
Home » NXP » NXP UG10195 FRDM i.MX 93 Development Board User Guide

UG10195
i.MX FRDM Software User Guide

Rev. 1.0 — 20 December 2024
User guide

NXP UG10195 FRDM i.MX 93 Development Board User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/nxp
https://manuals.plus/nxp/ug10195-frdm-i-mx-93-development-board-manual.pdf

Contents
1 UG10195 FRDM i.MX 93 Development
Board
2 Overview
3 Introduction
4 Getting started
5 Image build using Yocto
6 Image build
7 Matter support
8 Customization
9 Note about the source code in the
document
10 Revision history
11 Legal information
12 Documents / Resources

12.1 References

UG10195 FRDM i.MX 93 Development Board

Document information

Information Content

Keywords UG10195, i.MX, LF6.6.36_2.1.0, Yocto, FRDM-IMX93

Abstract
This document describes how to build an image for an i.MX FRDM board by using a Yocto P
roject
build environment and provides steps to install and run the image on an i.MX FRDM board.

Overview

i.MX Freedom Development (FRDM) software release contains prebuilt images, documentation, and i.MX FRDM
Yocto layer for i.MX FRDM boards.
This document describes how to build an image for an i.MX FRDM board by using a Yocto Project build
environment and provides steps to install and run the image on an i.MX FRDM board. It also covers special i.MX
FRDM features and how to use them.
i.MX FRDM layer contains Yocto recipes to support i.MX FRDM boards. It is based on i.MX Yocto Project and i.MX
Software Release LF6.6.36_2.1.0. For more information on the i.MX Software Release, see IMXLINUX webpage.
1.1 Audience
This document is intended for software, hardware, and system engineers who are planning to use the product,
and for anyone who wants to know more about the product.
1.2 Supported boards
Currently only the FRDM-IMX93 platform is supported.
1.3 References
This release includes the following references and additional information:

FRDM-IMX93 Quick Start Guide: The document provides the steps to start the board quickly.

FRDM-IMX93 Board User Manual : The document provides system setup, configurations, and detailed

information on the design.

MX Linux Release Notes (document RN00210): The document provides the release information.

MX Linux User’s Guide (document UG10163): The document provides information on installing U-Boot and

Linux OS and using i.MX-specific features.

https://manuals.plus/#ug10195_frdm_imx_93_development_board
https://manuals.plus/#overview
https://manuals.plus/#introduction
https://manuals.plus/#getting_started
https://manuals.plus/#image_build_using_yocto
https://manuals.plus/#image_build
https://manuals.plus/#matter_support
https://manuals.plus/#customization
https://manuals.plus/#note_about_the_source_code_in_the_document
https://manuals.plus/#revision_history
https://manuals.plus/#legal_information
https://manuals.plus/#documents_resources
https://manuals.plus/#references
http://www.nxp.com/imxlinux
http://www.nxp.com/imxlinux
https://www.nxp.com/design/design-center/development-boards-and-designs/FRDM-IMX93
https://www.nxp.com/design/design-center/development-boards-and-designs/FRDM-IMX93
https://www.nxp.com.cn/docs/en/release-note/IMX_LINUX_RELEASE_NOTES.pdf
https://www.nxp.com.cn/doc/IMX_LINUX_USERS_GUIDE

MX Yocto Project User’s Guide (document UG10164): The document describes the board support package

(BSP) for NXP development systems using Yocto Project to set up host, install the tool chain, and build source

code to create images.

MX Porting Guide (document UG10165): The document provides instructions on porting the BSP to a new

board.

MX Machine Learning User’s Guide (document UG10166): The document provides the machine learning

information.

GoPoint for MX Applications Processors (document GPNTUG): The document explains how to run GoPoint for

i.MX Applications Processors.

1.4 Release contents
This release consists of the following:

Documentation

Prebuilt binaries:

SD card prebuilt image for the release target SoC

Kernel and device tree file (.dtb)

Boot images

Rootfs

MX FRDM Yocto project release layer on GitHub

The i.MX FRDM software releases are named imx-frdm-x.y. Where:

<x.y>: Semantic versioning specification; x is the major version and y is the minor Table 1 lists the contents

included in each package.

Table 1. Release contents

Component Description

Linux OS Kernel and device trees 6.6.36

U-Boot v2024.04

SD card images Prebuilt images for target i.MX FRDM boards

i.MX FRDM layer To build images for target i.MX FRDM boards

i.MX FRDM layer available at GitHub, aims to release the updated or new Yocto Project recipes and machine
configurations for i.MX FRDM platform, which are stored in layers as follows:

meta-imx-bsp: Updates meta-imx/meta-imx-bsp layer for the MX FRDM platform.

