK on the Ubuntu workstation.

a. Activate the license:

qpm-cli –license-activate qualcomm_ai_engine_direct

b Install AI Engine Direct SDK:

$ qpm-cli –extract /path/to/ qualcomm_ai_engine_direct.2.14.0.230828.Linux-AnyCPU.qik

5. Push libraries to the device from the Ubuntu workstation with adb push.

$ cd /opt/qcom/aistack/qnn/2.14.0.230828 $ adb push ./lib/aarch64-oe-linux-gcc11.2/ libQnnDsp.so /usr/lib/ $

adb push ./lib/aarch64-oe-linux-gcc11.2/ libQnnDspV66Stub.so /usr/lib/ $ adb push ./lib/aarch64-oe-linux-

gcc11.2/ libQnnGpu.so /usr/lib/ $ adb push ./lib/aarch64-oe-linux-gcc11.2/ libQnnHtpPrepare.so /usr/lib/ $ adb

push ./lib/aarch64-oe-linux-gcc11.2/ libQnnHtp.so /usr/lib/ $ adb push ./lib/aarch64-oe-linux-gcc11.2/

libQnnHtpV68Stub.so /usr/lib/ $ adb push ./lib/aarch64-oe-linux-gcc11.2/ libQnnSaver.so /usr/lib/ $ adb push

./lib/aarch64-oe-linux-gcc11.2/ libQnnSystem.so /usr/lib/ $ adb push ./lib/aarch64-oe-linux-gcc11.2/

libQnnTFLiteDelegate.so /usr/lib/ $ adb push ./lib/hexagon-v65/unsigned/ libQnnDspV65Skel.so

/usr/lib/rfsa/adsp $ adb push ./lib/hexagon-v66/unsigned/ libQnnDspV66Skel.so /usr/lib/rfsa/adsp $ adb push

./lib/hexagon-v68/unsigned/ libQnnHtpV68Skel.so /usr/lib/rfsa/adsp $ adb push ./lib/hexagon-v69/unsigned/

libQnnHtpV69Skel.so /usr/lib/rfsa/adsp $ adb push ./lib/hexagon-v73/unsigned/ libQnnHtpV73Skel.so

/usr/lib/rfsa/adsp

Test Qualcomm TFLite SDK

The Qualcomm TFLite SDK provides certain example applications, which can be used to validate, benchmark,
and get the accuracy of the models that a developer wants to assess.
After the Qualcomm TFLite SDK packages are installed on the device, the runtime is available on the device to run
these example applications.
Prerequisite
Create the following directories on the device:
$ adb shell “mkdir /data/Models”
$ adb shell “mkdir /data/Lables”
$ adb shell “mkdir /data/profiling”

http://qpm.qualcomm.com
http://qpm.qualcomm.com

Label image

A label image is a utility provided by the Qualcomm TFLite SDK that shows how you can load a pretrained and
converted TensorFlow Lite model and use it to recognize objects in images. Prerequisites:
Download sample model and image:
You can use any compatible model, but the following MobileNet v1 model offers a good demonstration of a model
trained to recognize a 1000 different objects.

Get model

$ curl https://storage.googleapis.com/download.tensorflow.org/models/

mobilenet_v1_2018_02_22/mobilenet_v1_1.0_224.tgz | tar xzv -C /data $ mv /data/mobilenet_v1_1.0_224.tflite

/data/Models/

Get labels

$ curl https://storage.googleapis.com/download.tensorflow.org/models/ mobilenet_v1_1.0_224_frozen.tgz |

tar xzv -C /data mobilenet_v1_1.0_224/ labels.txt

$ mv /data/mobilenet_v1_1.0_224/labels.txt /data/Labels/

After you connect to the Qualcomm TFLite SDK docker container, the image can be found at:

“/mnt/tflite/src/tensorflow/tensorflow/lite/examples/label_image/ testdata/grace_hopper.bmp”

a. Push this file to/data/Labels/

b. Run the command:

$ adb shell “label_image -l /data/Labels/labels.txt -i /data/Labels/ grace_hopper.bmp -m

/data/Models/mobilenet_v1_1.0_224.tflite -c 10 -j 1 -p 1”

Benchmark

The Qualcomm TFLite SDK provides the benchmarking tool to calculate the performance of various run times.
These benchmark tools currently measure and calculate statistics for the following important performance metrics:

