

Olink Target 48 High Multiplex Immunoassay Panels Instructions

Home » Olink » Olink Target 48 High Multiplex Immunoassay Panels Instructions

Contents

- 1 Olink Target 48 High Multiplex Immunoassay **Panels**
- 2 Incubation
- 3 Extension
- **4 Detection**
- 5 Documents / Resources
 - **5.1 References**
- **6 Related Posts**

Olink Target 48 High Multiplex Immunoassay Panels

Incubation

1. Prepare the Incubation mix in a microcentrifuge tube according to the table below.

Incubation mix	per ½ 96-well plate (μL)
Olink® Target 48 Incubation Solution	168
Olink® Target 48 Frw-probes	21
Olink® Target 48 Rev-probes	21
Total	210

- 1. Vortex and spin down the Incubation mix. Transfer 23 μ L of the Incubation mix to each well of a new 8-well strip.
- 2. Transfer 3 μ L of Incubation mix to each well of the first 6 columns of a 96-well plate by reverse pipetting and name the plate Incubation Plate.
- 3. Add 1 μ L of each sample using a multi-channel pipette to the bottom of the well, 1 μ l of Sample Control to the three top wells (yellow), 1 μ L of Negative Control to two wells (red), and 1 μ L of Calibrators to three wells (green), according to the plate layout.

4. Seal the plate with an adhesive plastic film, spin at $400 - 1000 \times g$, 1 min at room temperature. Incubate

Extension

1. Prepare an extension mix according to the table below.

Extension mix	per ½ 96-well plate (µL)
High Purity Water (+4 °C)	4350
Olink® Target 48 PEA Enhancer	580
Olink® Target 48 PEA Solution	580
Olink® Target 48 PEA Enzyme	58
Total	5 568

- 2. Bring the Incubation Plate to room temperature, spin at $400 1000 \times g$ for 1 min. Preheat the PCR machine.
- 3. Vortex the Extension mix and pour it into a multichannel pipette reservoir.
- 4. Start a timer for 5 min and transfer 96 μL of Extension mix to the upper parts of the well walls of the Incubation Plate by using reverse pipetting.
- 5. Seal the plate with a new adhesive plastic film, use the MixMate® to vortex the plate at 2500 rpm for 30 sec, ensuring that all wells are mixed, and spin down.
- 6. Place the Incubation Plate in the thermal cycler and start the PEA program. (50 °C 20 min, 95 °C 5 min (95 °C 30 sec, 54 °C 1 min, 60 °C 1 min) x 17, 10 °C hold)

Detection

- 1. Prepare and prime an Olink® 48.48 IFC for Protein Expression. Briely, inject one control line fluid syringe into each accumulator on the chip, and then prime the IFC on the Olink® Signature Q100 following the instructions on the instrument screen.
- 2. Thaw the Primer Plate, vortex and spin briefly.
- 3. Prepare a Detection mix according to the table below.

Detection mix	per ½ 96-well plate (µL)
Olink® Target 48 Detection Solution	275.0
High Purity Water	116.0
Olink® Target 48 Detection Enzyme	3.9
Olink® Target 48 PCR Polymerase	1.5
Total	396.4

- 4. Vortex the Detection mix and spin briefly and add 46 μL of the mix to each well of an 8-well strip.
- 5. Transfer 7.2 μL of the Detection mix to each well of column 1-6 in a new 96-well plate by reverse pipetting, and name it Sample Plate.
- 6. Remove the Incubation Plate from the thermal cycler, spin down the content and transfer 2.8 μL to the Sample Plate, using forward pipetting.
- 7. Seal the plate with an adhesive film, vortex and spin both at $400 1000 \times g$, 1 min at room temperature.
- 8. Transfer 5 μ L from each well of the Prime Plate and 5 μ L of the Sample Plate into the primed 48.48 IFC left and right inlets, respectively. Use reverse pipetting and change tips after each primer or sample. Do not leave any

- inlets empty.
- 9. Remove bubbles and load the chip in the Olink Signature Q100 and follow the instructions on the instrument screen.
- 10. Run the IFC on the Olink Signature Q100.
- 11. Carefully remove the adhesive film from the Primer Plate to avoid contamination between wells.
- 12. Transfer 5 μL of each primer using reverse pipetting from each well in position 1 A-H (green) to the inlets in the first column on the left side of the IFC (green). Change pipette tips after each column. When using an eight-channel pipette every other inlet will be filled according to the image.
 - www.olink.com
 - · For research use only. Not for use in diagnostic procedures.
 - This product includes a license for non-commercial use. Commercial users may require additional licenses. Please contact Olink Proteomics AB for details.
 - There are no warranties, expressed or implied, which extend beyond this description. Olink Proteomics
 AB is not liable for property damage, personal injury, or economic loss caused by this product.
 - Olink® is a registered trademark of Olink Proteomics AB.
 - © 2018–2022 Olink Proteomics AB. All third-party trademarks are the property of their respective owners.
 - Olink Proteomics, Dag Hammarskjölds väg 52B, SE-752 37 Uppsala, Sweden
 - 1126, v1.1, 2022-05-05

Documents / Resources

References

Mean - Olink