Linux Kernel recipe: Resides in the recipes-kernel folder and integrates Kernel patches for the MX FRDM

platform.

U-Boot recipe: Resides in the recipes-bsp folder and integrates U-Boot patches for MX FRDM platform.

meta-nxp-demo-experience: Updates meta-nxp-demo-experience layer to add MX FRDM platform support.

meta-nxp-connectivity: Updates meta-nxp-connectivity layer to add Matter support for the MX FRDM platform.

https://www.nxp.com.cn/doc/IMX_YOCTO_PROJECT_USERS_GUIDE
https://www.nxp.com/doc/IMX_PORTING_GUIDE
https://www.nxp.com/doc/IMX-MACHINE-LEARNING-UG
https://www.nxp.com/webapp/Download?colCode=GPNTUG
https://github.com/nxp-imx-support/meta-imx-frdm
https://github.com/nxp-imx-support/meta-imx-frdm

1.4.1 Kernel and device trees
Table 2 describes the Kernel and device trees included in this release. A list of device tree files is provided to work
with different accessories.
Table 2. Kernel and device tree configurations

Filename Description

imx93-11×11-frdm.dtb The default dtb supports HDMI Display, MIPI CSI,
onboard Wi-Fi/Bluetooth, and so on.

imx93-11×11-frdm-tianma-wvga-panel.dtb 24-bit parallel supports 5-inch Tianma LCD

imx93-11×11-frdm-dsi.dtb MIPI DSI supports a 7-inch Waveshare LCD

imx93-11×11-frdm-ov5640.dtb MIPI CSI supports OV5640 sensors

imx93-11×11-frdm-mt9m114.dtb Parallel CSI supports MT9M114

imx93-11×11-frdm-aud-hat.dtb Audio dtb for MX93AUD-HAT

imx93-11×11-frdm-8mic.dtb Audio dtb for 8MIC-RPI-MX8

1.5 Instructions to get the AP1302 firmware
To get the AP1302 firmware from ONSemiconductor GitHub, perform the following steps:

1. Download the firmware image from ap1302_60fps_ar0144_27M_2Lane_awb_tuning.bin

2. Rename it as fw.

3. Create a folder imx/camera/ under /lib/firmware.

4. Copy fw to the target board under /lib/firmware/imx/camera.

1.6 UART output
Using the Linux PC’s default CDC-ACM driver, the UART of FRDM-IMX93 can experience abnormal input/ output
when the UART cable is replugged.
To resolve this issue, follow the instructions as below:

1. Git Clone https://github.com/WCHSoftGroup/ch343ser_linux.git

2. Compile the CH343 Linux driver, remove the CDC-ACM driver, and then install the CH343 Linux driver

3. To use Minicom, ensure that you have upgraded it to version 9: http://ftp.hk.debian.org/debian/pool/main/

m/minicom/minicom_2.9-5_amd64.deb

4. Connect to Minicom/PuTTy by using /dev/CH343USB0

The Windows driver can be downloaded from: https://www.wch.cn/downloads/CH343SER_EXE.html.

Introduction

i.MX FRDM boards are low-cost platform designed to show the most commonly used features of the i.MX
applications processor in a small and low-cost package, which helps developers to get familiar with the processor
before investing a large amount of resources in more specific designs.
For information on FRDM-IMX93 board, see FRDM-IMX93 webpage.
This document describes a method to integrate i.MX FRDM support into the NXP i.MX Linux BSP. The Yocto
Project is an open source collaboration focused on embedded Linux OS development. For more information on the
Yocto Project, see www.yoctoproject.org.

https://github.com/ONSemiconductor/ap1302_binaries/blob/main/NXP_i.MX93/ap1302_60fps_ar0144_27M_2Lane_awb_tuning.bin
http://ftp.hk.debian.org/debian/pool/main/m/minicom/minicom_2.9-5_amd64.deb
http://ftp.hk.debian.org/debian/pool/main/m/minicom/minicom_2.9-5_amd64.deb
https://www.wch.cn/downloads/CH343SER_EXE.html
https://www.nxp.com/design/design-center/development-boards-and-designs/FRDM-IMX93
http://www.yoctoproject.org/

