
Home » onsemi » onsemi FUSB15200DV Dual Port USB Type-C PD Controller Software User Guide

USER MANUAL
FUSB15200 Dual Port USB

Type-C/PD Controller
Software Programming

Guide UM70103/D

Contents
1 Introduction
2 Port Configuration
3 Documents /
Resources

3.1 References

Introduction

The FUSB15200 firmware codebase is a highly optimized dual−port Type−C/PD controller driver that supports the
integrated Arm Cortex ® −M0+ processor. Together with the FUSB15200DV EVB, this driver provides customers
with a complete platform for evaluating a Type−C/PD solution.
The firmware provides the flexibility of supporting new power delivery (PD) messages as well as any additional
Type−C state flows.
The firmware also allows easy modification of the hardware−specific characteristics because of its Type−C/PD
platform−agnostic architecture. When supplied with a desired configuration, the codebase can be used to quickly
configure the device.
The code organization offers modularity, as it separates source code for application, hardware abstraction layer,
platform dependent code, and the USB Type−C/PD core. Default configurations supported by the FUSB15200
Type−C/PD are listed in Table 2. FUSB15200
Supported Configuration in Port.
The PD core features are configurable using project build options or by modifying the vendor info file. The
codebase includes a sample Eclipse project that can be compiled using the Eclipse based onsemi IDE, thus

onsemi FUSB15200DV Dual Port USB Type-C PD Controller
Software User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/onsemi
https://manuals.plus/onsemi/fusb15200dv-dual-port-usb-type-c-pd-controller-software-manual.pdf
https://manuals.plus/#introduction
https://manuals.plus/#port_configuration
https://manuals.plus/#documents_resources
https://manuals.plus/#references

allowing a faster bring−up to evaluate the Type−C/PD standalone controller.
Supported Power Delivery
Table 1 FUSB15200 Supported Device Characteristics (60 W PDP) summarizes the PD options available on the
FUSB15200DV.
Table 1. FUSB15200DV SUPPORTED DEVICE CHARACTERISTICS (60 W PDP)

Feature Supported Type Firmware

Type-C Source/Sink Yes

PD DRP Yes

Advertised PDOs PDO Type Description

PDO 1 Fixed 5V/3A

PDO 2 Fixed 9V/3A

PDO 3 Fixed 15V/3A

PDO 4 Fixed 20V/3A

NOTE: The PDOs supported are power supply dependent.

Port Configuration

UM70103/D

Table 2, FUSB15200 Supported Configuration in Port, describes the port configuration of the FUSB15200.

NOTE: The features described in this table are part of the firmware and can be traced in file vif_info.h.
Table 2. FUSB15200 SUPPORTED CONFIGURATION IN PORT

Feature Supported Description

PD Specification Revision 3. Supported Revision

PD Specification Revision Version 2. Supported Revision Version

SOP* Communication Yes Supports SOP, SOP’, SOP”

Manufacturer Info Message Yes Manufacturer Info Supported Port

Data Role Swap to DFP Yes Supports swap to DFP

Data Role Swap to UFP Yes Supports swap to UFP

VCONN Swap to ON Yes Support for VCONN swap to ON

VCONN Swap to OFF Yes Support for VCONN SWAP to OFF

Cable Discovery Yes Supports Cable Query Process

Chunked Message Yes Support for Chunked Messages

Long UnChunked Extended Messages No Support for Long UnChunked Extended
Messages

Rp Value 3 A CC Pin Current advertisement

VCONN Source Yes VCONN sourcing support

PD Power Source 60000 mW PD port capability

USB Suspend May Clear No USB Suspend not supported

Modal Support No Disabled modal operation

Unconstrained Power Yes Sufficient external source of power is available

Port Type 4 DRP

USB4 Yes Supported on Port 0

UM70103/D
Firmware Build Options
The reference firmware and its default configuration support the FUSB15200 EVB platform for a complete
evaluation of the Type−C/PD solution. By following the instructions in section Firmware Build Instructions, a
firmware binary can be built and loaded into the EVB. The FUSB15200 default supported values are listed in Table
3 Supported Build Configurations.
Table 3. SUPPORTED BUILD CONFIGURATIONS

