Manuals+ — User Manuals Simplified.

pure-systems 2024 Connector for Source Code Management
Software User Manual

Home » pure-systems » pure-systems 2024 Connector for Source Code Management Software User Manual ™

900 pUre
Boga Systems

= =X B

pure::variants — Connector for
Source Code Management Manual
Parametric Technology GmbH
Version 6.0.7.685 for pure::variants 6.0
Copyright © 2003-2024 Parametric Technology GmbH
2024

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/pure-systems
https://manuals.plus/pure-systems/2024-connector-for-source-code-management-software-manual.pdf

Contents

1 Introduction
2 Using Connector
3 Using Relation Indexer
4 Documents /
Resources

4.1 References
5 Related Posts

Introduction

pure::variants Connector for Source Code Management (Connector) enables developers to manage source code
variability using pure::variants. The Source Code Management of pure::variants provides a flexible opportunity to
synchronize directory structures and source code files easily with pure::variants models. Thereby variants
management can applied practicable even to complex software projects. Furthermore connectionsbetween
pure::variants features and source code may be managed easier with the builder and are highly accessible via the
Source Code Management.

1.1. Software Requirements

The pure::variants Connector for Source Code Management is an extension for pure::variants and is available on
all supported platforms.

1.2. Installation

Please consult section pure::variants Connectors in the pure::variants Setup Guide for detailed information on how
to install the connector (menu Help -> Help Contents and then pure::variants Setup Guide -> pure::variants
Connectors).

1.3. About this manual

The reader is expected to have basic knowledge about and experiences with pure::variants. Please consult its
introductory material before reading this manual. The manual is available in online help as well as in printable PDF
format here.

Using Connector

2.1. Starting pure::variants

Depending on the installation method used either start the pure::variants-enabled Eclipse or under Windows select
the pure::variants item from the program menu.

If the Variant Management perspective is not already activated, do so by selecting it from Open Perspective-
>QOther... in the Window menu.

2.2. Import a Directory Tree into a Family Model

Before importing a directory tree into a Family Model, a variants project has to be created. Also it is suggestive to
have features defined in an Feature Model already. Please consult the pure::variants documentation for help about
these steps.

The actual import is started by selecting the Import... action either in the context menu of the Projects view or with
Import... menu in the File menu. Select Variant Models or Projects from category Variant Management and press
Next. On the following page select Import a Family Model from source folders and press Next again.

Choose type of source code to import

The import wizard appears (see Figure 1, “Page of the import wizard to select the type of source code that may be
imported”). Select a project-type to import and press Next. Each type contains of a predefined set of file types to
import to the model.

Figure 1. Page of the import wizard to select the type of source code that may be imported

https://manuals.plus/#introduction
https://manuals.plus/#using_connector
https://manuals.plus/#using_relation_indexer
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

& variant Impaort | x|

Choose type of source code to import

Select an import type,

Title | Description |
CJC++ Project Create a Famiy model from a Folder with C/C4++ sources |
Java Project Create a Family model from a Folder with Java sources

? < Back J | I Cancel |

Select Source and Target

On the next wizard page (Figure 2, “Page of the import wizard to select the source and the target for the
import”) the source directory and the target model must be specified.

Press the Browse... button to select the directory where the source code exists that should be imported. By default
the current workspace is selected because this might be a useful point to start navigating.

Below you can specify include and exclude pattern. These pattern have to be java regular expressions. Each input
path, relative to the source root folder, is checked with these pattern. If the include pattern match, a folder is
imported, if the exclude pattern does not match. Meaning the include pattern does pre select the folders to import,
the exclude pattern does restrict this preselection.

After selecting the source code directory a target model must be defined. Therefore select a variant project or a
folder where the model should be stored and enter a model name. The file name is extended automatically with
the .ccfm extension if it is not given in this dialog. By default it will be set to the same name as the model name
itself. This is the recommended setting.

After an expedient source folder and the desired model name are specified, the dialog might be finished by
pressing Finish. If the Next button is pressed, a further page is coming up where additional settings can be done.
Figure 2. Page of the import wizard to select the source and the target for the import

& Varant Import] =]

Select Source and Target

Select source folder
From dwectory: C\workspaces Browse,
Include Pattern: Tolder.”

Exclude Patternc “test

Select target model

Select target project or folder

l=# Weather Station Example

Model name
SourceCode
File name:

Sourcelode

? < Back MNext > Firnash Cancel

Change Import Preferences

On the last wizard page (Figure 3, “Page of the import wizard to define an individual configuration”) there are
preferences that can be done to customize the import behavior for the imported software project.