Initialization time

Inference time of warm-up state

Inference time of steady state

Memory usage during initialization time

Overall memory usage

Prerequisites

Push the models to be tested from TFLite Model Zoo (https:// tfhub.dev/) to/data/Models/. Run the following
scripts:

XNN Pack

$ adb shell “benchmark_model –graph=/data/Models/ — enable_op_profiling=true –use_xnnpack=true –

num_threads=4 –max_secs=300 –profiling_output_csv_file=/data/profiling/”

GPU Delegate

$ adb shell “benchmark_model –graph=/data/Models/ — enable_op_profiling=true –use_gpu=true –

num_runs=100 –warmup_runs=10 — max_secs=300 –profiling_output_csv_file=/data/profiling/”

External Delegate

http://storage.googleapis.com
http://storage.googleapis.com
http://tfhub.dev

QNN External Delegate GPU:

Run inference with floating point model:

$ adb shell-command “benchmark_model –graph=/data/Models/ .tflite –

external_delegate_path=libQnnTFLiteDelegate.so —

external_delegate_options=’backend_type:gpu;library_path:/usr/lib/

libQnnGpu.so;skel_library_dir:/usr/lib/rfsa/adsp'”

QNN External Delegate HTP:

Run inference with quant model:

$ adb shell-command “benchmark_model –graph=/data/Models/ .tflite –

external_delegate_path=libQnnTFLiteDelegate.so —

external_delegate_options=’backend_type:htp;library_path:/usr/lib/

libQnnHtp.so;skel_library_dir:/usr/lib/rfsa/adsp'”

Accuracy tool

The Qualcomm TFLite SDK provides an accuracy tool to calculate the accuracy of models with various run-times.

Classification with GPU delegate

The steps to download the necessary files to test can be found at:

“/mnt/tflite/src/tensorflow/tensorflow/lite/tools/evaluation/tasks/ imagenet_image_classificatio/README.md”

The binary for running this tool is already part of the SDK, so the developer does not need to build it again.

$ adb shell “image_classify_run_eval — model_file=/data/Models/ –ground_truth_images_path=/data/ —

ground_truth_labels=/data/ –model_output_labels=/ data/ –delegate=gpu”

Object detection with XNN pack

$ adb shell “inf_diff_run_eval –model_file=/data/Models/ –delegate=xnnpac

LEGAL INFORMATION

Your access to and use of this document, along with any specifications, reference board files, drawings,
diagnostics and other information contained herein (collectively this “Documentation”), is subject to your
(including the corporation or other legal entity you represent, collectively “You” or “Your”) acceptance of the
terms and conditions (“Terms of Use”) set forth below. If You do not agree to these Terms of Use, you may not
use this Documentation and shall immediately destroy any copy thereof.

1. Legal Notice.

This Documentation is being made available to You solely for Your internal use with those products and service

offerings of Qualcomm Technologies, Inc. (“Qualcomm Technologies”) and its affiliates described in this

Documentation, and shall not be used for any other purposes. This Documentation may not be altered, edited,

or modified in any way without Qualcomm Technologies’ prior written approval. Unauthorized use or disclosure

of this

Documentation or the information contained herein is strictly prohibited, and You agree to indemnify Qualcomm

Technologies, its affiliates and licensors for any damages or losses suffered by Qualcomm Technologies, its

affiliates and licensors for any such unauthorized uses or disclosures of this Documentation, in whole or part.

Qualcomm Technologies, its affiliates and licensors retain all rights and ownership in and to this

Documentation. No license to any trademark, patent, copyright, mask work protection right or any other

intellectual property right is either granted or implied by this Documentation or any information disclosed herein,

including, but not limited to, any license to make, use, import or sell any product, service or technology offering

embodying any of the information in this Documentation.

THIS DOCUMENTATION IS BEING PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER

EXPRESSED, IMPLIED, STATUTORY OR OTHERWISE. TO THE MAXIMUM EXTENT PERMITTED BY LAW,

QUALCOMM TECHNOLOGIES, ITS AFFILIATES AND LICENSORS SPECIFICALLY DISCLAIM ALL

WARRANTIES OF TITLE, MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR

PURPOSE, SATISFACTORY QUALITY, COMPLETENESS OR ACCURACY, AND ALL WARRANTIES ARISING

OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE.