Feature Supported Description

CONFIG BC1P2 CDP 0 Disable support for BC1 P2 CDP

CONFIG BC1P2 CSM 0 Disable support for BC1 P2_CSM

CONFIG BC1P2 DCP 1 Enable support for BC1 P2_DCP

CONFIG BC1P2 DCP ADDIV 1 Enable support for BC1 P2_DCP_ADDIV

CONFIG DCDC 1 Enable DCDC power supply write via 12C

CONFIG DRP 1 Enable DRP Support

CONFIG EPR 0 Disable EPR Support (Unsupported by board)

CONFIG EPR TEST 0 Disable EPR_TEST Support (Unsupported by boar
d)

CONFIG_MINIMAL 0 Disable support for CONFIG_MINIMAL

CONFIG EXTMSG 1 Enable support for extended message length

CONFIG LEGACY CHARGING 0 Disable support for legacy charging

CONFIG LOG 0 Disable support for logging

CONFIG NOMINAL PPS CURRENT 0 Disable support for nominal current

CONFIG POWER LIMITED 1 Enable Power Limitation functionality

CONFIG POWER SHARING 0 Disable power sharing functionality

CONFIG SLEEP 0 Enable support for deep sleep

CONFIG SRC 1 Enable support for source characteristic

CONFIG USB4 1 USB4 support

CONFIG VDM 1 Enable support for Vendor Define Message

DEBUG PORTB 1 Enable Debug functionality

FUSB15200 Define FUSB15200

HAL_USE_ASSERT Define assertion of size check

12C3 _BOARD Use 12C3 on board for Power Supply Communicat
ion

UM70103/D
Firmware Build Instructions
Build the firmware by performing the following steps:

Download and install the onsemi IDE:

♦ Click on this link: onsemi IDE.

♦ Click Design Tools.

♦ Click onsemi IDE installer and download it to a location in your system.

♦ Follow the prompts to install the onsemi IDE.

Download the 15200 firmware code release:

♦ Click on this link.

♦ Click FUSB15200 Reference Code and download the zip file.

♦ Unzip the contents into a directory of your choice.

NOTE: Make sure that the codebase has the directory structure as shown in section Code Organization.

Open the onsemi IDE and load the project:

♦ From the top menu, choose File.

♦ Choose Open Projects from File System….

♦ From Import Source, click on Directory… .

♦ From the firmware source directory, choose Go to fw_fusbdev → IDE → FUSB15200 → usbpd then select

ON_IDE

Build the FUSB15200DV firmware:

♦ From the Project Explorer tab, right click on FUSB15200 USBPD (in ON_IDE), and select Build Project.

♦ Upon a successful build, the binary FUSB15200 USBPD.bin is copied under

IDE\FUSB15200\usbpd\ON_IDE\Debug\.

♦ Refer to the document FUSB15200 Dual Port USB TYPE−C/PD Controller Flash Programming Guide for the

steps to program the FUSB15200DV.

Optional: Changing build configuration:

We recommend that you keep the default build configuration to test the EVB.

Advanced users, can follow the steps below to change the config parameters listed on Table 3. Supported Build

Configuration.

♦ Press Alt−Enter to display the Properties for FUSB15200 USBPD.

♦ Go to C/C++ General > Paths and Symbols > Symbols > GNU C.

Firmware Architecture
This section outlines the firmware architecture of the FUSB15200. Initially it covers in paragraphs Code
Organization and Port Configuration a high−level overview of the code. Gradually, it tries to give a more in−depth
description in subsequent paragraphs.
Code Organization
Table 4. FUSB15200 Project Subdirectory Descriptions outlines the directory structure and describes the content
of each subdirectory.
Table 4. FUSB15200 PROJECT SUBDIRECTORY DESCRIPTIONS

Component Description

Applications This component contains custom specific source files including the sample Devi
ce Policy Manager. The vendor info file is also in this folder.

CMSIS

Device Platform specific source files

Drivers Hardware abstraction layer source files

External Type-C/PD state machine and abstraction layer

IDE/FUSB15200/usbpd/ON
_IDE Sample Eclipse based project

SVD Jlink

Firmware Composition
The FUSB15200 platform integrates an Arm Cortex−M0+ processor with a nested vector interrupt controller, a
wakeup interrupt controller, and a debug access port. The codebase includes peripheral drivers and support for
multiple external source interrupts for peripheral devices.