Getting started

The i.MX FRDM platform comes with a pre-built NXP Linux binary demo image flashed on the eMMC. Without
modifying the binary inside, booting from the eMMC provides a default system with certain features for building
other applications on top of Linux OS.
One can also copy images (U-Boot, Linux Kernel, device tree, and rootfs) to a boot device and set the boot
switches to boot that device. This section describes how to set switches for booting and deploy images.
3 .1 Basic terminal setup
Access to the i.MX FRDM’s serial console UART is available via a CH343 USB serial interface. Connect the USB
“DEBUG” port to a USB port on a host computer. CH343 drivers are available on Linux, Mac OS X, and Windows
platforms. The first enumerated USB serial port is attached to the i.MX FRDM Cortex-A (U-Boot, Linux) serial
console.
Connect a USB cable from the DEBUG port to the computer for console output, respectively with the following
setup:

Bits per second = 115200

Data = 8 bits

Parity = None

Stop = 1 bit

Flow control = None

3.2 Boot switch
The i.MX 93 processor provides multiple boot configurations, which can be selected using SW1 on the FRDM-
IMX93 board, or by the boot configuration stored on the internal eFuse of the processor. On the FRDM-IMX93
board, the default Boot mode is from the eMMC device (SW1[1:4] is set to 0100). The other boot device is a
microSD connector, which must set SW1[1:4] to 1100. To enter USB serial download, set SW1[1:4] to 1000.
Table 3 shows the switch settings for BOOT_MODE on the FRDM-IMX93 board.
Table 3. Boot mode switch settings

SW1[1:4] BOOT_MODE[3:0] Boot core Boot device

1000 0001 Cortex-A Serial downloader (USB)

0100 0010 Cortex-A uSDHC1 8-bit eMMC 5.1

1100 0011 Cortex-A uSDHC2 4-bit SD3.0

3.3 Downloading a pre-built image
The latest pre-built images for i.MX 93 FRDM are available on the FRDM-IMX93 webpage.
An SD card image file .wic.zst contains a partitioned image (with U-Boot, Kernel, rootfs, and so on) suitable for
booting the corresponding hardware.
3.4 Universal update utility
Universal update utility (UUU) runs on Windows, Linux OS, FWIW, or Mac OS X (not tested yet) host and is used
to download images to different devices on an i.MX board.
To use the UUU for i.MX 9, follow the instructions below:

1. Download UUU version 5.125 or higher from https://github.com/NXPmicro/mfgtools/releases.

On Windows, exe can be downloaded and directly used.

On Linux and Mac OS X, uuu can be downloaded and stored to a /usr/local/bin

2. Connect a USB cable from a computer to the board’s USB OTG/Type C port for

3. Connect a USB cable from the USB Type-C connector labeled “DEBUG” to a host computer for accessing the

serial console described in Section 3.2.

https://www.nxp.com/design/design-center/development-boards-and-designs/FRDM-IMX93
https://github.com/NXPmicro/mfgtools/releases

4. Set the boot pin to Serial download mode, see Section2.

Table 4 shows the boot switch settings for FRDM-IMX93 to enter Serial download mode.

Table 4. Set up download mode for FRDM-IMX93

Switch D1 D2 D3 D4

SW1 ON OFF OFF OFF

5. Burn the image:

To burn a single-boot image and rootfs to SD card, run the following command:

To burn a single-boot image and rootfs to eMMC, run the following command:

6. To boot the board, change the boot switch and reset the board.

Table 5. eMMC Boot mode on i.MX 93 FRDM

Switch D1 D2 D3 D4

SW1 OFF ON OFF OFF

Table 6. SD Boot mode on i.MX 93 FRDM

Switch D1 D2 D3 D4

SW1 ON ON OFF OFF

For detailed instructions on how to use UUU, see https://github.com/nxp-imx/mfgtools/wiki.
3.5 Preparing an SD/MMC card to boot
This section describes the steps to prepare an SD/MMC card to boot up an i.MX board using a Linux host
machine.
3.5.1 Copying the full SD card image
An SD card image file .wic.zst contains a partitioned image (with U-Boot, Kernel, rootfs, and so on) suitable for
booting the corresponding hardware.
To flash an SD card image, run the following command:
zstdcat <image_name>.wic.zst | sudo dd of=/dev/sd<partition> bs=1M conv=fsync
For more information on flashing, see section “Preparing an SD/MMC card to boot” in i.MX Linux User’s Guide
(document UG10163).
3.5.2 Copying a bootloader image
This section describes how to load only the bootloader image when the full SD card image is not used. To copy the
U-Boot image to the SD/MMC card, run the following command:
$ sudo dd if=<boot image> of=/dev/sdx bs=1k seek=<offset> conv=fsync
Where:
<offset> is 32 for MX 9.
3.6 Running Linux OS on the target
This section describes how to run a Linux image on the target using U-Boot.
The basic procedure for running Linux OS on an i.MX board is as follows. This document uses a specific set of
environment variable names to make it easier to describe the settings.