The dialog page shows a table where the file types are defined, that will be considered by the import process.

Each line consists of four fields.

« The Description field contains a short descriptive text to identify the file type.
« The File name pattern field is used to select files to be imported when they match to the fields value. The field

uses the following syntax:

1. The most common usecase may be a file extension. The usual syntax is .EXT, where EXT is the desired file
extension (e.g. .java).

2. Another common situation is a special file, like a makefile. Therefore, it is possible to match on the exact file
name. To do this, just enter the file name into the field (e.g. build.xml).

3. In some cases the mapping desires are more specific, so only files that match to a special pattern should be
imported. To fit this requirement it is possible to use regular expressions in the File name pattern field.
Describing the syntax of regular expressions would exceed the intend of this help. Please consult the regular

expressions section of the reference chapter in the pure::variants user’s guide (e.g. .*).

« The Mapped element type field sets the mapping between a file type and a pure::variants family element type.
The family element type is a descriptor for the source file to provide further information to the mapped element
in the imported model. Typical selections are ps:class or ps:makefile.

« The Mapped file type field sets the mapping between a file type and a pure::variants file type. The file type in
pure:variants is a descriptor for the source file to provide further information to the mapped element in the

imported model. Typical selections are impl for implementations or def for definition files.

Figure 3. Page of the import wizard to define an individual configuration

x
Change Import Preferences -

Choose the fies to import
Description | Fie name pattern | Mapped element ... | Mapped fie type |
[Other files - ps:object undefined
Java source file Jjava ps:dass impl
[ant buid script build. xmi ps:makefie misc
Import options

W Do not import drectories without matching files (e.g. CVS directories),
I Sort files and directories
Import path handiing
€ Absolute (= Relative To Workspace: ¢ Relative To Project
" Relative To Path

| Tl

? <gack | [[Emsn] canes |

New file types may be added by using the Add Mapping button. All fields are filled in with the value undefined and
must be filled in by the user. To edit a value in a field, just click into the field with the mouse. The value becomes
editable and can be changed. It is not possible to change the default file name patterns of the table. To make a
customization flexible, it is possible to deselect a file type by deselecting the row. Deselected file name patterns
stay in the configuration but will not be used by the importer. User defined file types may be removed again by
using the Remove Mapping button.

By default an Other files file name pattern is available in the table but deselected. Typically it is not wanted to
import all files but this can be easily changed by selecting the according row.

There are three general import options to customize the behavior of the importer.

« Do not import directories without matching files (e.g. CVS directories).
If the importer finds a directory where no matching file is in it and where no subdirectory has a matching file, the
directory will not be imported. This is often useful, if projects are managed by version management systems like
CVS. For CVS, each relevant directory contains a CVS-directory where irrelevant files are stored. If this option is
selected and the CVS-files do not match to any file type defined above, the directory will not imported as a
component into the Family Model.

« Sort files and directories.
Enable this option to sort files and directories each in alphabetical order.

« Import path handling.
For further synchronization the importer needs to store the original path of all imported elements into the model.
In many cases Family Models are shared with other users. The directory structure may be different for each

user. To support most common usage scenarios the importer can work in different modes:

The absolute path to the imported element will be stored into the model. For |
Absolute ater synchronization and during the transformation the files have to placed o
n the exactly same location as during the first import.

The paths are stored relative to the workspace folder. For synchronization th
Relative to Workspace e files has to be part of the Eclipse workspace. The transformation has to us
e the Eclipse workspace as input directory.

The paths are stored relative to the project. For synchronization the files are
Relative to Project part of the project inside Eclipse. The transformation has to use the project fo
Ider as input directory.

The paths are stored relative to the given path. For synchronization the files
Relative to Path have to be placed on the exactly same location. The transformation input dire
ctory is the same as the relative path during the import.

All preferences of this dialog are stored persistently. The personal customizations must not redone each time the
import runs. This makes the import workflow easy and fast.
2.3. Updating Models from Directory Tree

Press the Synchronize button ﬂto synchronize an imported model with its directory path. The root path of the
project is stored in the model so it will synchronize to the same directory as before. To enable the Synchronize
button, open the model and select any element. After pressing the Synchronize button a Compare Editor is
opened where the current Family Model and the model of the current directory structure is opposed (see Figure 4,
“Model update from Directory Tree in Compare Editor”).