PD Device Policy Manager

The firmware codebase provides reference code for the device policy manager (DPM). The sample DPM can

manage platform−specific PD message requests and responses using event subscriptions and notification

callbacks. It uses a hardware abstraction layer (HAL) to prevent policy engine or Type−C state machine direct

access to hardware registers.

The DPM manages a private structure that encapsulates TCPD (Type−C/PD) driver and port structure.

PD Policy Engine Core

The PD policy engine (PE) state machine is platform−agnostic. Most PE functions are statically defined and are

only accessible through the TCPD driver, except for PE state machine core functions, PE state machine

enable/disable

functions, and a PE hard reset message interrupt handler. The Type−C/PD core in this codebase can support

characteristics other than the ones listed in Table 1. FUSB15200 Supported Device Characteristics. These

options are configurable, as described earlier in this document.

Policy engine functions: void policy_pd_enable(struct port *port, bool source)

This function enables the PE state machine, used on startup. It can be used in certain contexts with

policy_pd_disable() when your device cannot offer power delivery. void policy_pd_disable(struct port *port)

This function disables the PE state machine. This function is primarily used when the device cannot supply USB

Type−C power delivery. void policy_receive_hardreset(struct port*port)

This function processes a hard reset when a PD message is received through the PD controller interrupt bit.

Void policy_engine(struct port *port)

This is the main function for the PE core state machine.

In the most recent code bases this function changed. In order to save space and avoid an excess of if, else if

we switched to a function pointer approach. Since a state is a numeric enumerated data that is created at build

time by CREATE_XXX_POLICY_STATES() for SRC, SNK, DRP, VDM and USB4 so therefore the state is

associated to a numerical index. We used that same index to build a function pointer array whose array

element index matches the state enum.

For example, the index 0 in the enum policy_state_t is PE_SRC_Startup.

At index 0 of the array policy_state_run[] we placed the function pointer to service that state; which is in this

case; policy_state_source_startup().

IMPORTANT: The lineup of the states and the servicing functions have to match and ought to be aligned.

The index alignment must be validated if any new additional state is added.

PD PE Message Handling

A few PE message handling function examples are listed below. A full list of PD message handlers can be

found in policy.c. These functions are only accessible from the policy engine. static void

policy_state_source_get_sink_cap(struct port *port)

This function is called when a PD provider sends a request for sink capability. static void

policy_state_source_give_sink_cap(struct port *port)

This function is called when a PD provider responds to a request for sink capability. static void

policy_state_source_send_drswap(struct port *port)

This function is used for a PD provider to request drswap. static void

policy_state_source_evaluate_drswap(struct port *port) This function is used for a PD provider to evaluate a

received drswap request.

PD PE Message Queuing

New to the PE this release is the abstraction of message requests in a 32 bit message queue of bitmasks. By

modifying port→msgtx variable you can easily queue supported messages on the FUSB15200. A list of

compliance tested messages that are enabled by default on Source and Sink can be found in:

policy_reset_message_queue(struct port * port)

This function is used to reset the message queue when messages need to be requeued into the message

queue. This is called by default on attach and on Hard Reset.

When setting the msgtx bit for a message, you must also ensure that the bit is cleared. For the default set of

enabled messages and some additional tested messages, this bit is cleared upon successful receipt of the

message, but other messages must have bit clear behavior defined.

PD PE VIF Message Queuing

VIF Messages are now handled through the same Message Queuing structure, and has been abstracted into

two functions: source_vif_message_requests(struct port * port)

This function is used to queue up source vif messages when the vif would demand a message be sent to the

port partner. sink_vif_message_requests(struct port * port)

This function is used to queue up sink vif messages when the vif would demand a message be sent to the port

partner.

Type−C State Machine

Port detection on attach/detach of a Type−C device is handled inside the USB TypeC state machine function,

typec_sm(). As with PD, this is also platform−agnostic, and all access to the hardware is controlled by the

TCPD driver.

Observer Files

These files are shared between the device policy manager and the policy engine. observer.c contains the

function definitions of event_subscribe, event_unsubscribe, and event_notify. observer.h has all the

declarations of all the event ID and structure definitions necessary for events. Event Handling The PD event

messaging between DPM and PE is handled with no assumption that DPM subscribes to every notification.

This provides flexibility for the DPM to only subscribe to events that are needed for the intended application. It

also allows reduction of the binary size.