1. Power on the board.

2. When U-Boot begins printing to the console, type a character to halt the automatic boot countdown.

3. Save the environment setup:

https://github.com/nxp-imx/mfgtools/wiki
https://www.nxp.com.cn/doc/IMX_LINUX_USERS_GUIDE

u-boot=> saveenv

4. Run the boot command:

u-boot=> run bootcmd

The commands env default -f -a and saveenv can be used to return to the default environment.
3.7 Running the Arm Cortex-M image
Some Arm Cortex-M core applications exist from the public Yocto builds. Here is an example to boot the Arm
Cortex-M core on FRDM-IMX93:

1. Boot up the board to U-Boot, and load the Arm Cortex-M core image from the SD card to run:

=> fatload mmc 1:1 ${loadaddr} imx93-11×11- evk_m33_TCM_rpmsg_lite_str_echo_rtos.bin

=> cp.b ${loadaddr} 0x201e0000 ${filesize}

=> bootaux 0x1ffe0000 0

2. Append clk_ignore_unused in U-Boot mmcargs environment before booting

3. Boot to Linux.

4. After login, ensure that the imx_rpmsg_tty Kernel module is inserted (lsmod) or insert it (modprobe

imx_rpmsg_tty).

5. After the boot process succeeds, the Arm Cortex-M33 terminal displays the following information:

RPMSG String Echo FreeRTOS RTOS API Demo…

Nameservice sent, ready for incoming messages…

6. After the Linux RPMsg tty module has been installed, the Arm Cortex-M33 terminal displays the following

information:

Get Message From Master Side : “hello world!” [len : 12]

7. The user can then input an arbitrary string to the virtual RPMsg tty using the following echo command on

Cortex-A terminal:

echo test > /dev/ttyRPMSG<num>

Where:<num> is the allocated ttyRPMsg channel Find this number in the file system using a ls command.

8. The Cortex-M33 terminal displays the received string content and its length, as shown in the log:

Get Message From Master Side : “test” [len : 4] Get New Line From Master Side

The i.MX 93 Cortex-M33 demo is available on the NXP Yocto Project mirror and it can also be retrieved using

the following command on the Linux OS:

wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/imx93-m33-demo-2.16.000.bin’

The Cortex-M MCUXpresso SDK is distributed by the MCUXpresso Web Builder tool. To obtain the MCUXpresso
SDK for the Cortex-M core of your i.MX SoC, visit http://mcuxpresso.nxp.com.

Image build using Yocto

4.1 Host setup
To achieve the Yocto Project’s expected behavior in a Linux host machine, install the packages and utilities
described below. An important consideration is the hard disk space required in the host machine. For example,
when building on a machine running Ubuntu, the minimum hard disk space required is about 50 GB. Provide at
least 120 GB, which is enough to compile all backends together. For building machine learning components, at
least 360 GB is recommended.
The recommended minimum Ubuntu version is 20.04 or later. The latest release supports Chromium v91, which
requires an increase to the ulimit (number of open files) to 4098.
4.1.1 Docker

https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/imx93-m33-demo-2.16.000.bin
http://mcuxpresso.nxp.com/

i.MX is now releasing Docker setup scripts in imx-docker. To set up a host build machine using Docker, follow the
instructions in the README.
4.1.2 Host packages
A Yocto Project build requires specific packages to be installed for the build that are documented under the Yocto
Project. Install the essential host packages on your build host. For information on image build using the Yocto
Project, see Yocto Project Quick Build.
The following command installs the host packages:
$ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential chrpath socat cpio python3 python3-pip
python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 python3-subunit zstd liblz4-tool file
locales libacl1
The configuration tool uses the default version of grep on your build machine. If a different version of grep is
present in your path, it can cause build failure. To avoid this failure, rename the special version to a name that
does not contain grep.
4.1.3 Setting up the repo utility
Repo is a tool built on top of Git that simplifies managing projects with multiple repositories, even if they are hosted
on different servers.
To install the repo utility, perform the following steps:

1. Create a bin folder in the home directory:

$ mkdir ~/bin (this step may not be needed if the bin folder already exists)

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

$ chmod a+x ~/bin/repo

2. To ensure that the ~/bin folder is in your PATH variable, add the following line to the .bashrc file:

$ export PATH=~/bin:$PATH

4.2 Yocto project setup
To set up the Yocto project, perform the following steps:

1. Ensure that Git is set up properly with the commands below:

$ git config –global user.name “Your Name”

$ git config –global user.email “Your Email”

$ git config –list

The i.MX Yocto Project BSP release directory contains a sources directory, which contains the recipes for

building one or more build directories, along with a set of scripts used to set up the environment.

The recipes required to build the project are sourced from the community i.MX Yocto Project and i.MX FRDM

layer, which are downloaded into the sources directory. This ensures that all necessary recipes are set up to

build the project.

2. The following example shows how to download the i.MX Yocto Project Community BSP recipe layers and

i.MX FRDM layer. For this example, a directory called imx-yocto-bsp is created for the project. Any other name

can be used instead of this name.

Download i.MX Yocto Release:

$ mkdir imx-yocto-bsp

$ cd imx-yocto-bsp

$ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap

-m imx-6.6.36-2.1.0.xml

$ repo sync

3. When this process is completed, the source code is checked out into the directory imx-yocto-bsp/ sources.

4. Perform repo synchronization, with the command repo sync periodically to update to the latest code.

https://github.com/nxp-imx/imx-docker
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html

If errors occur during repo initialization, try deleting the .repo directory and running the repo initialization

command again. The repo init is configured for the latest patches in the line.

5. Integrate i.MX FRDM layer into i.MX Yocto Project:

$: cd ./sources

$: git clone https://github.com/nxp-imx-support/meta-imx-frdm.git

$: cd meta-imx-frdm

$: git checkout imx-frdm-1.0

Image build

This section provides detailed information on the process for building an image.
5.1 Build configurations
i.MX FRDM provides a script imx-frdm-setup.sh that simplifies the setup for i.MX FRDM machines. To use the
script, the name of the specific machine to be built and the desired graphical backend must be specified.
The script sets up a directory and the configuration files for the specified machine and backend.
The following are i.MX machine configuration files (i.MX 9) that can be selected:
imx93-11×11-lpddr4x-frdm or imx93frdm
Each build folder must be configured in such a way that they only use one distro. Each time the variable
DISTRO_FEATURES is changed, a clean build folder is needed. Distro configurations are saved in the local.conf
file in the distro setting and are displayed when the bitbake command is running.
The list of distro configurations are as follows:

fsl-imx-wayland: Pure Wayland graphics.

fsl-imx-xwayland: Wayland graphics and X11; X11 applications using EGL are not supported.

If no distro file is specified, the XWayland distro is set up as default.
To set preferred versions and providers, users can create their own distro file based on one of these configurations
to customize their environment without updating the local.conf.
The syntax for the imx-frdm-setup.sh script is shown below:
$ DISTRO=<distro name> MACHINE=<machine name> source sources/meta-imx-frdm/
tools/imx-frdm-setup.sh -b <build dir>
Where:

DISTRO=<distro configuration name> is the distro, which configures the build environment, and it is stored in

meta-imx/meta-imx-sdk/conf/distro

MACHINE=<machine configuration name> is the machine name, which points to the configuration file in

conf/machine in meta-imx-frdm

-b <build dir> specifies the name of the build directory created by the imx-frdm-setup.sh script

When the script is run, it prompts the user to accept the EULA. Once the EULA is accepted, the acceptance is
stored in local.conf inside each build folder and the EULA acceptance query is no longer displayed for that build
folder.
After running the script, it creates the working directory specified with the -b option. The conf folder is created
containing the files bblayers.conf and local.conf.
The <build dir>/conf/bblayers.conf file contains all the metalayers used in the i.MX Yocto Project release and i.MX
FRDM release.
The local.conf file contains the machine and distro specifications:
MACHINE ??= ‘imx93frdm’
DISTRO ?= ‘fsl-imx-xwayland’
ACCEPT_FSL_EULA = “1”
Where:

The MACHINE configuration can be changed by editing this file, if necessary.

ACCEPT_FSL_EULA in the local.conf file indicates that you have accepted the conditions of the EULA.