Figure 4. Model update from Directory Tree in Compare Editor

Vasiant Mansgensent - Conpare Edbor (ry _model - T mvy -workspace 'y _java_project) - Edlipse Platform
Fla Edk Msvigsle Segrch Projd Bun Window Halp
e - Q- -

W] oy _proceel cofm

i pure: warants Modsl Struchurs Compans

T Demart Remowved: paiclass: Tlassd []
o

W Bemertt Added: intemal []

] pure:variants Mode Compare

o ey_model C:frrey-wanrkepace frer_javs_project
S G pockas: NorltusRassdDuragsrh sparer || =) = @ prclas: NorPusBasedDanager aparer [=]
el MondtulsBssadDamage Reparer, java[] - e il Bgonl s ail s & paingr Java
fle = MonRUleBsadismagert spainer . java # fie = NorfueBassdanagerfleparer |a
' type = el o typs = gl
1 8 peclas: ColorManager (] *\ =8 e clarss: Claasi]
iFle: CoiorMansger paval] "'\ - s il Claresl, pavva []
file = Colorsanager . java # il = ‘ChassB. jares
“ type = gl o type="mgl
5 @ peocls: ClassA] =7 s chins: ColrManager [
- el Clasad, java[) =[] il Colorstanager jeva []
@ file = Classi java' # e = ColorManages. javs
o ype = gl e —p—"
= () peclins: NMLParttionSoannes] = (@ piclass: MMUPartitionSoannes []
pe:File: XPALParttionScanner java [] =| = 2] P 2MMLPwrttonScanner, java [=
& |+ Ll | &

The compare editor is used throughout pure::variants to compare model versions but in this case is used to
compare the physical directory structure (displayed in the lower right side) with the current pure::variants model
(lower left side). All changes are listed as separate items in the upper part of the editor, ordered by the affected
elements.

Selecting an item in this list highlights the respective change in both models. In the example, a added element is
marked with a box on the right hand side and connected with its feasible position in the model on the left hand
side. The Merge toolbar between upper and lower editor windows provides tools to copy single or even all (non-
conflicting) changes as a whole from the directory tree model to the Feature Model.

Note

The synchronization is done with the last used importer settings. This makes it possible to update the model with
other settings as made while the import was done.

Using Relation Indexer

The Connector for Source Code Management enhances the Relations View with information about connections
between pure::variants model elements and source code. Relations are added for features which are used in
conditions of the ps:condxml and ps:condtext elements.

For ps:flag and ps:flagfile elements the location of preprocessor constants in C/C++ source files are shown. In
addition the locations of matching preprocessor constants are shown for a selected feature by using the mapping
between feature unique names and preprocessor constants.

3.1. Adding the Relation Indexer to a Project

The relation indexer can be activated on a special project property page. Select the project and choose the
Properties item in the context menu. In the upcoming dialog select the Relation Indexer page.

Figure 5. Project Property Page for the Relation Indexer

Bl Properties for Macro Test Project =101 x|
| type filter text ;I Relation Indexer -
Info
Builders 1 ¥ Enable Relation Indexing
(@ EdipseNSTS Relation Indexer Options

Project References Vv E .1 Eiraa
Relation Indexer 2
¥ Enable Index for C/C++ Preprocessor Constants

Scan files matching one of the following patterns
(* = any string, ? = any character)

.h 4|
9 * hh Remove
"n
*.cpp
".java
* wmi
Kl | i

Restore Defaults | Apply |

m Cancel l

The relation indexer is activated for the project by selecting the Enable Relation Indexer option (1). After enabling
the indexer there are some more options to define the project specific behavior. The indexing of pure::variants
Conditions and C/C++ Preprocessor Constants can be activated separately (2). The list with file name patterns (3)
is used to select the files for indexing. Only files which match one of the patterns are scanned. Add the “*” as
pattern to scan all files of a project.

After activating the indexer for a project a builder is added to the project. This builder scans changed files for new
relations to pure::variants model elements automatically.

3.2. The Relations to the Source Code

With activated relation indexer the Relations View contains additional entries. These entries shows the name of
the file and the line number of the variant point. The tool tip shows the appropriate section of the file. By double-
clicking the entry the file will be opened into an editor.

pure::variants Conditions

The pure::variants condition can be used to include or exclude sections of a file depending on a feature selection.
The Condition Indexer scans for such rules and extracts the referenced features. If such a feature is selected in
the editor the Relations View will show all files and lines where a condition with the selected feature is located (see
Figure 6, “Representation of a Condition in the Relations View”).