Adding New Events

While the events that are already defined might be adequate in the supported platform, if an application

requires more event subscriptions/notifications between the policy engine and the device policy manager,

additional events can be

added as needed. To add a new event, add a definition to the enum type event_t in observer.h.

• Registering Event Handlers

Event subscription/callback notification is used by the policy engine and the device policy manager to pass on

PD message requests/responses and/or platform specific behavior changes to the Type−C/PD controller.

An event is registered using the function event_subscribe following this format:

event_subscribe(EVENT_ID, callback_handler)

The device policy manager subscribes to applicable events, and the policy engine uses these events to notify

the DPM by using the function event_notify, following this format: event_notify(EVENT_ID, struct* tcpd_device,

void *ctx) Events in Table 5. Supported Events are defined in observer.h.

IDs are declared as an enumerated type and use the ##preprocessor to generate the EVENT with “EVENT_”

prepended to each ID in Table 5.

Example: Event ID “TC_ATTACHED” Generates an event with descriptor “EVENT_TC_ATTACHED”.

UM70103/D
Table 5. SUPPORTED EVENTS

Event ID Description

TC_ATTACHED Type−C device attached

TC_DETACHED Type−C device detached

VBUS_REQ VBUS value request for source

VBUS_SINK VBUS value request for sink

VCONN_REQ VCONN request to turn on/off sourcing

PD_DEVICE PE notify PD device capable

PD_GET_SRC_CAP PE notify source capability request

PD_GET_SNK_CAP PE notify sink capability request

PD_GET_EXT_SRC_CAP PE notify extended source capability request

PD_GET_EXT_SNK_CAP PE notify extended sink capability request

PD_SNK_CAP_RECEIVED PE notify sink capability message is received

EXT_SNK_CAP_RECEIVED PE notify extended sink capability is received

PD_GET_BAT_CAP PE notify get battery capability request

PD_GET_BAT_STAT PE notify get battery status request

PD_BAT_CAP_RECEIVED PE notify battery capability is received

PD_BAT_STAT_RECEIVED PE notify battery status is received

PD_GET_MAN_INFO PE notify get manufacturer info request

PD_SRC_EVAL_SNK_REQ PE notify to evaluate sink request

PD_SNK_EVAL_SRC_CAP PE notify to evaluate source capability

PD_CBL_ID_RECEIVED PE notify cable ID is received on cable query

PD_GET_ALERT_REQ PE notify to fill out alert request

PD_ALERT_RECEIVED PE notify alert message is received

PPS_STATUS_RECIEVED PE notify PPS status is received on PPS status request

PPS_STATUS_REQUEST PE notify PPS status request

PPS_MONITOR PE notify to activate PPS handling

PPS_ALARM PE notify to set PPS alarm

ENTER_USB_REQUEST PE notify when EnterUSB message is being sent

ENTER_USB_RESPONSE PE notify when a response is received after sending EnterUSB

ENTER_USB_RECEIVED PE notify when EnterUSB message is received

IDENTITY_RECEIVED Not used

PD_STATUS PE notify PD device status

MODE_ENTER_SUCCESS Not used

MODE_EXIT_SUCCESS Not used

MODE_VDM_ATTENTION Not used

HARD_RESET PE notify hard reset

UNSUPPORTED_ACCESSORY PE notify for unsupported accessory attached

DEBUG_ACCESSORY Not used

AUDIO_ACCESSORY Not used

ILLEGAL_CBL Not used

BIST_SHARED_TEST_MODE PE notify BIST shared test

PD_NEW_CONTRACT PE notify for new PD contract

DATA_RESET_ENTER Not used

Table 5. SUPPORTED EVENTS

Event ID Description

DATA_RESET_EXIT Not used

PD_GET_FW_ID PE notify get firmware ID request

PD_FW_INITIATE PE notify to initiate firmware update

PD_INITIATE_RESP_SENT PE notify firmware update response was sent

PD_GIVE_REVISION PE notify to provide revision

PD_GIVE_SOURCE_INFO PE notify to provide source info

PPS_CL Event to grab PPS CV (Constant Voltage) or CL (Constant Load) m
ode

Vendor Info File
Device Vendor information is in file vif.info.h. If modifications are needed, follow the steps below:
a. If the information is already available in the header file, you only need to modify the default value there.
b. If the information is not yet defined in the header file, modify the header file by adding the new information to the
applicable port, and add the entry to PORT_VIF_T, which represents the newly added information in vif_info.c.
Examples:
♦ Changing max current in PDO 4 from 20V/3A to 20V/3.25A in the Port: Current PDO values:
#define PORT_A_SRC_PDO_VOLTAGE_4 400 // 20000 mV
#define PORT_A_SRC_PDO_MAX_CURRENT_4 300 // 3.00A New PDO values:
