

Qingping Indoor Temperature and Humidity Monitoring Solution User Manual

Home » qingping » Qingping Indoor Temperature and Humidity Monitoring Solution User Manual

Contents

- 1 Indoor Temperature and Humidity Monitoring **Solution**
- 2 Specifications
- 3 Hardware Specifications
- **4 Power Options**
- 5 FAQ
- 6 Overview
- 7 Specifications
- 7.1 Hardware Specifications
- 8 Installation
 - 8.1 Other Operations
- 9 Device Configuration
- **10 Data Description**
- 11 ABOUT COMPANY
- 12 Documents / Resources
 - 12.1 References
- **13 Related Posts**

Indoor Temperature and Humidity Monitoring Solution

Specifications

- Device List:
 - 1x Sensor
 - 1x Power Cable
- **Description:** Temperature and RH Sensor
- USC Cable

Hardware Specifications

The following sections cover the parameters and measurements of the sensor. It also includes the sensor overview and dimensions.

Mechanical Dimension

Figure 2: Qingping dimensions

Measurement Parameters

The following tables show the temperature and humidity measurements of the device.

Temperature	Parameter	Range	Precision	Resolution Ratio
Humidity	Parameter	Range	Precision	Resolution Ratio

NOTE: Long-term use in environments with humidity exceeding 90% is not recommended.

Technical Specifications

• Parameter: Wireless Network, Bluetooth

Battery Type: Lithium-ionBattery Capacity: 2600 mAh

• Charging Port: USB-C 5V 1A

Installation

Wall Mounting

Included in the product package is a wall sticker with double-sided adhesive tape on the back. To install the sensor, peel off the protective film of the tape and stick the wall sticker to the desired location on the wall or any other object surface. Then, you can easily hang the sensor on the wall sticker.

Other Operations

Power Options

- Power ON: Long-press the button on the top of the device. If it doesn't turn on, charge the device first, then try again.
- Power OFF: Press and hold the button on the top of the device for 6 seconds.

NOTE: Press and hold the top button for 2 seconds, then release to enter Bluetooth pairing mode to connect to the mobile app.

Charging

Use a USB-C charging cable and a power adapter with a 5V output voltage and a current output of at least 1A. While charging, the battery icon in the upper right corner of the screen will flash to indicate the charging progress. When fully charged, the battery icon will stop flashing.

FAQ

· How do I reset the sensor?

To reset the sensor, press and hold the reset button located on the device for 10 seconds until you see the indicator light flash.

· Can I use multiple sensors together?

Yes, you can use multiple sensors together by connecting them to the same mobile app and setting them up individually.

· What is the recommended operating temperature range for the sensor?

The recommended operating temperature range for the sensor is between 0°C to 50°C.

Overview

Description

- In the fast-paced digital age, remote temperature monitoring is quickly becoming the norm in various fields, from homes and schools to heavy industries.
- The RAK indoor temperature and humidity monitoring solution employs LoRaWAN® sensors to provide highly
 precise temperature and humidity monitoring data. It is specially designed to precisely monitor temperature and
 humidity in various environments, including extreme conditions. This solution is particularly suitable for
 greenhouse applications.

Features

- **Precision:** Provides high-precision temperature and humidity readings.
- Wireless connectivity: Enables seamless wireless data transmission.
- Remote monitoring: Supports remote monitoring, which improves convenience.
- Configurable reporting: Allows flexible reporting and notification strategies and can be configured remotely.
- Supported frequency bands: EU433, EU868, RU864, CN470, KR920, IN865, AU915, US915, AS923-1/2/3/4 frequencies, with EU868 as the default setting.

Network join mode: OTAA/ABP
 Device work mode: Class A

Specifications

Device List

Figure 1: Device list

Device List	Description
1x Sensor	Temperature and RH Sensor
1x Power Cable	USC Cable

Hardware Specifications

The following sections cover the parameters and measurements of the sensor. It also includes the sensor overview and dimensions.

Mechanical Dimension

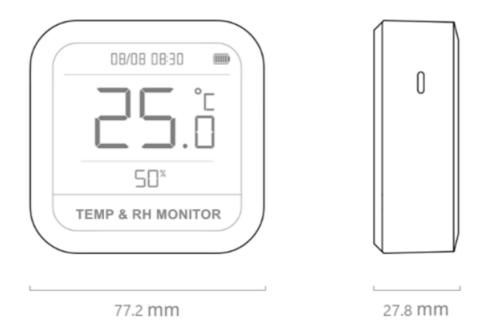


Figure 2: Qingping dimensions

Measurement Parameters

The following tables show the temperature and humidity measurements of the device.