Figure 6. Representation of a Condition in the Relations View

= 0| Relations £2 G2 ® =0

£=) s &0 [T
=ol | FeakureMudel[feetuehbdel] = Condition Targets (1)

? m J| CondtionedCode. java - Line: 61
- Parent (1)

! FeatureModel [festureModel]

B) Tree | [~] Table | [Detai| =2 Graph| @ Constraints |

To get a detailed explanation on how to define conditions, consult the section ps:condtext of chapter 9.5.7 of the
pure::variants User’s Guide (Reference—>Predefined Source Element Types—>ps:condtext).

C/C++ Preprocessor Constants

The C/C++ Preprocessor Indexer scans files for constants used in preprocessor rules (e.g. #ifdef, #ifndef, ...).

If a ps:flag or ps:flagfile element is selected the Relations View shows the usage of the defined preprocessor
constant.

The Relations View also shows preprocessor constants connected to features by using mapping patterns. For this
the patterns are expanded with the data of the selected feature. The resulting symbols are used to search for
matching preprocessor constants. Figure 7, “Representation of a C/C++ Preprocessor Constant in the
Relations View” shows an example with the pattern fame{Name}. The pattern is expanded with the unique name
of the feature to fameNative. In the indexed code there are 76 locations where the preprocessor constant
fameNative is used.

This locations are shown in the Relations View. The patterns can be defined in the preferences (see Section 3.3,
“The Preferences”).

Figure 7. Representation of a C/C++ Preprocessor Constant in the Relatlons View

':'E Relations 3 |Result 't;v'“r"':'D

Memory - C/C++ Preprocessor Targets (1) -
Signalling @ fameMative (76)

¢

:

r

i

? Streams ; '_j CGA_test.cc - Line: 3
¥ Synchronisation ’Dur_a eam.h Lr*c 6
7

'

Thread
sifndef _C OutStream_ ncl..de_

Vi
+
+
+
+
-
+
*

¥ TraceSupport sdefine _ COutStream _indude

¥ Compier

¥ Machine sindude ‘machine ffame fameNative.h”

-5 pd sifdef famaNative {

= ‘ Platform
+ -4 Guest =if defined(i386) || defined(486) || defined(i586) || defined(i686)
+ - 2 include "device (display PCOStream.h”

iz : T # define COutStream PCOStream
ree | [T] Table | o] Detai | =5 Graph| @ Cod ¢ defined(c167) i

e

3.3. The Preferences

To change the default behavior of the indexer open the Eclipse preferences and select the Relation Indexer page
in the Variant Management category. The page shows two lists.

Figure 8. Relation Indexer Preference page

151
[tvpe fiter text] Relation Indexer S e
¥ General
#- Ant Default File Patterns (* = any string, ? = any character)
i o New...
¥ Clay Database Modeling _-:"“ |
- EcipseNsIs or mp—
Enerjy = hh |
H- Hep = e 1 U
Install Update "o s l
e " java
openArchitectureWare
#- oXygen
*- Plug-in Development Feature to Preprocessor Constant Mapping
Run/Debug (NAME}
*-Team _{NAME}__ New... |
; . FLAG_{(MName} =
= Vanant Management FEATURE {Name) 2 e
Directed Graph Expar (Name} = |
Known Servers U
Metrics _- |
Model Handling : |
Mode! Vabdaton
Synchronirer for DOC
¥ Visuaksation
4] [» Restore Defaults | Apoly |
[ox | come |

The upper list contains the default file patterns for the indexer (1). This list is the initial pattern setting for newly
enabled projects.

The lower list contains the mapping between features and preprocessor constants (2). This mapping is used for all
projects. Table 1, “Supported Mapping Replacements” shows all possible replacements.

Table 1. Supported Mapping Replacements

Wildcard Description Example: FeatureA
Name the Uniqgue Name of the selected feature FLAG_{Name} — FLAG_FeatureA
NAME the upper case Unique Name of the selected feature FLAG_{NAME} — FLAG_FEATUREA
name the lower case Unique Name of the selected feature flag_{name} — flag_featurea

g pure
go%e “systems

Documents / Resources

pure-systems 2024 Connector for Source Code Management Software [pdf] User Manual
2024, 2024 Connector for Source Code Management Software, Connector for Source Code Ma
nagement Software, Source Code Management Software, Management Software, Software

References

https://manuals.plus/m/c2ba102ee06a722aaa8231cd57fc10b52552843c021447ac17dde9d8453ab1f2
https://manuals.plus/m/c2ba102ee06a722aaa8231cd57fc10b52552843c021447ac17dde9d8453ab1f2_optim.pdf

« User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manual.tools/?p=14540341#MTA0LjI4LjIzNC4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	pure-systems 2024 Connector for Source Code Management Software User Manual
	Introduction
	Using Connector
	Using Relation Indexer
	Documents / Resources
	References