#define PORT_A_SRC_PDO_VOLTAGE_4 400 // 20000 mV
#define PORT_A_SRC_PDO_MAX_CURRENT_4 325 // 3.25A
♦ Removing support for chunked extended messages in Port: Current value:
#define PORT_A_CHUNKING_IMPLEMENTED_SOP 1 New Value:
#define PORT_A_CHUNKING_IMPLEMENTED_SOP 0
♦ Adding new entry in the vif_info.h in the Port:
a. #define PORT_A_NEW_ENTRY. 1
b. Add an entry in PORT_VIF_T in Device/FUSB15200/vif_info.c.
TCPD Driver – Changes from Previous Versions
The current firmware driver is based on a hardware abstraction layer software design. This design provides
abstraction to/from PE and Type−C state machine. Neither PD nor Type−C can directly change the
platform−specific behavior. The TCPD driver implements access to the port HAL and other supported peripherals.
Differently from before, the code has removed pointer dereferencing to access HAL functions. Instead, driver
function permissions are given to files that require it in order to function. This allowed saving a large amount of
space and saving several kB of function pointer storage and pointer dereferencing. In addition, several high level
interfaces built upon the high level HAL abstraction have been removed to save space.
Old flow example:
PE changes VBUS value for a contract being negotiated: the following logic path would be followed: PE →
port_vbus_src() → FUSBDEV HAL with Drivers Abstracted (port→dev→driv→XXX)
port→dev→driv→set_pd_source()→TCPD HAL Driver with Devices Abstracted (fusb15xxx_XXX)
fusb15xxx_set_pd_source()→HAL Driver with Registers Abstracted (XXX_DRIVER)
TCPORT_DRIVER.pd.Source() → Register level logic New flow example:
PE changes VBUS value for a contract being negotiated: the following logic path would be followed: PE() →
port_vbus_src() → FUSBDEV HAL Abstraction with Drivers Abstracted (fusbdev_tcpd_XXX)
fusbdev_tcpd_set_pd_source()→TCPD Driver with Devices Abstracted (fusb15xxx_XXX)
fusb15xxx_set_pd_source()→HAL Driver with Registers Abstracted (XXX_DRIVER)
TCPORT_DRIVER.pd.Source() → Register level logic
Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.
onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor
Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other

countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other
intellectual property. A listing of onsemi’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no
warranty, representation or guarantee regarding the accuracy of the information, product features, availability,
functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation special, consequential or incidental damages. Buyer is responsible for its products and
applications using onsemi products, including compliance with all laws, regulations and safety requirements or
standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which
may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. onsemi does not convey any license under any of its
intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for
use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a
same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body.
Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall
indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim
of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION
TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical−documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT:
www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

Documents / Resources

onsemi FUSB15200DV Dual Port USB Type-C PD Controller Software [pdf] User Guide
FUSB15200DV, FUSB15200DV Dual Port USB Type-C PD Controller Software, Dual Port USB
Type-C PD Controller Software, USB Type-C PD Controller Software, Type-C PD Controller Soft
ware, PD Controller Software

References

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

http://www.onsemi.com/site/pdf/Patent%25E2%2588%2592Marking.pdf
http://www.onsemi.com/design/resources/technical%25E2%2588%2592documentation
http://www.onsemi.com
http://www.onsemi.com/support
http://www.onsemi.com/support/sales
https://manuals.plus/m/2a3b45a6fb6ef08c455ad4e22525f5a1b41550b20079de4dc0c823925a4c348e
https://manuals.plus/m/2a3b45a6fb6ef08c455ad4e22525f5a1b41550b20079de4dc0c823925a4c348e_optim.pdf
https://manual.tools/?p=13039027#MTA0LjI4LjIwMi4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	onsemi FUSB15200DV Dual Port USB Type-C PD Controller Software User Guide
	Introduction
	Port Configuration
	Documents / Resources
	References