• Temperature

Parameter	Description
Range	-20°C ~ 50°C
Precision	±0.2°C (in the range of 0°C ~ 50°C)
Resolution Ratio	0.1°C

• Humidity

Parameter	Description
Range	0 ~ 99.9% RH (no condensation)
Precision	±2% (in the range of 10 ~ 90%)
Resolution Ratio	0.1%

NOTE

Long-term use in environments with humidity exceeding 90% is not recommended.

Technical Specifications

Parameter	Description
Wireless Network	LoRa
Bluetooth	Bluetooth 5.0
Battery Type	Lithium-ion
Battery Capacity	2600 mAh
Charging Port	USB-C
Rated Input	5V 1A

Installation

The temperature and humidity sensors are complete node devices, so users do not need to assemble them after unpacking. Refer to the following sections for mounting the sensor in the appropriate location and performing relevant sensor operations:

Wall Mounting

Included in the product package is a wall sticker with double-sided adhesive tape on the back. To install the sensor, peel off the protective film of the tape and stick the wall sticker to the desired location on the wall or any other object surface. Then, you can easily hang the sensor on the wall sticker.

Figure 3: Wall Mount Installation

Other Operations

Other operations introduce relevant operations on how to use the sensor. Users may refer to the corresponding sections according to their needs.

Power Options

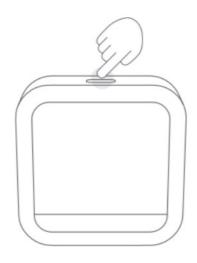


Figure 4: Sensor Power Options

Power ON

Long-press the button on the top of the device, as shown in Figure 4. If it doesn't turn on, charge the device first, then try again.

Power OFF

Press and hold the button on the top of the device for 6 seconds.

NOTE

Press and hold the top button for 2 seconds, then release. The sensor will enter Bluetooth pairing mode to connect to the mobile app.

Charging

Use a USB-C charging cable and a power adapter with a 5V output voltage and a current output of at least 1A. While charging, the battery icon in the upper right corner of the screen will flash to indicate the charging progress. When fully charged, the battery icon will stop flashing.

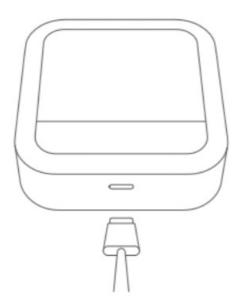


Figure 5: USB-C Charging Cable

• To check the signal status of the LoRa network, short-press the button on the top of the device.

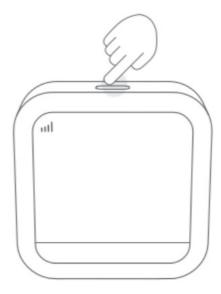


Figure 6: Check the LoRa Network Signal

- To extend the battery life, the sensor will not remain continuously connected to the network. Instead, it will connect to the network at set intervals. If you are not connected to the internet, the network signal status will not be displayed on the screen.
- You can adjust the timing of the sensor connecting to the network by using the Qingping IoT App. For more
 information, refer to the Connect the Device section in the user manual.

Factory Reset

- 1. Turn off the sensor to restore factory settings. Press and hold the button on the top of the device for 6 seconds to turn it off.
- 2. Press and hold the top button while the device is off. Continue holding it even after the device turns on until it turns off again to complete a factory reset.

Device Configuration

Connect the Device

The mobile application allows you to configure the temperature and humidity sensors. Before proceeding, download the Qingping IoT application, available on Android and iOS.

- After downloading, sign up for and log in to the mobile application.
- Open the app and click More in the lower-right corner of your screen.
- Select Advanced Options, then Configure LoRa Product.
- Choose Temp & RH Barometer Pro. Press and hold the device's button for 2 seconds, or until the Bluetooth icon begins to flash.

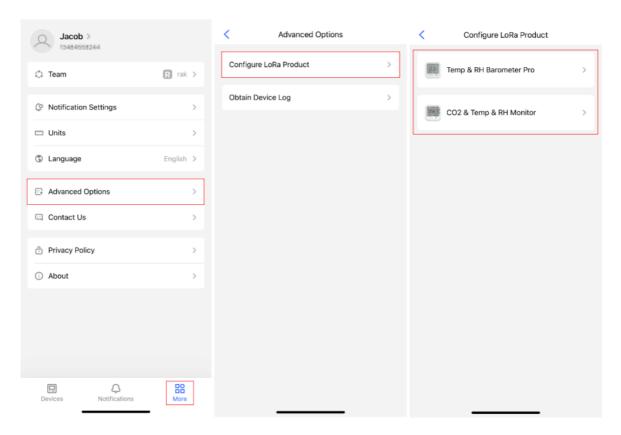


Figure 7: Device Configuration

- Place the mobile device near the sensor.
- Enter the device settings page once the Bluetooth connection is successful.