MOREOVER, NEITHER QUALCOMM TECHNOLOGIES, NOR ANY OF ITS AFFILIATES OR LICENSORS,

SHALL BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY EXPENSES, LOSSES, USE, OR ACTIONS

HOWSOEVER INCURRED OR UNDERTAKEN BY YOU IN RELIANCE ON THIS DOCUMENTATION.

Certain product kits, tools and materials referenced in this Documentation may require You to accept additional

terms and conditions before accessing or using those items.

Technical data specified in this Documentation may be subject to U.S. and other applicable export control laws.

Transmission contrary to U.S. and any other applicable law is strictly prohibited.

Nothing in this Documentation is an offer to sell any of the components or devices referenced herein.

This Documentation is subject to change without further notification. In the event of a conflict between these

Terms of Use and the Website Terms of Use on www.qualcomm.com or the Qualcomm Privacy Policy

referenced on www.qualcomm.com, these Terms of Use will control. In the event of a conflict between these

Terms of Use and any other agreement (written or click-through) executed by You and Qualcomm Technologies

or a Qualcomm Technologies affiliate with respect to Your access to and use of this Documentation, the other

agreement will control.

These Terms of Use shall be governed by and construed and enforced in accordance with the laws of the State

of California, excluding the U.N. Convention on International Sale of Goods, without regard to conflict of laws

principles. Any dispute, claim or controversy arising out of or relating to these Terms of Use, or the breach or

validity hereof, shall be adjudicated only by a court of competent jurisdiction in the county of San Diego, State

of California, and You hereby consent to the personal jurisdiction of such courts for that purpose.

2. Trademark and Product Attribution Statements.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Arm is a registered trademark of

Arm Limited (or its subsidiaries) in the U.S. and/or elsewhere. The Bluetooth® word mark is a registered

trademark owned by Bluetooth SIG, Inc. Other product and brand names referenced in this Documentation may

be trademarks or registered trademarks of their respective owners.

Snapdragon and Qualcomm branded products referenced in this Documentation are products of Qualcomm

Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies are licensed by Qualcomm

Incorporated.

Documents / Resources

http://www.qualcomm.com
http://www.qualcomm.com

Qualcomm TensorFlow Lite SDK Software [pdf] User Guide
TensorFlow Lite SDK Software, Lite SDK Software, SDK Software, Software

References

 Ð”Ð¾Ð¼ÐµÐ½ docker.md Ð¿Ñ€Ð¾Ð´Ð°ÐµÑ‚ÑÑ!

 My Account

 Today I Learned for programmers - Tiloid

 Qualcomm: Intelligent Computing Everywhere

 Get Qualcomm Developer and Sales Support | Qualcomm

 tflite · GitLab

 TFLITE.SDK.1.0.r1-00500-TFLITE.0.xml · release · CodeLinaro / le / sdktflite / tflite / manifest · GitLab

 My Account

 Find Pre-trained Models | Kaggle

 Get Qualcomm Developer and Sales Support | Qualcomm

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/9aab90ab25ca52604359cadd0e126c627d4079fe7df0eb16ac656ec525d243d0
https://manuals.plus/m/9aab90ab25ca52604359cadd0e126c627d4079fe7df0eb16ac656ec525d243d0_optim.pdf
http://docker.md
http://qpm.qualcomm.com/
http://readme.md
http://www.qualcomm.com
http://www.qualcomm.com/support
https://git.codelinaro.org/clo/le/sdktflite/tflite/
https://git.codelinaro.org/clo/le/sdktflite/tflite/manifest/-/blob/release/TFLITE.SDK.1.0.r1-00500-TFLITE.0.xml
https://qpm.qualcomm.com/
https://tfhub.dev/
https://www.qualcomm.com/support
https://manual.tools/?p=13326822#MTA0LjI4LjIzNC4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	Qualcomm TensorFlow Lite SDK Software User Guide
	Revision history
	Introduction to Qualcomm TFLite SDK tools
	Set up build environment for Qualcomm TFLite SDK tools
	Generate platform SDK
	Build Qualcomm TFLite SDK tools – developer workflow
	Troubleshoot docker setup
	Build Qualcomm TFLite SDK incrementally
	Work with QNN external TFLite Delegate
	Test Qualcomm TFLite SDK
	LEGAL INFORMATION
	Documents / Resources
	References