5.2 Choosing an image
The Yocto Project provides some images that are available on different layers.
Table 7 lists various key images, their contents, and the layers that provide the image recipes.
Table 7. Image recipes

Image name Target

core-image-minimal A small image that only allows a device to boot

imx-image-core Core image with basic graphics and no multimedia

imx-image-multimedia Image with multimedia and graphics without any Qt content

imx-image-full Image with multimedia, machine learning, and Qt

5.3 Building an image
The Yocto Project build uses the bitbake command. For example, bitbake <component> builds the named
component. Each component build has multiple tasks, such as fetching, configuration, compilation, packaging, and
deploying to the target rootfs. The bitbake image build gathers all the components required by the image and build
in order of the dependency per task. The first build is the toolchain along with the tools required for the
components to build.
The following command is an example of how to build an image:
$ bitbake imx-image-full
5.4 BitBake options
The bitbake command used to build an image is bitbake <image name>. More parameters can be used for specific
activities described below. BitBake provides various useful options for developing a single component. To run with
a BitBake parameter, the command looks as follows:
bitbake <parameter> <component>
Where:

<component> is a desired build package.

Table 8 provides some BitBake options.
Table 8. BitBake options

BitBake parameter Description

-c fetch Fetches if the downloads state is not marked as done.

-c cleanall
Cleans the entire component build directory. All the changes in the build directory are lo
st. The rootfs and state of the component are also cleared. The component is also rem
oved from the download directory.

-c deploy Deploys an image or component to the rootfs.

-k Continues to build components even if a build break occurs.

-c compile -f
Do not change the source code directly under the temporary directory. If changes are m
ade, the Yocto Project cannot rebuild it unless this option is used. Use this option to for
ce a recompile after the image is deployed.

-g Lists a dependency tree for an image or component.

-DDD Turns on debug 3 levels deep. Each D adds another level of debug.

-s, –show- versions Shows the current and preferred versions of all recipes.

5.5 Build scenarios
To build a BSP image for FRDM-IMX93, execute the following commands:

1. Download i.MX Linux Yocto Release:

$: mkdir ${MY_YOCTO} # this directory will be the top directory of the Yocto source code

$: cd ${MY_YOCTO}

$: repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m

imx-6.6.36-2.1.0.xml

$: repo sync

2. Integrate meta-imx-frdm recipes into the Yocto code base:

$: cd ./sources

$: git clone https://github.com/nxp-imx-support/meta-imx-frdm.git

$: cd meta-imx-frdm

$: git checkout imx-frdm-1.0

3. Change to the top directory of the Yocto source code and execute the command below to set up

environment for build:

#For i.MX93 FRDM

$: MACHINE=imx93frdm DISTRO=fsl-imx-xwayland source sources/meta-imx-frdm/tools/imx-frdm-setup.sh

-b frdm-imx93

4. To generate Yocto images, run the following command:

$: bitbake imx-image-full

After executing previous commands, the Yocto images are generated at <build directory>/tmp/deploy/images.

You can now use the zstd and dd commands or UUU tool to flash the images to a microSD card.

Matter support

This repository also contains Yocto recipes to add Matter support based on i.MX Matter 2024 Q3. For more
information on i.MX Matter 2024 Q3, see https://github.com/nxp-imx/meta-nxp-connectivity.
To build the Yocto image with an integrated OpenThread Border Router, perform the following steps:

1. Run the following commands:
#Install the repo utility:
$: mkdir ~/bin
$: curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$: chmod a+x ~/bin/repo
$: export PATH=${PATH}:~/bin
#Download i.MX Software Release 2024 Q3:
$: mkdir ${MY_YOCTO} # this directory will be the top directory of the Yocto source code
$: cd ${MY_YOCTO}
$: repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m
imx-6.6.36-2.1.0.xml
$: repo sync
#Download i.MX Matter Release 2024 Q3:
$: cd ${MY_YOCTO}/sources/meta-nxp-connectivity
$: git remote update
$: git checkout imx_matter_2024_q3
#Integrate meta-imx-frdm recipes into the Yocto code base:
$: cd ${MY_YOCTO}/sources
$: git clone https://github.com/nxp-imx-support/meta-imx-frdm.git
$: cd meta-imx-frdm
$: git checkout imx-frdm-1.0
2. Run i.MX Linux Yocto Project setup:
Change the current directory to the top directory of the Yocto source code and execute the command below:
#For i.MX93 FRDM:
$: MACHINE=imx93frdm-iwxxx-matter DISTRO=fsl-imx-xwayland source sources/meta-imx-frdm/tools/imxfrdm-
matter-setup.sh bld-xwayland-imx93
3. To generate Yocto images, run the following command:
$: bitbake imx-image-multimedia
After executing previous commands, the Yocto images are generated at <build directory>/tmp/deploy/images. You
can now use the zstd and dd commands or UUU tool to flash the images to a microSD card.