Figure 8: Connect to Temp & RH Barometer Pro

- Place the mobile device near the sensor.
- Enter the device settings page once the Bluetooth connection is successful.

Basic Settings

Basic settings include the recording and uploading interval, temperature unit, and temperature and humidity compensation. You can configure the settings according to your preference. Other device information is available, but not configurable.

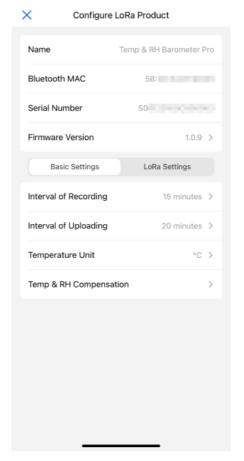


Figure 9: Basic Settings Configuration

LoRa Network Configuration

 In the LoRa Network Configuration menu, you can choose the network join mode you prefer—either OTAA or ABP. Additionally, you can adjust other settings, such as the ternary group and frequency band, to suit your needs.

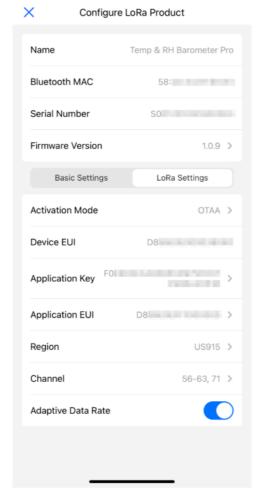


Figure 10: Settings Configuration

• After you have completed configuring the settings, click on the Finish button located at the upper right corner of the screen. It will prompt the device to automatically join the network.

Data Description

Protocol Communication

- The protocol used follows a data format like Modbus-RTU. It enables devices to actively report or request data.
- All communication must be converted to base64 format before transmission.

NOTE

The sample protocol provided only uses the original HEX format data. However, it is important to always remember to convert the content to base64 format before communication by default.

Protocol Command Format

All contents are arranged with high bytes first, followed by low bytes. Listed in the table is the protocol format.

Protocol Format	ADDR	CMD	LEN	DATA	CRC
Number of Bytes	1	1	1	N	2

Where:

- ADDR Address
- CMD Function code
- LEN Data length
- **DATA** Data content
- CRC Cyclic redundancy check

Command Details

The tables display command definitions and sensor data reports, including both real-time and historical data formats.

NOTE

The address code is fixed at 0x01.

CMD Definitions

CMD	Description
0xFF	Reply to command
0x41	Device reports data
0x42	Device reports event configuration
0x43	Device retrieves event/server sends event

0x44	Device reports event
0x45	Device retrieves network time (LoRa)
0x47	Device reports configuration/server sends configuration

Sensor Data Report

Туре	ADDR	CMD	LEN	DATA	CRC
				0x00	
Send	0x01	0x41	0x06 – 0x24	0x02	_
				0x01	

- Under Data, there are two data types:
 - Historical data
 - Real-time data

Data Type	Description
0x00 Historical data; 6-byte sensor data	
	Timestamp; 4-byte
0x01	Real-time data; 6-byte
	Version number; 10-byte

• Historical Data Format Description

- The following is an example of a complete historical data reporting format for sensor data:
 01 41 25 00 5C 77 88 B6 00 05 2F C2 9A 00 00 4E 48 8C
- The table below shows the historical data analysis:

Byte Number	Description	Value
1	Device address	0x01
2	Data reporting function code	0x41
3	Data length	0x25

4	Data type (historical data)	0x00
5 – 8	Timestamp	0x5C7788B6
9 – 10	Data storage interval (in seconds)	0x0005
		Bytes 1–3: 0x2FC29A Represent temperature and humidity Temperature: 0x02FC (high 12 bits) ¹ Humidity: 0x29A (low 12 bits) ² Bytes 4–5: 0x0000 Reserved bytes Don't carry any data.
11 – 16	First set of sensor data	 Optional, none in this example. Byte 6: 0x 4E Represents the battery level
17 – 22	Second set of sensor data	The same format as the first set.
Every 6 bytes is a set of sensor dat a.	LoRa: One frame of historical data has up to 5 sets o f sensor data.	The same format as the first set.
41 – 42	Check code	0x488C

• The temperature value is forward offset by 500. To get the actual temperature value, subtract 500 from the byte value of 0x02FC, equating to 264. However, the reading is expanded ten times, implying that the actual temperature of 264 is divided by ten.

actual temperature value
$$^{\circ}C = \frac{temp\ value - 500}{10}$$

• The humidity value is expanded ten times to get the actual value.

$$actual\ humidity\ value\ \%RH = \frac{humidity\ value}{10}$$

• The timestamp of each set of sensor data must be calculated based on the starting timestamp and data

acquisition interval. In the previous reference data, the acquisition time for the set of sensor data is as follows:

• First set: 0x5C7788B6

• Second set: 0x5C7788B6 + 0x0005 (data acquisition interval)

• Third set: 0x5C7788B6 + 0x0005 + 0x0005

• Real-Time Data Format Description

The following is an example of a complete real-time data reporting format for sensor data:
 01 41 15 01 5C 77 88 B6 2F C2 9A 00 00 4E 31 2E 30 2E 30 5F 30 30 34 31 5D C6

• The table below shows the real-time data analysis:

Byte Number	Description	Value
1	Device address	0x01
2	Data reporting function code	0x41
3	Data length	0x15
4	Data type (real-time data)	0x01
5 – 8	Timestamp	0x5C7788B6
		Bytes 1–3: Ox2FC29A Represent temperature and humidity Temperature: 0x02FC (high 12 bits) ¹ Humidity: 0x29A (low 12 bits) Bytes 4– 5: 0x0000 Reserved bytes
9 – 14	Sensor data	 Don't carry any data. Optional, none in this example. Byte 6: 0x4E Represents the battery level
15 – 19	Version number	Corresponding to ASCII: 1.0.0_0041
20-21	Check code	0x5DC6

• Event Reporting

The returned parameter format is shown in the following table:

Туре	ADDR	CMD	LEN	DATA				
Receive	0x01	0x41	0x0B	Event type	Timestamp	Sensor	Event setting value	
				1 byte	4 bytes	6 bytes	2 bytes	

Sensor Data Format

Refer to the Sensor Data Format table in the Real-Time Data Format Description section for more information.

• Event Type

The event type in hex corresponds to temperature and humidity-specific conditions. It indicates when a report should be triggered based on the conditions.

Event Type	Description		
0x07	Temperature is above a certain value.		
0x08	Temperature is below a certain value.		
0x0A	Humidity is above a certain value.		
0x0B	Humidity is below a certain value.		
0x0D	Reserved		
0x0E	Reserved		

• Event Sending

The description of setting the sensor reporting policy is as follows:

Туре	ADDR	CMD	LEN	DATA					
				Event	Repeat	Start	End		Ring
Send	0x01	0x42	0x0C	type	times	time	time	Settings	duration
				1 byte	1 byte	4 bytes	4 bytes	2 bytes	2 bytes

Event Type

Refer to the Event Types table in the Event Reporting section for more information.

Repeat Times	Value	Description	
1 time in total	0x01	The default setting.	
1 time a day	0xFE		

Start and End Time

- The start and end times are offset in minutes, with 0:00 as the base point. For example, a time of 7:00 to 10:00 corresponds to 420 to 600 minutes.
- If the period is a full day, set the start and end times to the same value of 0. The predefined values indicate that the entire day has been covered.

Value Setting

- To convert the temperature value to its actual reading, offset the value forward (subtract) by 500,
 then expand (multiply) by 10. However, for humidity, multiply the given value by 10.
- Unit description:

Temperature: °CHumidity: %RH

 For example, if the temperature remains above 26 degrees Celsius for the entire period, the hexadecimal value would be: 01 42 0C 07 01 00 00 00 00 00 02 F8 23 E4.

Configuration Settings

To configure the interval settings, set the values as follows:

Data reporting interval: 1 hour

• Data acquisition interval: 15 minutes

Fill in the unused items with 0 and send: 01 47 09 00 3C 03 84 00 00 00 00 00 28 5E

Туре	ADDR	CMD	LEN	DATA					
				Data Repo rting Interv al	Data Acqui sition Inter val	Bluetooth Broadcast interval	Notification Repeating Interval	Temperature unit	
Send	0x01	0x47	0x06	2 bytes (mi nutes)	2 bytes (se conds)	2 bytes (se conds, res erved unused)	2 bytes (re served unused)	1 byte (reserv ed unused)	

ABOUT COMPANY

- www.RAKwireless.com
- inquiry@RAKwireless.com
- +86-755-86108311

Documents / Resources

<u>Qingping Indoor Temperature and Humidity Monitoring Solution</u> [pdf] User Manual Indoor Temperature and Humidity Monitoring Solution, Indoor, Temperature and Humidity Monitoring Solution, Humidity Monitoring Solution, Solution

References

• User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.