Customization

7.1 Work with expansion boards
To work with certain expansion boards on FRMD-IMX93, the corresponding dtb file must be specified.
Table 9 shows the corresponding relationship.
Table 9.Corresponding relationship

Expansion board Interface dtb

7-inch Waveshare LCD MIPI DSI imx93-11×11-frdm-dsi.dtb

5-inch Tianma LCD 24 bit Parallel imx93-11×11-frdm-tianma-wvga-panel.dtb

RPI-CAM-MIPI MIPI CSI imx93-11×11-frdm.dtb

RPI-CAM-INTB 40pins imx93-11×11-frdm-mt9m114.dtb

MX93AUD-HAT 40pins imx93-11×11-frdm-aud-hat.dtb

8MIC-RPI-MX8 40pins imx93-11×11-frdm-8mic.dtb

2EL M.2 Module M.2 Key E imx93-11×11-frdm.dtb

The dtb file can be specified in U-Boot:
u-boot=> setenv fdtfile <dtb name>
u-boot=> saveenv
u-boot=> boot

Note: Bluetooth and Wi-Fi are supported on i.MX FRDM through on-board chip (MAYA-W27x with NXP IW612)
or external NXP SDIO IW612 (tested with Murata LBES5PL2EL). By default the on-board chip is used. If external
hardware is used, it must rework the board according to the FRDM-IMX93 Board User Manual.
7.2 How to build U-Boot and Kernel in a standalone environment
To build U-Boot and Kernel in a standalone environment, perform the following steps:

1. Generate an SDK that includes the necessary tools, toolchain, and a small rootfs to compile on the host

machine.

To generate an SDK from the Yocto Project build environment, run the following command:

$ bitbake core-image-minimal -c populate_sdk

The populate_sdk generates a script file that sets up a standalone environment without Yocto Project.

2. To build on, copy the sh file from the build directory in tmp/deploy/sdk to the host machine and execute the

script to install the SDK. The default location is in /opt, but it can be placed anywhere on the host machine.

3. On the host machine, to build U-Boot and Kernel, perform the following steps:

a. For i.MX 9 builds on the host machine, set the environment with the following command before building:

$ source /opt/fsl-imx-xwayland/6.6-nanbield/environment-setup-aarch64-poky-linux

$ export ARCH=arm64

U-Boot:

Download source by cloning as follows:

$ git clone https://github.com/nxp-imx/uboot-imx -b lf_v2024.04

$ cd uboot-imx

$ git checkout lf-6.6.36-2.1.0

#Apply patches for i.MX FRDM and “DIR” is the directory of this i.MX FRDM Software release.

$ git am DIR/meta-imx-frdm/meta-imx-bsp/recipes-bsp/u-boot/u-boot-imx/*.patch

b. For i.MX 93 11×11 FRDM board, run the following command:

$ make distclean

$ make imx93_11x11_frdm_defconfig

$ make

Kernel:

Download source by cloning as follows:

$ git clone https://github.com/nxp-imx/linux-imx -b lf-6.6.y

$ cd linux-imx

$ git checkout lf-6.6.36-2.1.0

#Apply patches for FRDM-IMX and “DIR” is the directory of this release.

$ git am DIR/meta-imx-frdm/meta-imx-bsp/recipes-kernel/linux/linux-imx/*.patch

c. To build the Kernel in the standalone environment for i.MX 9, execute the following commands:

$ make imx_v8_defconfig

$ make

Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:
Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote

products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Revision history

Table 10 summarizes the revisions to this document.
Table 10.Revision history

Document ID Release date Description

UG10195 v.1.0 20 December 2024 Initial public release

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still under internal review and subject to formal
approval, which may result in modifications or additions. NXP Semiconductors does not give any representations
or warranties as to the accuracy or completeness of information included in a draft version of a document and
shall have no liability for the consequences of use of such information.
Disclaimers
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for theconsequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source
outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential
damages (including – without limitation lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make changes to information published in
this document, including without limitation specifications and product descriptions, at any time and without notice.
This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for
use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP emiconductors product can reasonably be expected to result in personal injury, death or
severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion
and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion
and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only.
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified
use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NXP
Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors
product is suitable and fit for the customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks associated with their applications and
products.
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based
on any weakness or default in the customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and
products using NXP Semiconductors products in order to avoid a default of the applications and the products or of
the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.
Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general
terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and
conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by
customer.
Export control — This document as well as the item(s) described herein may be subject to export control
regulations. Export might require a prior authorization from competent authorities.
Suitability for use in non-automotive qualified products — Unless this document expressly states that this
specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is
neither qualified nor tested in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims
resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive
information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.
Translations — A non-English (translated) version of a document, including the legal information in that
document, is for reference only. The English version shall prevail in case of any discrepancy between the
translated and English versions.
Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may
support established security standards or specifications with known limitations. Customer is responsible for the
design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open
and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up
appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the
intended application and make the ultimate design decisions regarding its products and is solely responsible for
compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any
information or support that may be provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the
investigation, reporting, and solution release to security vulnerabilities of NXP products.
NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.
Trademarks
Notice: All referenced brands, product names, service names, and trademarks are the property of their respective
owners.
NXP — wordmark and logo are trademarks of NXP B.V.

https://www.nxp.com/profile/terms
mailto:PSIRT@nxp.com

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates,
Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINKPLUS, ULINKpro, μVision, Versatile
— are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere.
The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights
reserved.
Bluetooth — the Bluetooth wordmark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any
use of such marks by NXP Semiconductors is under license.
Matter, Zigbee — are developed by the Connectivity Standards Alliance.
The Alliance’s Brands and all goodwill associated therewith, are the exclusive property of the Alliance.

All information provided in this document is subject to legal disclaimers.
© 2024 NXP B.V. All rights reserved.

Rev. 1.0 — 20 December 2024 ”
Document feedback

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 20 December 2024
Document identifier: UG10195

Documents / Resources

NXP UG10195 FRDM i.MX 93 Development Board [pdf] User Guide
UG10195 FRDM i.MX 93 Development Board, UG10195, FRDM i.MX 93 Development Board, D
evelopment Board, Board

References

 commondatastorage.googleapis.com/git-repo-downloads/repo

 Index of /debian/pool/main/

 MCUXpresso SDK Builder

 The Yocto Project

 GitHub - nxp-imx/imx-manifest: i.MX Release Manifest

 GitHub - nxp-imx/linux-imx: i.MX Linux kernel

 GitHub - nxp-imx/meta-nxp-connectivity: The layer files for integrate the Matter and OpenThread into

i.MX Yocto Linux

 Home · nxp-imx/mfgtools Wiki · GitHub

 Releases · nxp-imx/mfgtools · GitHub

 GitHub - WCHSoftGroup/ch343ser_linux: USB serial driver, libraries, gpio and USB parameter

configuration applications for USB to UART(s) chip

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10195
https://www.nxp.com
https://manuals.plus/m/b74e3096c36d0deadb6450974eb9659819dc827bc09e7f4a9eaeadfe451d2fa5
https://manuals.plus/m/b74e3096c36d0deadb6450974eb9659819dc827bc09e7f4a9eaeadfe451d2fa5_optim.pdf
http://commondatastorage.googleapis.com/git-repo-downloads/repo
http://ftp.hk.debian.org/debian/pool/main/
http://mcuxpresso.nxp.com
http://www.yoctoproject.org
https://github.com/nxp-imx/imx-manifest
https://github.com/nxp-imx/linux-imx
https://github.com/nxp-imx/meta-nxp-connectivity
https://github.com/nxp-imx/mfgtools/wiki
https://github.com/NXPmicro/mfgtools/releases
https://github.com/WCHSoftGroup/ch343ser_linux.git

ch342/ch343/ch344/ch346/ch347/ch339/ch9101/ch9102/ch9103/ch9104/ch9143/ch9111/ch9114, etc.

 storage.googleapis.com/git-repo-downloads/repo

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://storage.googleapis.com/git-repo-downloads/repo
https://manual.tools/?p=15831634#MTA0LjI4LjIwMi4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	NXP UG10195 FRDM i.MX 93 Development Board User Guide
	UG10195 FRDM i.MX 93 Development Board
	Overview
	Introduction
	Getting started
	Image build using Yocto
	Image build
	Matter support
	Customization
	Note about the source code in the document
	Revision history
	Legal information
	Documents / Resources
	References

